
Integrating Induction and
Deduction in Model Checking

Integrating Induction and
Deduction in Model Checking

Sanjit A. Seshia

EECS Department
UC Berkeley

Clarke Symposium
September 19, 2014

– 2 –

Model Checking and SynthesisModel Checking and Synthesis

E. M. Clarke and E. A. Emerson, 1981:
“We propose a method of constructing concurrent programs
in which the synchronization skeleton of the program is
automatically synthesized from a high-level (branching
time) Temporal Logic specification.”

(1st sentence of their seminal model checking paper)

– 3 –

Three Messages in this TalkThree Messages in this Talk

1. Verification by Reduction to Synthesis
– Many (verification) tasks involve synthesis

2. Induction + Deduction + Structure: An Effective
Approach to Synthesis:
– Induction: Learning from examples
– Deduction: Logical inference and constraint solving
– Structure: Hypothesis on syntactic form of artifact

to be synthesized
– “Syntax-Guided Synthesis” [Alur et al., FMCAD’13]

 Inspired by Counterexample-guided abstraction refinement (CEGAR)
[Clarke et al., CAV’00]

3. Machine Learning Theory + Formal Methods
– Analysis of Counterexample-Guided Synthesis

 Sample Complexity, Convergence, Search Strategies

[Seshia DAC’12; Jha & Seshia, SYNT’14]

– 4 –

Artifacts Synthesized in VerificationArtifacts Synthesized in Verification

 Inductive invariants
 Abstraction functions / abstract models
 Auxiliary specifications (e.g., pre/post-conditions,

function summaries)
 Environment assumptions / Interface

specifications
 Interpolants
 Ranking functions
 Intermediate lemmas for compositional proofs
 Theory lemma instances in SMT solving
 Patterns for Quantifier Instantiation
 …

– 5 –

Formal Verification as SynthesisFormal Verification as Synthesis

 Inductive Invariants

 Abstraction Functions

– 6 –

One Reduction from Verification to
Synthesis
One Reduction from Verification to
Synthesis

SYNTHESIS PROBLEM
Synthesize  s.t.

I    
      ’  ’

VERIFICATION PROBLEM
Does M satisfy ?

NOTATION
Transition system M = (I, )
Safety property  = G()

– 7 –

Two Reductions from Verification to
Synthesis
Two Reductions from Verification to
Synthesis

NOTATION
Transition system M = (I, ), S = set of states
Safety property  = G()

SYNTHESIS PROBLEM #1
Synthesize  s.t.

I    
      ’  ’

VERIFICATION PROBLEM
Does M satisfy ?

SYNTHESIS PROBLEM #2
Synthesize  : S  Ŝ where

(M) = (I, )
s.t.

(M) satisfies 
iff

M satisfies 

ˆ ˆ

– 8 –

Counterexample-Guided Abstraction
Refinement is “Inductive” Synthesis
Counterexample-Guided Abstraction
Refinement is “Inductive” Synthesis

Invoke
Model

Checker
Done

Valid

Counter-
example

Check
Counterexample:

Spurious?
Spurious

Counterexample

YES

Abstract
Domain

System
+Property

Initial
Abstraction

Function

Done
NO

Generate
Abstraction

Abstract Model
+ Property

Refine
Abstraction

Function

New Abstraction Function

Fail

SYNTHESIS VERIFICATION

[Anubhav Gupta, PhD‘06]

– 9 –

Lazy SMT Solving performs
“Inductive” Synthesis (of Lemmas)
Lazy SMT Solving performs
“Inductive” Synthesis (of Lemmas)

Invoke
SAT

Solver
Done

UNSAT

SAT
(model)

Invoke Theory
Solver“Spurious

Model”

UNSAT

SMT
Formula

Initial
Boolean

Abstraction

Done
SAT

Generate
SAT

Formula

SAT Formula

Proof
Analysis

Blocking Clause/Lemma

SYNTHESIS VERIFICATION

(“Counter-
example”)

– 10 –

CEGAR & Lazy SMT perform Active
Learning from (Counter)Examples
CEGAR & Lazy SMT perform Active
Learning from (Counter)Examples

INITIALIZE

LEARNING
ALGORITHM

VERIFICATION
ORACLE

Candidate
Concept

Counterexample

Learning SucceedsLearning Fails

“Concept Class”, Initial Examples

Difference from standard learning theory:
Learning Algorithm and Verification Oracle are typically

“General” Solvers, independent of concept class

– 11 –

Machine Learning Theory 
Formal Methods: 2 Sample Results
Machine Learning Theory 
Formal Methods: 2 Sample Results
 Lower Bounds on Convergence of

Counterexample-guided loop
– Teaching Dimension (TD): Minimum number of

(labeled) examples a teacher must reveal to
uniquely identify any concept from a class

– Thm: TD is a lower bound on # iterations for
counterexample-guided synthesis

 Impact of “Quality” of Counterexamples
– Does the type of counterexample affect

convergence for infinite-size concept classes?
– Thm: Minimum counterexamples are no better

than arbitrary counterexamples

[Jha & Seshia, SYNT’14]

– 12 –

ConclusionConclusion

 Model Checking and Synthesis: many connections
 Verification by Reduction to Synthesis
 Approach for Synthesis: Induction + Deduction +

Structure
– “Syntax-Guided Synthesis” [Alur et al., FMCAD’13]
– Inspired by Counterexample-guided abstraction

refinement (CEGAR) [Clarke et al., CAV’00]

 Machine Learning Theory & Formal Methods:
theoretical connections
– Sample Complexity, Convergence, Search

Strategies

