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Model Checking and SynthesisModel Checking and Synthesis

E. M. Clarke and E. A. Emerson, 1981:
“We propose a method of constructing concurrent programs 
in which the synchronization skeleton of  the program is 
automatically synthesized from a high-level (branching 
time) Temporal Logic specification.”

(1st sentence of their seminal model checking paper)
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Three Messages in this TalkThree Messages in this Talk

1. Verification by Reduction to Synthesis
– Many (verification) tasks involve synthesis

2. Induction + Deduction + Structure: An Effective 
Approach to Synthesis:
– Induction: Learning from examples
– Deduction: Logical inference and constraint solving
– Structure: Hypothesis on syntactic form of artifact 

to be synthesized
– “Syntax-Guided Synthesis” [Alur et al., FMCAD’13]

 Inspired by Counterexample-guided abstraction refinement (CEGAR) 
[Clarke et al., CAV’00]

3. Machine Learning Theory + Formal Methods
– Analysis of Counterexample-Guided Synthesis

 Sample Complexity, Convergence, Search Strategies

[Seshia DAC’12; Jha & Seshia, SYNT’14]
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Artifacts Synthesized in VerificationArtifacts Synthesized in Verification

 Inductive invariants
 Abstraction functions / abstract models
 Auxiliary specifications (e.g., pre/post-conditions, 

function summaries)
 Environment assumptions / Interface 

specifications
 Interpolants
 Ranking functions
 Intermediate lemmas for compositional proofs 
 Theory lemma instances in SMT solving
 Patterns for Quantifier Instantiation
 …
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Formal Verification as SynthesisFormal Verification as Synthesis

 Inductive Invariants

 Abstraction Functions
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One Reduction from Verification to 
Synthesis
One Reduction from Verification to 
Synthesis

SYNTHESIS PROBLEM
Synthesize  s.t.

I    
      ’  ’ 

VERIFICATION PROBLEM
Does M satisfy ?

NOTATION
Transition system M = (I, ) 
Safety property  =  G()
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Two Reductions from Verification to 
Synthesis
Two Reductions from Verification to 
Synthesis

NOTATION
Transition system M = (I, ),  S = set of states 
Safety property  =  G()

SYNTHESIS PROBLEM #1
Synthesize  s.t.

I    
      ’  ’ 

VERIFICATION PROBLEM
Does M satisfy ?

SYNTHESIS PROBLEM #2
Synthesize  : S  Ŝ where

(M) = (I, ) 
s.t.

(M) satisfies 
iff

M satisfies 

ˆ ˆ
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Counterexample-Guided Abstraction 
Refinement is “Inductive” Synthesis
Counterexample-Guided Abstraction 
Refinement is “Inductive” Synthesis

Invoke 
Model 

Checker
Done

Valid

Counter-
example

Check
Counterexample: 

Spurious?
Spurious 

Counterexample

YES

Abstract 
Domain

System 
+Property

Initial 
Abstraction 

Function

Done
NO

Generate 
Abstraction

Abstract Model        
+ Property

Refine 
Abstraction 

Function

New Abstraction Function

Fail

SYNTHESIS VERIFICATION

[Anubhav Gupta, PhD‘06]
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Lazy SMT Solving performs 
“Inductive” Synthesis (of Lemmas)
Lazy SMT Solving performs 
“Inductive” Synthesis (of Lemmas)

Invoke 
SAT 

Solver
Done

UNSAT

SAT  
(model)

Invoke Theory 
Solver“Spurious 

Model”

UNSAT

SMT 
Formula

Initial 
Boolean 

Abstraction

Done
SAT

Generate 
SAT 

Formula

SAT Formula

Proof 
Analysis

Blocking Clause/Lemma

SYNTHESIS VERIFICATION

(“Counter-
example”)
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CEGAR & Lazy SMT perform Active 
Learning from (Counter)Examples
CEGAR & Lazy SMT perform Active 
Learning from (Counter)Examples

INITIALIZE

LEARNING
ALGORITHM

VERIFICATION
ORACLE

Candidate
Concept

Counterexample

Learning SucceedsLearning Fails

“Concept Class”, Initial Examples

Difference from standard learning theory:                       
Learning Algorithm and Verification Oracle are typically 

“General” Solvers, independent of concept class
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Machine Learning Theory 
Formal Methods: 2 Sample Results
Machine Learning Theory 
Formal Methods: 2 Sample Results
 Lower Bounds on Convergence of 

Counterexample-guided loop
– Teaching Dimension (TD): Minimum number of 

(labeled) examples a teacher must reveal to 
uniquely identify any concept from a class

– Thm: TD is a lower bound on # iterations for 
counterexample-guided synthesis

 Impact of “Quality” of Counterexamples
– Does the type of counterexample affect 

convergence for infinite-size concept classes?
– Thm: Minimum counterexamples are no better 

than arbitrary counterexamples 

[Jha & Seshia, SYNT’14]



– 12 –

ConclusionConclusion

 Model Checking and Synthesis: many connections
 Verification by Reduction to Synthesis
 Approach for Synthesis: Induction + Deduction + 

Structure 
– “Syntax-Guided Synthesis” [Alur et al., FMCAD’13]
– Inspired by Counterexample-guided abstraction 

refinement (CEGAR) [Clarke et al., CAV’00]

 Machine Learning Theory & Formal Methods: 
theoretical connections 
– Sample Complexity, Convergence, Search 

Strategies


