
Descriptive Control Theory

Sicun Gao

(student & postdoc, 2007 to next Friday)

Thank you, Ed, for not throwing me out seven
years ago when I first came to you with a
polynomial-time algorithm for SAT, and for still
giving me even harder problems with even
more patience through these years.

There exists a theory X that provides the key design
methodology of a broad class of software, which

• runs on 99% of the CPUs around us

• has produced most of the notorious bugs commonly
used to motivate formal verification.

Should X be studied by formal methods?

There exists a theory X that

• has matured before “computer science”

• has experienced much difficulty in solving (what we
now understand as*) NP-hard problems for long.

What’s your suggestions to practitioners of X?

* [Gao et al. LICS’12, CADE’12, FMCAD’13, arXiv’14]

We need a
 logical and computational “overhaul” of

control theory
that sets the foundation for building
 highly complex, reliable, and secure software

controllers
in
 nonlinear, hybrid, and safety-critical systems.

Descriptive control theory aims to study

• Computational complexity
• Automated reasoning
• Logical foundation

for all topics/results in control theory, with a

focus on nonlinear and hybrid systems.

Approach:

• Encode control problems in
• Infer complexity from logical descriptions
• Automatically solve using decision procedures
• Mine formal proofs after solving

First (or second) order logic over
the reals with Type 2 computable
functions [Gao et al. LICS’12]

Descriptive Complexity

Complexity of bounded Lyapunov stability* is in

* We always talk about the delta-variation [Gao et al. arXiv’14]

Automated Solving

• No harder than SAT/QBF [Gao et al. CADE’12]

• Must combine symbolic and numerical algorithms
• Alternations of quantifiers

github.com/dreal

Formal Proofs

• Automatic proof generation from solvers
• Formalize proofs of classical theorems in control

theory
• Combine them to produce full proofs of correctness

github.com/leanprover

Encode

Automate

Prove

Goal of DCT:

Develop automated and proof-producing methods for

solving nonlinear and hybrid control problems,
whose complexity typically ranges from NP-hard to
PSPACE-complete.

The core for a correctness-by-construction framework

for building complex cyber-physical systems.

http://www.youtube.com/watch?v=3u9ZeCaDeic

In theory, this is (almost) not harder than SAT.
[Gao et al. LICS’12, CADE’12, FMCAD’13]

But can we really have control systems like this
someday?

I don’t know. Tons of things to do. But I’m always
naively optimistic.

Is there any other way of doing it before good
progress in DCT?

Unlikely.

Let’s see how things stand at Ed’s 80th birthday.

	Descriptive Control Theory
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

