
Verifying Recursive Programs using
Intra-procedural Analyzers

Yu-Fang Chen, Academia Sinica, Taiwan
joint work with

Chiao Hsieh, Ming-Hsien Tsai, Bow-Yaw Wang and Farn Wang

First of all

Thanks for the invitation and
congratulation to Ed!

2014/9/19
2

Difficulties of Program Verification

•  Large/unbounded base types: int, float, string
•  User-defined types/classes
•  Pointers/aliasing + unbounded #’s of heap-allocated cells
•  Procedure calls/recursion/calls through pointers/dynamic method

lookup/overloading
•  Concurrency + unbounded #’s of threads
•  Templates/generics/include files
•  Interrupts/exceptions/callbacks
•  Use of secondary storage: files, databases
•  Absent source code for: libraries, system calls, mobile code
•  Size

 Source: Turing Lecture of Edmund Clarke

2014/9/19
3

Difficulties of Program Verification

•  Large/unbounded base types: int, float, string
•  User-defined types/classes
•  Pointers/aliasing + unbounded #’s of heap-allocated cells
•  Procedure calls/recursion/calls through pointers/dynamic method

lookup/overloading
•  Concurrency + unbounded #’s of threads
•  Templates/generics/include files
•  Interrupts/exceptions/callbacks
•  Use of secondary storage: files, databases
•  Absent source code for: libraries, system calls, mobile code
•  Size

 Source: Turing Lecture of Edmund Clarke

2014/9/19
4

Almost impossible to attack all
features at the same time.

Difficulties of Program Verification

•  Large/unbounded base types: int, float, string
•  User-defined types/classes
•  Pointers/aliasing + unbounded #’s of heap-allocated cells
•  Procedure calls/recursion/calls through pointers/dynamic method

lookup/overloading
•  Concurrency + unbounded #’s of threads
•  Templates/generics/include files
•  Interrupts/exceptions/callbacks
•  Use of secondary storage: files, databases
•  Absent source code for: libraries, system calls, mobile code
•  Size

 Source: Turing Lecture of Edmund Clarke

2014/9/19
5

The Proposal

2014/9/19
6

Basic Solver:
Handle only integer type

No recursion
No pointer

No concurrency

The Proposal

2014/9/19
7

Basic Solver:
Handle only integer type

No recursion
No pointer

No concurrency

Tool for handling
recursion

Tool for handling
pointers

Tool for handling
concurrency

The Proposal

2014/9/19
8

Basic Solver:
Handle only integer type

No recursion
No pointer

No concurrency

Tool for handling
recursion

Tool for handling
pointers

Tool for handling
concurrency

Akash Lal, Thomas W. Reps: Reducing Concurrent Analysis Under a
Context Bound to Sequential Analysis. CAV 2008

Handling Recursive Programs

An approach to
verify recursive program using
non-recursive verifiers via
program transformation

Yu-Fang Chen, Chiao Hsieh, Ming-Hsien Tsai, Bow-Yaw Wang and Farn
Wang,“Verifying Recursive Programs using Intraprocedural Analyzers”, SAS
2014

2014/9/19
9

The Idea

2014/9/19
10

Basic Solver:
Handle only integer type

No recursion
No pointer

No concurrency

Tool for handling
recursion

Program
with

recursion

Equivalent
program
without

recursion

The Idea

2014/9/19
11

Basic Solver:
Handle only integer type

No recursion
No pointer

No concurrency

Tool for handling
recursion

Program
with

recursion

Equivalent
program
without

recursion

Impossible:
PDA is more

expressive than FA

The Idea

2014/9/19
12

Basic Solver:
Handle only integer type

No recursion
No pointer

No concurrency
Tool for handling

recursion

Program with
recursion

Under-Approximation
without recursion

Over-Approximation
without recursion

The Idea

2014/9/19
13

Basic Solver:
Handle only integer type

No recursion
No pointer

No concurrency
Tool for handling

recursion

Program with
recursion

Under-Approximation
without recursion

Over-Approximation
without recursion

The Idea

2014/9/19
14

Basic Solver:
Handle only integer type

No recursion
No pointer

No concurrency
Tool for handling

recursion

Program with
recursion

Under-Approximation
without recursion

Over-Approximation
without recursion

The Idea

2014/9/19
15

Basic Solver:
Handle only integer type

No recursion
No pointer

No concurrency
Tool for handling

recursion

Program with
recursion

Under-Approximation
without recursion

Over-Approximation
without recursion

An Example: McCarthy 91

2014/9/19
16

Goal: verify assertion safely
Assumption: Formal parameters are read-only

Construct Under-Approximation

2014/9/19
17

Construct Under-Approximation

2014/9/19
18

Refine the Approximation by Unwinding

2014/9/19
19

More Accurate Refinement

2014/9/19
20

Construct Over-Approximation

2014/9/19
21

Assume we have a summary {true} r := mc91(n) { r¸91}	

	

PROBLEM: How to find reasonable
candidates of function summaries?

Basic Flow

2014/9/19
22

Program to
be verified

Basic
Solver

Under-
approximation

Over-
approximation

Unsafe

Safe

Find a
real bug

Basic
Solver

Compute summaries
from the output
(inductive invariants)

Safe The program is safe
(The assertion can
never be violated)

Unsafe

Unwind the function calls of
the program to be verifiedRepeat the procedure

Inductive Invariant from Basic Solver

2014/9/19
23

Candidate from the Inductive Invariant

2014/9/19
24

Generate a candidate of summary: true à rmc91¸91	

8NFR. P àP’, where NFR means all variables other
than formal parameters and return variables	

Some renaming is needed. rmc91 is the
return variable of the function mc91.	

	

P

P’

Check the Summary

2014/9/19
25

Check the Summary

2014/9/19
26

Summary

Summary

Summary µ

Experimental Results

•  Benchmarks: the Recursive category of the 2014
Competition on Software Verification

•  Blast is the most well-known tool in software

verification.
•  The rest are the top 3 tools in the competition.

2014/9/19
27

Our Advantages

•  A light-weight, modular approach for
recursive program verification.
– Our implementation has 2k lines,

CPAChecker has 170k lines
•  The performance of the implementation is

comparable to those specialized for
handling recursion

2014/9/19
28

