
10-701 Final Exam, Spring 2006

1. Write your name and your email address below.

• Name:

• Andrew account:

2. There should be 22 numbered pages in this exam (including this cover sheet).

3. You may use any and all books, papers, and notes that you brought to the exam, but
not materials brought by nearby students. Calculators are allowed, but no laptops,
PDAs, or Internet access.

4. If you need more room to work out your answer to a question, use the back of the page
and clearly mark on the front of the page if we are to look at what’s on the back.

5. Work efficiently. Some questions are easier, some more difficult. Be sure to give yourself
time to answer all of the easy ones, and avoid getting bogged down in the more difficult
ones before you have answered the easier ones.

6. Note there are extra-credit sub-questions. The grade curve will be made without
considering students’ extra credit points. The extra credit will then be used to try to
bump your grade up without affecting anyone else’s grade.

7. You have 180 minutes.

8. Good luck!

Question Topic Max. score Score

1 Short questions 6 + 3.6 extra
2 Gaussian Naive Bayes and Logistic Regression 8
3 Boosting 12
4 HMM 12
5 Bayesian Networks and Independence 10
6 Bayesian Network Structure Learning 10
7 MDPs and Reinforcement Learning 12 + 6 extra
8 EM Algorithm 12
9 Dimensionality reduction - PCA 8
10 Dimensionality reduction - neural nets and PCA 10
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1 [6 points + 3.6 extra credit] Short questions

1. [3 points] In Figure ??, draw a partially labeled data set, for which transductive SVMs
achieve higher classification accuracy than regular SVMs. Use linear kernels. To do
that, mark the positive labels by +, negative labels by -, indicate the true decision
boundary between the classes, as well as the decision boundaries computed by the
regular and transductive SVMs.
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Figure 1: Please draw the data set for Question 1.1 here.

2. [3 points] Distribute the numbers 1,2,3,4 to the following four methods for classifying
2D data, such that 1 indicates highest variance and lowest bias, and 4 indicates lowest
variance and highest bias.

• Boosted logistic regression (10 rounds of boosting)

• 1-nearest neighbor classifier

• Decision trees of depth 10

• Logistic regression
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3. [3 points extra credit] Consider two random variables, X1 and X2. X1 can take values
A, B, C,D, E, and X2 can take values 1, 2, 3, 4, 5. Data sets of samples from (X1, X2)
consist of combinations of assignments to X1 and X2, such as e.g., (A, 3) or (B, 5).
Consider the bipartite graphs (with no edges yet) drawn below. A data set can be
visualized by the presence of a set of edges between X1 and X2.

On the graphs below, draw a data set (i.e., a set of edges) of at most 10 elements,
such that, when using co-training, a single labeled example will lead to (left) no im-
proved classification, or (right) perfectly classified data (on all possible combinations
of (X1, X2)). An edge determines whether a particular combination of features are
present in the data.
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Figure 2: Please answer the cotraining question here.

4. [0.6 points extra credit] Connect the dots to get a prediction of your grade:

Brazil

World Cup 2006 

champions

In the Name 

of Love

U2

The Village 

People
Go West

Figure 3: Connect the dots.
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2 [8 points] Gaussian Naive Bayes and Logistic Regres-

sion

In this question you will compare the decision boundaries of Gaussian Naive Bayes (GNB)
and Logistic Regression (LR). For each of the datasets circle true (T) or false (F), based on
whether the method can separate the two classes.

• If the answer for Logistic Regression is true, draw the decision boundary.
• If the answer for Gaussian Naive Bayes is true, draw the shape of the two Gaussian

bumps (center and the variance).
• If the answer for any of Gaussian Naive Bayes or Logistic Regression is false, please

give a one sentence explanation.
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3 [12 points] Boosting

Given a small dataset on figure ?? we want to learn a classifier that will separate pluses from
minuses, using the AdaBoost algorithm. Each datapoint xi has a class yi ∈ {+1.− 1}.

We will be using weak learners where the weak learner’s decision boundary is always
parallel to one of the axis, i.e., the separating plane is either vertical or horizontal. You can
think of weak learners as decision stumps where we split either on X or Y coordinate.

When training the new weak learner ht(x), we will choose the one that maximizes the
weighted classification accuracy with respect to the current weights Dt, i.e., choose ht that
maximizes

∑
i Dt(i)δ(ht(xi) = yi). Note that ht(x) only takes values in {+1,−1}, depending

on whether it classifies x as positive or negative.
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(a) Decision boundary after 1st iteration (b) Decision boundary after 2nd iteration
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Figure 4: Dataset for question ?? on boosting.
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1. [1 point] Draw the decision boundary of boosting after the first iteration (after the first
weak learner is chosen) on Figure ??(a). Don’t forget to mark which parts of the plane
get classified as “+” and which as “−”.

2. [1 point] Now we do second iteration of boosting. Draw decision boundaries of both
weak learners in Figure ??(b). Boosting combines the decisions of both weak learners.
Mark which parts of the plane boosting with 2 weak learners classifies as “+” and
which as “−”. Use Figure ??(b).

3. [2 points] In AdaBoost, we choose αt as the weight of the t-th weak learner, where

αt = 1
2
ln

(
1−εt

εt

)
. Hereby, εt = Px∼Dt [ht(x) 6= y], i.e. the weighted fraction of examples

misclassified by the t-th weak learner. Which one is larger, α1 or α2? Give a one
sentence explanation of your answer.

4. [2 points] After two iterations of boosting, how many training examples are misclassi-
fied?

5. [2 points] Mark which training example(s) have the lowest weight (Dt) after the two
iterations of boosting, t = 2? Use Figure ??(c).

6. [2 points] Mark which training example(s) have the highest weight (Dt) after the second
iteration of boosting, t = 2? Use Figure ??(d).

7. [2 points] Using the dataset from figure ?? and our weak learners, will Boosting ever
achieve zero training error? Give a one sentence explanation of your answer.
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4 [12 points] HMM

Consider the Hidden Markov Model defined by the transition and observation probabili-
ties in the table below. The hidden variables are X1, X2, X3, X4, and the observations are
O1, O2, O3, O4, i.e., the hidden and observed sequences have length 4. The hidden variables
Xi can take one of six values, {s1, . . . , s6}. The observations Oi are in {a, b, c, d}.

You know that P (X1 = s1) = 1, i.e., the hidden sequence starts in state s1. The transition
probabilities are as represented in the following transition diagram:
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Figure 5: Finite (stochastic) state machine representation of the transitions for the HMM of
Question ??. The transition probabilities are annotated on the edges.

For example, P (Xt+1 = s3 | Xt = s2) = 0.8, and P (Xt+1 = s4 | Xt = s1) = 0.7. Edges
which are missing correspond to transition probabilities of zero.

The observation probabilities are as follows:

a b c d
s1 0.5 0.3 0 0.2
s2 0.1 0.3 0.5 0.1
s3 0.2 0.3 0.4 0.1
s4 0.3 0.2 0.3 0.2
s5 0 0.3 0.2 0.6
s6 0.4 0.4 0.1 0.1

For example, P (Ot = c | Xt = s2) = 0.5, and P (Ot = a | Xt = s4) = 0.3. We will use the
following shorthanded notation where we for example write P (O = abca,X2 = s1, X4 = s2)
instead of P (O1 = a, O2 = b, O3 = c, O4 = a, X2 = s1, X4 = s2).

[3 points each] For each of the items below, insert <, > or = into the brackets between
the left and the right expression. Show your work or justify your answer. Hint: Thinking
before computing might save a lot of time.

1. P (O = abca,X1 = s1, X2 = s2) ( ) P (O = abca|X1 = s1, X2 = s2)

F SOLUTION: “<”. The right hand side is the left hand side divided by P (X1 =
s1, X2 = s2) which is less than 1.

2. P (O = abca,X1 = s1, X4 = s6) ( ) P (O = abca|X1 = s1, X4 = s6)
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F SOLUTION: “=”. Here, P (X1 = s1, X4 = s6) = 1, hence we have equality.

3. P (O = acdb,X2 = s2, X3 = s3) ( ) P (O = acdb,X2 = s4, X3 = s5)

F SOLUTION: “<”. We work out P (O = acdb,X2 = s2, X3 = s3) = CP (X2 = s2 |
X1 = s1), P (X3 = s3 | X2 = s2)P (O2 = c | S2 = s2)P (O3 = d | S3 = s3) = C ·.3·.8·.5·.1
which is less than P (O = acdb,X2 = s4, X3 = s5) = CP (X2 = s4 | X1 = s1), P (X3 =
s5 | X2 = s2)P (O2 = c | S2 = s2)P (O3 = d | S3 = s3) = C · .7 · 1 · .3 · .6 for some
constant C.

4. P (O = acdb) ( ) P (O = acdb|X2 = s4, X3 = s5)

F SOLUTION: “<”. We work out the probabilities P (O = acdb,X2 = s2, X3 = s3),
P (O = acdb,X2 = s2, X3 = s5), P (O = acdb,X2 = s4, X3 = s5) and sum them to get
P (O = acdb). To get P (O = acdb | S2 = s4, S3 = s5), we can divide P (O = acdb,X2 =
s4, X3 = s5) by P (X2 = s4, X3 = s5) = .7.
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5 [10 points] Bayesian Networks and Independence

1. [4 points] For the following Bayesian network graph, construct a set of CPDs P (a),
P (b), P (c | a, b), P (d | a) s.t. A is not independent of B, given D. Justify your answer,
e.g., by computing some conditional probabilities in your solution.A BCD
F SOLUTION: The constructed distribution needs to satisfy

p(a, b | d) 6= p(a | d)p(b | d) (1)

or, equivalently,
p(a | b, d) 6= p(a | d). (2)

Given a particular distribution p, the terms in Equations ?? and ?? can be computed by
marginalizing out one or more variables from p(a, b, c, d) = p(a)p(b)p(c | a, b)p(d | c).
Most choices of p(a), p(b), p(c | b, c), and p(d | c) satisfy Eq. ?? and ?? (see Thm ? in
Chap 2 of Koller, Friedman). With binary A, B, C,D, a simple choice is p(a) = p(b) = 0.5,
C = A XOR B, D = C with probability 1. In this case, p(A = 1 | D = 1, B = 1) = 0,
whereas p(A = 1 | D = 1, B = 0) = 1, hence it cannot be the case that

p(A = 1 | D = 1) = p(A = 1 | D = 1, B = 1) = p(A = 1 | D = 1, B = 0),

which concludes the proof.
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2. [1.5 points each] For each of the following pairs of Bayesian networks, determine if
the two Bayesian networks are equivalent, if one is strictly more expressive than the
other, or if each represents a different set of independence assumptions. When the two
networks are equivalent, state one independence assumption satisfied by them; when
the two networks are not equivalent, state an independence assumption satisfied by
one, but not the other.A B C A B C

A B C A B C
C

A B D C
A B D

C
A B D C

A B D

a)b)
c)
d)

vs.
vs.
vs.
vs.
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6 [10 points] Bayesian Network Structure Learning

Consider the following Bayesian network tree T :FluAllergy SinusHeadache Nose Fever
Figure 6: A Flu-Allergy-Sinus Bayesian network.

Note that the edge between Flu and Sinus goes from Sinus to Flu, rather than the
other way around. You are given a fully observed training set D = {x1, . . . , xN}, where
xi = 〈ai, si, f i, hi, ni, ri〉 is the i-th data point (f stands for flu, while r stands for fever).

1. [3 points] Write down the log-likelihood score of the tree network in Figure ??, log p(D | T , θT ).
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2. [4 points] Now suppose that that the direction of the edge between Sinus and Flu
reverses, introducing a v-structure at Sinus. Denote the new graph with G. What is
the change in the log-likelihood

log p(D |G, θG)− log p(D | T , θT )?

3. [3 points] Describe a general algorithm that, given a directed tree T , finds a Bayesian
network structure with maximum log-likelihood score that differs from T in the direc-
tion of exactly one edge.
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7 [12 points + 6 extra credit] MDPs and Reinforce-

ment Learning

Consider the following scenario. You are reading email, and you get an offer from the CEO
of Marsomania Ltd., asking you to consider investing into an expedition which plans to dig
for gold on Mars. You can either choose to invest, with the prospect of either getting money
or fooled, or you can instead choose to ignore your emails and go to a party. Of course your
first thought is to model this as Markov Decision Process, and you come up with the MDP
presented in Figure ??.
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R=0

Get money

(M) 

R=10000
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R=-100

Have fun

(H)

R=1

1
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.2

.8

1

1

Go to

party 1

Stay

Go back

Stay

Figure 7: MDP for question ?? on MDPs and RL.

Your MDP has four states: Read emails (E), Get money (M), Be fooled (F) or Have
fun (H). The actions are denoted by fat arrows, the (probabilistic) transitions are indicated
by thin arrows, annotated by the transition probabilities. The rewards only depend on the
state and are indicated on Figure ??, for example, the reward in state E is 0, in state M it
is 10,000.

1. [2 points] What are the possible (deterministic) policies in this MDP?

F SOLUTION: There are 2 policies: both map state M to Stay, F to Go back and
H to Stay. The only difference is in state E, where we have two choices, either to Invest
or to Go to party.

2. [5 points] For each policy, compute the value function (infinite horizon, discount factor
1/2). What is the optimal policy?

F SOLUTION: For the Invest policy, we first compute V1(M) = 10000
∑∞

i=0(1/2)i =
20000. We find V1(E) = 1

2
(.2V1(M) + .8V1(F )). Similarly, V1(F ) = −100 + 1

2
V1(E).
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Plugging that into V1(E), we get

V1(E) =
1

2
(.2V1(M) + .8(−100 +

1

2
V1(E))).

Solving for V1(E), we get

V1(E) =
5

4

(
V1(M)

10
− 40

)
= 2450. (3)

Hence V1(F ) = 1125. For the party policy we get, by similar arguments, V2(H) = 2,
V2(E) = 1.

3. [5 points] Now assume you know everything about this model, except the reward state
M (i.e., R(M) is unknown). Using the “optimism in the face of uncertainty” heuristic
and the Rmax algorithm, what is the minimum value for Rmax, such that when you
initialize R(M) = Rmax with this value, you will prefer to explore by choosing the
Invest action, instead of exploiting by choosing the Go to Party action in state E?

F SOLUTION: We need to set V (M) such that, using Eq. ??,

V1(E) =
5

4

(
V1(M)

10
− 40

)
≥ V2(E) = 1,

hence V2(M) = 2Rmax ≥ 408, hence Rmax = 204 is the least possible reward which makes
investing attractive over partying.
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Figure 8: MDP for question ??.4 on MDPs and RL.
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Figure 9: MDP for question ??.4, full (but unknown) model.

4. [6 extra credit] Now assume we know even less about the model: We only know what
happens if we go to the party, but not if we choose to invest. This partially explored
MDP is presented in Figure ??. Unlike in the from part 1-3, here the reward depends
on the taken action. We know that for staying in state H we get reward 1. Hence we
know that Q(E, Go to party) = 0 + γ

∑∞
m=0 γm = 1

2
· 2 = 1 for γ = 1

2
.

We do not know how much reward we get for Investing in state E, and where this
action will lead us. Hence we do not know Q(E,Invest). We will use Q-learning to
learn this value. Again using the “optimism in the face of uncertainty” heuristic, we
assign an optimistic reward Rmax = 10, 000 to Q(E, Invest). Unlike in the model
from part 1-3, in this problem, investing on such a dubious email will never pay off;
we will always incur the negative reward of −100, and directly go back to the Read
Email state. The full model (which we do not know), is presented in Figure ??.

Assuming that both the learning rate α and the discount factor γ are 1/2, how many
times do we explore the investment strategy, until we decide that going to the party

might be the better strategy? Hint: The formula
∑k−1

m=0 βm = 1−βk

1−β
might come in

handy.

Please work out the answer to Question ??.4 here.
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F SOLUTION: Defining Q(t) the Q(E, Invest) part of the Q-function after iteration t, we
initialize Q(0) = Rmax. Using the usual Q learning update, we can work out the recurrence to be

Q(t) =

(
3

4

)t

Q(0) − 50
1−

(
3
4

)t

1− 3
4

,

which has to be greater than V2(E) = 1. Solving for t we get

t ≥

⌈
log Rmax+50

201

log 3
4

⌉
= 14.
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8 [12 points] EM Algorithm

In this problem, you will derive an EM algorithm for estimating the mixing parameter
for a mixture of arbitrary probability densities f1 and f2. For example, f1(x) could be a
standard normal distribution centered at 0, and f2(x) could be the uniform distribution
between [0, 1]. You can think about such mixtures in the following way: First, you flip a
coin. With probability λ (i.e., the coin comes up heads), you will sample x from density f1,
with probability (1− λ) you sample from density f2.

More formally, let fλ(x) = λf1(x)+(1−λ)f2(x), where f1 and f2 are arbitrary probability
density functions on R, and λ ∈ [0, 1] is an unknown mixture parameter.

1. [3 points] Given a data point x, and a value for the mixture parameter λ, compute the
probability that x was generated from density f1.

2. [3 points] Now you are given a data set {x1, . . . , xn} drawn i.i.d. from the mixture
density, and a set of coin flips {c1, c2, . . . , cn}, such that ci = 1 means that xi is a sample
from f1, and ci = 0 means that xi was generated from density f2. For a fixed parameter
λ, compute the complete log-likelihood of the data, i.e., log P (x1, c1, x2, c2, . . . , xn, cn |
λ).
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3. [6 points] Now you are given only a sample {x1, . . . , xn} drawn i.i.d. from the mixture
density, without the knowledge about which component the samples were drawn from
(i.e., the ci are unknown). Using your derivations from part 1 and 2, derive the E- and
M-steps for an EM-algorithm to compute the Maximum Likelihood Estimate of the
mixture parameter λ. Please describe your derivation of the E- and M-step clearly in
your answer.
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9 [8 points] Dimensionality reduction - PCA

Recall that PCA should be used with caution for classification problems, because it does not
take information about classes into account. In this problem you will show that, depending
on the dataset, the results may be very different.

Suppose that the classification algorithm is 1-nearest-neighbor, the source data is 2-
dimensional and PCA is used to reduce the dimensionality of data to 1 dimension. There
are 2 classes (+ and -). The datapoints (without class labels) is pictured on plots below (the
two plots are identical).

1. [2 points] On one of the plots draw a line that PCA will project the datapoints to.

2. [6 points] For each of the plots, label the source datapoints so that 1-NN will have the
following leave-one-out cross-validation error:

2D data: 100% error 2D data 0% error
1D data from PCA: 0% error 1D data from PCA: 100% error

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
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10 [10 points] Dimensionality reduction - neural net-

works and PCA

It turns out that neural networks can be used to perform dimensionality reduction. We are
given a dataset x1, . . . ,xm, where each point is a n-dimensional vector: xi = (xi

1, . . . ,x
i
n).

Suppose that the dataset is centered:

x̄ =
m∑

i=1

xi = 0.

Consider the following network with 1 node in the hidden layer:

zx1x2xn
y1y2yn. . . . . .u1u2un u1u2un

In this network, the hidden and the output layer share the weight parameters, i.e., the
edge xj → z uses the same weight uj as the edge z → yj. The nodes have linear response
functions:

z =
n∑

j=1

ujxj, yj = ujz

.
Typically, in neural networks, we have training examples of the form (xi, ti). Here, the

network is trained as follows: for each point xi of our dataset, we construct a training
example (xi,xi) that assigns the point to both the inputs and the outputs, i.e., ti = xi.
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1. [2 points] Suppose that we minimize a square loss function,

l(w;x) =
∑

i

∑
j

(ti
j − outj(x

i;w))2,

where out(x;w) is the prediction y of the network on input x, given weights w. Write
down the loss function in terms of the network parameters u and the way we are
training this neural network.

2. [4 points] Recall that, in principal component analysis with m components, we approx-
imate a data point xi, by projecting it onto a set of basis vectors (u1, . . . ,uk):

x̂i = x̄ +
k∑

j=1

zi
juj,

where zi
j = xi · uj, in order to minimize the squared reconstruction error:

m∑
i=1

||xi − x̂i||22,

where ||v||22 =
∑n

j=1(vj)
2. Relate the optimization problem from part 1 to the problem

optimized in PCA.
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3. [4 points] Construct a neural network that will result in the same reconstruction of
data as PCA with k first principal components. Write down both the structure of the
network and the node response functions.
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