
10-701 Midterm Exam, Spring 2006

1. Write your name and your email address below.

• Name:

• Andrew account:

2. There should be 17 numbered pages in this exam (including this cover sheet).

3. You may use any and all books, papers, and notes that you brought to the exam, but
not materials brought by nearby students. Calculators are allowed, but no laptops,
PDAs, or Internet access.

4. If you need more room to work out your answer to a question, use the back of the page
and clearly mark on the front of the page if we are to look at what’s on the back.

5. Work efficiently. Some questions are easier, some more difficult. Be sure to give yourself
time to answer all of the easy ones, and avoid getting bogged down in the more difficult
ones before you have answered the easier ones.

6. Note there are extra-credit sub-questions. The grade curve will be made without
considering students’ extra credit points. The extra credit will then be used to try to
bump your grade up without affecting anyone else’s grade.

7. You have 80 minutes.

8. Good luck!

Question Topic Max. score Score

1 Short questions 12 + 0.52 extra
2 Regression 12
3 k-NN and Cross Validation 16
4 Decision trees and pruning 20
5 Learning theory 20 + 6 extra
6 SVM and slacks 20 + 6 extra
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1 [12 points] Short questions

The following short questions should be answered with at most two sentences, and/or a
picture. For the (true/false) questions, answer true or false. If you answer true, provide a
short justification, if false explain why or provide a small counterexample.

1. [2 points] Discuss whether MAP estimates are less prone to overfitting than MLE.

2. [2 points] true/false Consider a classification problem with n attributes. The VC
dimension of the corresponding (linear) SVM hypothesis space is larger than that of
the corresponding logistic regression hypothesis space.

3. [2 points] Consider a classification problem with two classes and n binary attributes.
How many parameters would you need to learn with a Naive Bayes classifier? How
many parameters would you need to learn with a Bayes optimal classifier?

4. [2 points] For an SVM, if we remove one of the support vectors from the training set,
does the size of the maximum margin decrease, stay the same, or increase for that data
set?
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5. [2 points] true/false In n-fold cross-validation each data point belongs to exactly one
test fold, so the test folds are independent. Are the error estimates of the separate
folds also independent? So, given that the data in test folds i and j are independent,
are ei and ej, the error estimates on test folds i and j, also independent?

6. [2 points] true/false There is an a priori good choice of n for n-fold cross-validation.

7. [0.52 extra credit points] Which of following songs are hits played by the B-52s:

• Love Shack

• Private Idaho

• Symphony No. 5 in C Minor, Op. 67
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2 [12 points] Regression

For each of the following questions, you are given the same data set. Your task is to fit
a smooth function to this data set using several regression techniques. Please answer all
questions qualitatively, drawing the functions in the respective figures.

1. [3 points] Show the least squares fit of a linear regression model Y = aX + b.
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2. [3 points] Show the fit using Kernel regression with Gaussian kernel and an appropri-
ately chosen bandwidth.
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3. [3 points] Show the fit using Kernel local linear regression for an appropriately chosen
bandwidth.
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4. [3 points] Suggest a linear regression model Y =
∑

i φi(X) which fits the data well.
Why might you prefer this model to the kernel local linear regression model from part
3)?
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3 [16 points] k-nearest neighbor and cross-validation

In the following questions you will consider a k-nearest neighbor classifier using Euclidean
distance metric on a binary classification task. We assign the class of the test point to be the
class of the majority of the k nearest neighbors. Note that a point can be its own neighbor.
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Figure 1: Dataset for KNN binary classification task.

1. [3 points] What value of k minimizes the training set error for this dataset? What is
the resulting training error?
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2. [3 points] Why might using too large values k be bad in this dataset? Why might too
small values of k also be bad?

3. [6 points] What value of k minimizes leave-one-out cross-validation error for this
dataset? What is the resulting error?

4. [4 points] In Figure 1, sketch the 1-nearest neighbor decision boundary for this dataset.
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4 [20] Decision trees and pruning

You get the following data set:

V W X Y
0 0 0 0
0 1 0 1
1 0 0 1
1 1 0 0
1 1 1 0

Your task is to build a decision tree for classifying variable Y . (You can think of the data
set as replicated many times, i.e. overfitting is not an issue here).

1. [6 points] Compute the information gains IG(Y |V ), IG(Y |W ) and IG(Y |X). Remem-
ber, information gain is defined as

IG(A|B) = H(A)−
∑
b∈B

P (B = b)H(A|B = b)

where
H(A) = −

∑
a∈A

P (A = a) log2 P (A = a)

is the entropy of A and

H(A|B = b) = −
∑
a∈A

P (A = a|B = b) log2 P (A = a|B = b)

is conditional entropy of A given B.

Which attribute would ID3 select first?
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2. [3 points] Write down the entire decision tree constructed by ID3, without pruning.

3. [3 points] One idea for pruning would be to start at the root, and prune splits for which
the information gain (or some other criterion) is less than some small ε. This is called
top-down pruning. What is the decision tree returned for ε = 0.0001? What is the
training set error for this tree?

4. [3 points] Another option would be to start at the leaves, and prune subtrees for which
the information gain (or some other criterion) of a split is less than some small ε. In
this method, no ancestors of children with high information gain will get pruned. This
is called bottom-up pruning. What is the tree returned for ε = 0.0001? What is the
training set error for this tree?
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5. [2 points] Discuss when you would want to choose bottom-up pruning over top-down
pruning and vice versa. Compare the classification accuracy and computational com-
plexity of both types of pruning.

6. [3 points] What is the height of the tree returned by ID3 with bottom-up pruning?
Can you find a tree with smaller height which also perfectly classifies Y on the training
set? What conclusions does that imply about the performance of the ID3 algorithm?
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5 [20 + 6 points] Learning theory

5.1 [8 points] Sample complexity

Consider the following hypothesis class: 3-SAT formulas over n attributes with k clauses.
A 3-SAT formula is a conjunction (AND, ∧) of clauses, where each clause is a disjunction
(OR, ∨) or three attributes, the attributes may appear positively or negated (¬) in a clause,
and an attribute may appear in many clauses. Here is an example over 10 attributes, with
5 clauses:

(X1∨¬X2∨X3)∧(¬X2∨X4∨¬X7)∧(X3∨¬X5∨¬X9)∧(¬X7∨¬X6∨¬X10)∧(X5∨X8∨X10).

You are hired as a consultant for a new company called FreeSAT.com, who wants to learn
3-SAT formulas from data. They tell you: We are trying to learn 3-SAT formulas for secret
widget data, all we can tell you us that true hypothesis is a 3-SAT formula in the hypothesis
class, and our top-secret learning algorithm always returns a hypothesis consistent with the
input data.

Here is your job: we give you an upper bound ε > 0 on the amount of true error we are
willing to accept. We know that this machine learning stuff can be kind of flaky and the
hypothesis you provide may not always be good, but it can only be bad with probability at
most δ > 0. We really want to know how much data we need. Please provide a bound on the
amount of data required to achieve this goal. Try to make your bound as tight as possible.
Justify your answer.
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(a) three points (b) four points

Figure 2: Figures for Question 5.2.

5.2 [12 points] VC dimension

Consider the hypothesis class of rectangles, where everything inside the rectangle is labeled
as positive: A rectangle is defined by the bottom left corner (x1, y1) and the top right corner
(x2, y2), where x2 > x1 and y2 > y1. A point (x, y) is labeled as positive if and only if
x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2. In this question, you will determine the VC dimension of this
hypothesis class.

1. [3 points] Consider the three points in Figure 2(a). Show that rectangles can shatter
these three points.

2. [3 points] Consider the four points in Figure 2(b). Show that rectangles cannot shatter
these four points.
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3. [3 points] The VC dimension of a hypothesis space is defined in terms of the largest
number of input points that can be shattered, where the “hypothesis” gets to pick the
locations, and an opponent gets to pick the labels. Thus, even though you showed in
Item 2 that rectangles cannot shatter the four points in Figure 2(b), the VC dimension
of rectangles is actually equal to 4. Prove that rectangles have VC dimension of at least
4 by showing the position of four points that can be shattered by rectangles. Justify
your answer.

4. [3 points] So far, you have proved that the VC dimension of rectangles is at least 4.
Prove that the VC dimension is exactly 4 by showing that there is no set of 5 points
which can be shattered by rectangles.
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5. Extra credit: [6 points] Now consider signed rectangles, where, in addition to defining
the corners, you get to define whether everything inside the rectangle is labeled as
positive or as negative. What is the VC dimension of this hypothesis class?

Prove tight upper and lower bounds: if your answer is k, show that you can shatter k
points and also show that k + 1 points can not be shattered.

14



6 [20 + 6 points] SVM and slacks

Consider a simple classification problem: there is one feature x with values in R, and
class y can be 1 or -1. You have 2 data points:

(x1, y1) = (1, 1)

(x2, y2) = (−1,−1).

(a) [4 points] For this problem write down the QP problem for an SVM with slack
variables and Hinge loss. Denote the weight for the slack variables C, and let the
equation of the decision boundary be

wx + b = 0.

(b) [6 points] It turns out that optimal w is

w∗ = min(C, 1).

Find the optimal b as a function of C. Hint: for some values of C there will be
an interval of optimal b’s that are equally good.
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(c) [4 points] Suppose that C < 1 and you have chosen a hyperplane

xw∗ + b∗ = 0, such that b∗ = 0

as a solution. Now a third point, (x3, 1), is added to your dataset. Show that if
x3 > 1

C
, then the old parameters (w∗, b∗) achieve the same value of the objective

function
w2 +

∑
i

Cξi

for the 3-point dataset as they did for a 2-point dataset.

(d) [6 points] Now in the same situation as in part 5c., assume x3 ∈ [1, 1
C
]. Show

that there exists a b∗3 such that (w∗, b∗3) achieve the same value of the objective
function for the 3-point dataset as (w∗, b∗) achieve for the 2-point dataset. Hint:
Consider b∗3 such that the positive canonical hyperplane contains x3.
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(e) Extra credit: [6 points] Solve the QP problem that you wrote in part 1 for the
optimal w. Show that the optimal w is

w∗ = min(C, 1).

Hint: Pay attention to which constraints will be tight. It is useful to temporarily
denote ξ1 + ξ2 with t. Solve the constraints for t and plug into the objective. Do
a case analysis of when the constraint for t in terms of C will be tight.
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