o Code

Printed by Mathematica for Students

2 | neural_networks_slide_show.nb

Neural Networks

Joseph E. Gonzalez
We are going to go through Neural Networks and review the process of back propagation.

Experimental Mathematica based presentation.

Printed by Mathematica for Students

neural_networks_slide_show.nb | 3

Single Perceptron

o The Perceptron

perceptronPlot
3
gly wi X;]
i=0
Wo wi wi
Xo= 1 X1 X2

o There are several parts

1. Link Function g[u]
2. Weights w;
3. A bias term X

Printed by Mathematica for Students

4 | neural_networks_slide_show.nb

Link Function

glxl = e))

1
g=Function[x, ﬁ],
+Exp[-x

Plot[g[x], {x, -8, 8}]

1.0

Printed by Mathematica for Students

Demo

neural_networks_slide_show.nb

Manipulate[

1
g=Function[x, —];
1+ Exp[-x]
Plot3D[g[w0 + wl x1 + w2 x2], {x1, -3, 3}, {x2, -3, 3}],
{{wo0, 0}, -3, 3}, {{w1, 2}, -3, 3}, {{w2, -2}, -3, 3}

]

w0 <

€

wl

)

w2 e

M
J

Printed by Mathematica for Students

5

6 | neural_networks_slide_show.nb

Neural Network with Multiple Hidden Layers

o Lets Consider what this network looks like

plt
8
out()=gly u; Z]

i=0

/ NN

IZ0) u u us

e / \ ~
/ 2 2 2 5
Zo=1 2= g[z X1 | 2= g[szx 2= g[Zw X

e ed
DN

o Matlab Style Forward Propagation

X1

Lets define a matrix Was:

Wo Wi W,

2 2 2
W=|w; wi w;

We can multiply this matrix by X where we have added a 1

1

1 w(]) wi w% 1 w(]) + w{ X; + w; Xo
2 2 2 2 2 2
W Xy [=|wsg wi wy || Xo|=|ws+wiXi+w;Xs
X 3 3 3 X3

wy Wi w, w(3)+w? X +w;X2
Lets define function application as element wise. Then we obtain:
1 g[w(]) + w} X+ w; Xz] Z
g[W~ X] = g[w% + w% X+ w% Xz] =| 2z
X3 g[wg + w? X+ wg Xz] Z3

We can then prepend a 1 to the result to obtain:

Printed by Mathematica for Students

2

3

)

neural_networks_slide_show.nb | 7

1
3
out(X) = g[(ug up Uy uz)- ?] = g[uo +Zui Zi])
2 i=1
Z3

Printed by Mathematica for Students

8 | neural_networks_slide_show.nb

Forward Propagation (Example) #1

o What is the value of Z;

plotTree[{"out (x)=g[?]", "Zo=1", "Z;=g[?]", "Z,=g[?]", "Z5=g[?]",
"Zoml®, "Tya2", "Z,x3"]]

out(x)=g[?]

Prans
// NN

Z1=9[7] Z=g[?] Z3=g[?

o4l
AU

Printed by Mathematica for Students

neural_networks_slide_show.nb

What is the value of 2,?

plotTree[{"out (x)=g[?]", "Zo=1", "Z;=g[1-6+3]=0.88", "Z,=g[?]",
"23=g[2]", "Xo=1", "X,;=2", "X;=3"}]

Peans
/ NN

Z,=9[1-6+3]=0.88 Z>=9[7] Z3=g[?

ol
AN

Printed by Mathematica for Students

10 | neural_networks_slide_show.nb

What is the value of Z;?

plotTree[{"out (x)=g[?]", "Zo=1", "Z,=0.88", "Z,=g[2+4-6]=0.5", "Z3=g[?]",
"Xo=1", "Xp=2", "X;=3"}]

Peans
/ NN

o
AN

Printed by Mathematica for Students

neural_networks_slide_show.nb

What is the value of out(X)?

plotTree[{"out (x)=g[?]", "Zo=1", "Z,;=0.88", "Z,=0.5", "Z3=g[3+2+3]=1",
"Xo=1", "Xp=2", "X;=3"}]

out(x)=g[?]

AN
// N

2= Z,=0.88 Z,=0.5 Z3=9[3+2+3]=1

%4
AN

Printed by Mathematica for Students

12 | neural_networks_slide_show.nb

Done!

plotTree[{"out (x)=g[2+0.88-1.5-2]1=0.35", "Zy,=1", "Z,=0.88", "Z,=0.5",
"Zy=1", "Xo=1", "Xp=2", "X;=3"}]

out(x)=9g[2+0.88-1.5-2]=0.35

AN
/ NN

Z;=0.88 2,=0.5 =il

/BT
VAN

Printed by Mathematica for Students

neural_networks_slide_show.nb | 13

Demo
dynamicDemo
N
)
B M
uJ oJ
M
o

Printed by Mathematica for Students

14 | neural_networks_slide_show.nb

Generalized Back Propagation

plt

3
out)=gly u; Z]

i=0

2
il 2= g[Z X1 | 2= g[zw X1 | Z=gly w; X

% %4
AN

X1

S
S

Suppose we want to find the best model out(x; U, W) with respect to the parameters W and U. How can we quantify best?

Lets considered mean squared error.
E=)"(out(X - Y’ ©)
i=1

There are many ways to do this. One of the most common (and least effective) methods is to use gradient descent. This
corresponds to the update rule:

OE
" —ul - — £)
ou;
OE
(r+1) (t)
Wi e—wy - — ®
y Owij Wi(jt)

Recall we have the following graph:

Printed by Mathematica for Students

neural_networks_slide_show.nb | 15

plt
3
outx)=gly u; Z]
i=0
uo/ Ml/' '\uz \u3\
/ 2 2 2 3
Zo=1 Z=g[) W} X;] Zy=gy W/ X;] Z=gly w; Xi]
i=0 i=0 i=0
WO/ S 2 VI T
Xo=1 X> X1

Lets first derive the update rule for U:

E = (out(X) - Y)* ©)
Taking the derivative we get (stuck?):
o _9 (out(X) - ¥)* (10)
ou, Ouy

Applying the infamous chain rule:

0 B 0
Py f(g(x) = (au S

0
u =g(x))[£g(x)) (n

9 2 X)-Y, 0 X
— = t(X) - Y;)| — out
p (out(X))[a ou())

Uy Uy (12)

fix2:2x
x

0
— flg(x) = f(gx) &)
ox

Now we need to take the derivative of the neural network. Lets first replace out with the function from the top perceptron

3
g_E =2 (out(X) - Y) [81 g[Zui Z,-]] (13)

Uk e "ido

Chain rule again

Printed by Mathematica for Students

16 | neural_networks_slide_show.nb

3 3
j—E =2 (out) - V) | > ui Zi| [Z 6% u Z,»]

Uy i=0 i=0
We know that only one term in the Z; sum will remain and that is Z;_

3
j—i =2 (out(X) - Y) g'[; u; z,-] Z

Done thats it!!! Sort of. Lets look at the derivative of g[x] = F]E:m

0
g'[x] = — (1 + Exp[-x])”"
ox
’ -2 a
g'[x] = —(1 + Exp[-x]) > — (1 + Exp[—x])
ox

0 0
¢'[x] = =(1 + Exp[-x]) (— 1+ — Exp[—x])
ox ox

0
'[x] = —(1 + Exp[-x])~* (0 +Expl-a] —— (—x))
X

¢'[x] = —(1 + Exp[-x]) > (0 — Exp[—x])

g'[x] = (1 +Exp[~x]) ™ Exp[1]
With some manipulation we get:

Exp[—x] 1
" (1+Exp[-x]) (1 +Exp[-x])

g'[x]

Exp[—x]
= —————gla]
1+ Exp[—x]

1 +Exp[—x] -1

g'lx]= Tp[—x]gm

, [1+ Exp[—x] |

glx= 1+ Exp[—x] " 1 +EXp[—x])g[x]

1
Ml=1- ——
¢/l (1 +Exp[_x])g[x]

g'[x] = A -glx]) glx]
Recall that we earlier had:
3

2—i =2 (out(X) - Y) g'[; ” z,-] Z

Printed by Mathematica for Students

(14)

5)

(16)

a7

(18)

19

(20)

@n

(22)

(23)

24

(25)

(26)

(27)

(28)

we can make a simple substitution to get:

OF : N
= =2(uX) -) [1 gD Z,-]J g[z u; Zi| Z¢

Uk i=0

OE
8_ =2 (out(X) — Y) (1 — out(X)) out(X) Z;

Uy
plt
3
out()=g[y u; Z]

i=0

AN

Up u; uy us

e / \ ~
/ 2 2 5
Zp=1 2= g[z X1 | 2= g[Zw X1 | z= g[Zw X

%4
LN

Printed by Mathematica for Students

neural_networks_slide_show.nb

29

(30)

18

neural_networks_slide_show.nb

Gradient of W

That wasn't too bad. How about the next layer. We again start with:

E = (out(X) - ¥)? (31

Taking the derivative with respect to w} (and applying the chain rule)

OE O0E OJout(X) 0
= =2 (out(X) — Y) — out(X) (32)
owp dout(X) Owy owy,
Expanding out we get:
OE [
— =2(out(X) - Y) — u; Z; 33
owy, owy, g[;] &9

Chain rule:
OE 3 309
—=2 (Out(X) - Y) ! u; Zi — U; Zi 34
owy, [g [;]] [Z owy,] (34)

Recall that g’[x] = (1 — g[x]) g[x]

OF 2 X)-Y)(X X 0 Z,
—— =200~ ¥) (1~ ou(X) out(X) |), —— w7, (35)

- =
Wi =0 Wk

Remember that each of the Z; is connected to all the perceptrons from the lower level so we must take the derivative of each.

50009
i ——Z;
Zua -] (36)

i=0 Wi

OE
F =2 (out(X) — Y) (1 — out(X)) out(X)

Wi

Which becomes:

OE > 0 & .
— =2 (out(X) - ¥) (1 — out(X)) out(X) u —— wy X 37
owy, ; owy, g[;] G7)
Another application of the chain rule:
OE 3 3] 0 3 .
—— =2 (out(X) - Y) (1 — out(X)) out(X u g we Xs| —) wi X 38
G = 20uC0 =1 (1 —ouC0) o0)|y wi x| - (38)
k i=0 5=0 k s=0
Taking the final derivative we have:
OE S
— =2 (out(X) - Y) (1 — out(X)) out(X) Z ui (1 = Z) (Z)) | X (39)
e i=0

Printed by Mathematica for Students

neural_networks_slide_show.nb | 19

Why is it called back propagation?

Lets look at the following two equations:

OFE
6_ =2 (out(X) — Y) (1 — out(X)) out(X) Z; 40)
Uy,
OE 3
— =2(out(X) — ¥) (1 — out(X)) Out(X)Z w; (1= Z) (Z) Xx (41)
oW i=0
plt
3
out()=gly u; Zj}
i=0
uo/ ul/ \uz \”3
pd / \ .
/ 2 2 2
Zo=1 Zi=gly WXl | Z=gly W X | Zs=gly w;X;]

i=0 i=0 i=0

1 2 3
/wo//wwoiﬁm |
X0= 1 XZ Xl

We propagate the derivative information backwards to the inputs:

OE
[‘)_ = (2 (out(X) = ¥) (1 — out(X)) out(X)) Z; (42)
U
OE >
— = (2 (out(X) = ¥) (1 - out(X)) out(X)) Z ui (1 =7) (Z;) X (43)
v i=0
OE
— = X (44)
owy,

Printed by Mathematica for Students

20 | neural_networks_slide_show.nb

Questions?

o Any feedback about Mathematica style presentations is welcome.:

Printed by Mathematica for Students

