Inference in Bayesian Networks

Joseph E. Gonzalez 10701-Recitation

Convenient Probabilistic Model

- Compact Representation
 - Resistant to Over-fitting
 - Captures underlying structure
- Creates a "language" for describing probability relationships
- Permits the construction of generic inference techniques
 - Variable Elimination, Variational Methods, Belief Propagation

Joint Probability

- What can you compute with $P(X_1, X_2, ..., X_n)$?
 - Joint probability
 - Marginal Probability
 - Conditional distributions: $P(X_1 | X_2, X_3)$ (Predictions)
 - Most likely explanations: max $P(X_1, X_4 \mid X_2, X_3)$
 - Samples from the distribution
 - Information gain ...

What is a Bayesian Network?

$$P(A) = f_1(A)$$

 $P(B) = f_2(B)$
 $P(C|A) = f_3(C,A)$
 $P(D|B) = f_4(D,B)$
 $P(E|C,D) = f_5(E,C,D)$
 $P(F|D) = f_6(F,D)$
 $P(G|E,F) = f_7(G,E,F)$

Conditional Probability
Distributions / Tables /
Functions

Conditional Probability ... CPDs / CPTs

- Conditional Probability
 - CPD: Distributions
 - CPT:Tables
- Can be:
 - Discrete
 - Continuous

P(C A)	A=T	A=F
C=T	0.3	0.6
C=F	0.7	0.4

OR

$$P(C|A) = \frac{1}{\sqrt{2\pi}} e^{\left(-\frac{(C-A)^2}{2\sigma^2}\right)}$$

Graphs Describe Probability Distributions

P(A,B,C,D,E,F,G) = P(A) P(A) P(B) P(C|A) P(D|B) P(E|C,D) P(F|D)P(G|E,F)

Writing the Joint Probability

Bayesian Network

For a directed acyclic graph G=(V,E)

$$P(X_1, X_2, \dots, X_n) = \prod_{i=1}^n P(X_i | Pa_G[X_i])$$

Where $Pa_G[X_i]$ are the parents of X_i

We say that $P(X_1,...,X_n)$ factors with respect to the graph G

Conditional Independence

If influence can flow from node A to node B (given observations) then nodes A and B are **not** (conditionally) independent.

Observed

Unobserved

Independence

- A Indep B
 - Yes
- A Indep G
 - No
- A Indep B given G
 - No

Inference

- Computing JointAssignmentP(A=a, B=b,..., B=b)
 - Easy
- Computing Marginal
 - Tricky to Hard
- Computing Conditional
 - Requires Marginal

Why is it hard to Marginalize

Marginalize Unobserved Variables

You want $P(X_1, X_2)$ but you have $P(X_1, ..., X_n)$

$$P(X_1, X_2) = \sum_{x_3} \sum_{x_4} \dots \sum_{x_n} P(X_1, X_2, x_3, x_4, \dots, x_n)$$

- for X3 = 1:b
 - \bullet for X4 = 1:b
 - \bullet for X5 = 1:b
 - for X6 = I:b ...

How can we save some work

Simple Algebra Example

Want to compute

$$\sum_{a} \sum_{b} \sum_{c} \sum_{d} f_1(a) f_2(b) f_3(c) f_4(d)$$

Rearrange the sums

Much Easier

$$\left(\sum_{a} f_1(a)\right) \left(\sum_{b} f_2(b)\right) \left(\sum_{c} f_3(c)\right) \left(\sum_{d} f_4(d)\right)$$

Return functions

Coupled Variables

Suppose we want to compute

$$\sum_{a} \sum_{b} \sum_{c} \sum_{d} f_1(a) f_2(b, a) f_3(c, b) f_4(d, c)$$

Functions rather than constants

$$\sum_{a}\sum_{b}\sum_{c}f_{1}(a)f_{2}(b,a)f_{3}(c,b)\underbrace{\sum_{d}f_{4}(d,c)}_{g_{1}(c)}$$
Cache Computation

What is a Function

Assume variables are discrete

$$g(x_1, x_2, \dots, x_n) = table[x_1, x_2, \dots, x_n]$$

- Assume variables are discrete
- Each entry in the table is a cached "marginalization"

Example :: Graph

Define Some Variables

- (H) HW Grade = {P, F}
- \bullet (E) Exam Grade = {P,F}
- (P) Project Grade = {P,F}
- (O) Overall Grade = {P,F}
- \bullet (C) Class Attend = {T,F}
- (:-) Happy = $\{T,F\}$

Example :: Joint Probability

$$\mathbf{P}(C, H, E, O, P, :-)) =$$

$$\mathbf{P}(C)\mathbf{P}(P)\mathbf{P}(H \mid C)\mathbf{P}(E \mid C)$$

$$\mathbf{P}(O \mid H, E, P)\mathbf{P}(:-) \mid H, O)$$

Example :: Tables

Р	P(O H,E,P)		O=p	O=f
H=p	E=p	P=p	0.95	0.05
H=p	E=p	P=f	0.6	0.4
H=p	E=f	P=p	0.6	0.4
H=p	E=f	P=f	0.3	0.7
H=f	E=p	P=p	0.3	0.7
H=f	E=p	P=f	0.2	0.8
H=f	E=f	P=p	0.1	0.9
H=f	E=f	P=f	0.01	0.99

P(E C)	E=p	E=f
C=t	0.7	0.3
C=f	0.4	0.6

P(H C)	H=p	H=f
C=t	0.7	0.3
C=f	0.4	0.6

P(:-) O,H)		:-)=t	:-)=f
O=p	H=p	0.7	0.3
O=p	H=f	0.8	0.2
O=f	H=p	0.2	0.8
O=f	H=f	0.1	0.9

P(P)	P=p	P=f
	0.7	0.3

Happiness and Class Attendance

$$\mathbf{P}(:-), C) = \sum_{H} \sum_{O} \sum_{P} \sum_{E} \mathbf{P}(C, H, E, O, P, :-))$$

$$= \sum_{H,O,P,E} Pr(C)\mathbf{P}(P)\mathbf{P}(H \mid C)\mathbf{P}(E \mid C)$$

$$\mathbf{P}(O \mid H, E, P)\mathbf{P}(:-) \mid H, O)$$

$$= \sum_{H,O,E} Pr(C)\mathbf{P}(H \mid C)\mathbf{P}(E \mid C)\mathbf{P}(:-) \mid H, O)$$

$$\left(\sum_{D} \mathbf{P}(P)\mathbf{P}(O \mid H, E, P)\right)$$

This becomes a "function" table $g_1(O,H,E)$.

The Function gr

$$g_1(O, H, E) = \sum_{P} \mathbf{P}(P)\mathbf{P}(O \mid H, E, P)$$

P(O H,E,P)		O=p	O=f	
H=p	E=p	P=p	0.95	0.05
H=p	E=p	P=f	0.6	0.4
H=p	E=f	P=p	0.6	0.4
H=p	E=f	P=f	0.3	0.7
H=f	E=p	P=p	0.3	0.7
H=f	E=p	P=f	0.2	0.8
H=f	E=f	P=p	0.1	0.9
H=f	E=f	P=f	0.01	0.99

P(P)	P=p	P=f
	0.7	0.3

-	g _I (O,H,E)				
O=p	H=p	E=p	0.7(0.95)+0.3(0.6)=0.845		
O=p	H=p	E=f	0.7(0.6)+0.3(0.3)=0.510		
O=p	H=f	E=p	0.7(0.3)+0.3(0.2)=0.270		
O=p	H=f	E=f	0.7(0.1)+0.3(0.01)=0.073		
O=f	H=p	E=p	0.7(0.05)+0.3(0.4)=0.155		
O=f	H=p	E=f	0.7(0.4)+0.3(0.7)=0.490		
O=f	H=f	E=p	0.7(0.7)+0.3(0.8)=0.730		
O=f	H=f	E=f	0.7(0.9)+0.3(0.99)=0.927		

Happiness and Class Attendance

$$\mathbf{P}(:-), C) = \sum_{H,O,E} Pr(C)\mathbf{P}(H \mid C)\mathbf{P}(E \mid C)\mathbf{P}(:-) \mid H,O)g_1(O,H,E)$$
$$= \sum_{H,O} Pr(C)\mathbf{P}(H \mid C)\mathbf{P}(:-) \mid H,O) \left(\sum_{E} \mathbf{P}(E \mid C)g_1(O,H,E)\right)$$

$$g_2(O, H, C) = \sum_E \mathbf{P}(E \mid C)g_1(O, H, E)$$

Another table to compute

The Function g2

$$g_2(O, H, C) = \sum_E \mathbf{P}(E \mid C)g_1(O, H, E)$$

	g _I (O,H,E)				
O=p	H=p	E=p	0.845		
O=p	H=p	E=f	0.510		
O=p	H=f	E=p	0.270		
O=p	H=f	E=f	0.073		
O=f	H=p	E=p	0.155		
O=f	H=p	E=f	0.490		
O=f	H=f	E=p	0.730		
O=f	H=f	E=f	0.927		

P(E C)	E=p	E=f
C=t	0.7	0.3
C=f	0.4	0.6

g ₂ (O,H,C)			
O=p	H=p	C=t	0.7(0.845)+0.3(0.510)=0.7445
O=p	H=p	C=f	0.4(0.845)+0.6(0.510)=0.644
O=p	H=f	C=t	0.7(0.270)+0.3(0.073)=0.2109
O=p	H=f	C=f	0.4(0.270)+0.6(0.073)=0.1518
O=f	H=p	C=t	0.7(0.155)+0.3(0.490)=0.2555
O=f	H=p	C=f	0.4(0.155)+0.6(0.490)=0.356
O=f	H=f	C=t	0.7(0.730)+0.3(0.927)=0.7891
O=f	H=f	C=f	0.4(0.730)+0.6(0.927)=0.8482

Happiness and Class Attendance

$$\mathbf{P}(:-), C) = \sum_{H,O} Pr(C)\mathbf{P}(H \mid C)\mathbf{P}(:-) \mid H, O)g_2(O, H, C)$$
$$= \sum_{H} Pr(C)\mathbf{P}(H \mid C) \left(\sum_{O} \mathbf{P}(:-) \mid H, O)g_2(O, H, C)\right)$$

$$g_3(:-), H, C) = \sum_O \mathbf{P}(:-) | H, O) g_2(O, H, C)$$

Another table to compute

The Function g₃

P(:-) O,H)		:-)=t	:-)=f
O=p	H=p	0.7	0.3
O=p	H=f	0.8	0.2
O=f	H=p	0.2	0.8
O=f	H=f	0.1	0.9

$$g_3(:-), H, C) = \sum_O \mathbf{P}(:-) | H, O) g_2(O, H, C)$$

g ₂ (O,H,C)			
O=p	H=p	C=t	0.7445
O=p	H=p	C=f	0.644
O=p	H=f	C=t	0.2109
O=p	H=f	C=f	0.1518
O=f	H=p	C=t	0.2555
O=f	H=p	C=f	0.356
O=f	H=f	C=t	0.7891
O=f	H=f	C=f	0.8482

g ₃ (:-),H,C)			
:-)=t	H=p	C=t	0.7(0.7445)+0.2(0.2555)=0.5723
:-)=t	H=p	C=f	0.7(0.644)+0.2(0.356)=0.522
:-)=t	H=f	C=t	0.8(0.2109)+0.1(0.7891)=0.2468
:-)=t	H=f	C=f	0.8(0.1518)+0.1(0.8482)=0.2063
:-)=f	H=p	C=t	0.3(0.7445)+0.8(0.2555)=0.4278
:-)=f	H=p	C=f	0.3(0.644)+0.8(0.356)=0.478
:-)=f	H=f	C=t	0.2(0.2109)+0.9(0.7891)=0.752
:-)=f	H=f	C=f	0.2(0.1518)+0.9(0.8482)=0.793

Happiness and Class Attendance

$$\mathbf{P}(:-), C) = \sum_{H} Pr(C) \mathbf{P}(H \mid C) g_3(:-), H, C)$$
$$= Pr(C) \sum_{H} \mathbf{P}(H \mid C) g_3(:-), H, C)$$

$$g_4(:-), C) = \sum_{H} \mathbf{P}(H \mid C)g_3(:-), H, C)$$

Last table to compute

The Function g4

$$g_4(:-), C) = \sum_{H} \mathbf{P}(H \mid C)g_3(:-), H, C)$$

g ₃ (:-),H,C)			
:-)=t	H=p	C=t	0.5723
:-)=t	H=p	C=f	0.522
:-)=t	H=f	C=t	0.2468
:-)=t	H=f	C=f	0.2063
:-)=f	H=p	C=t	0.4278
:-)=f	H=p	C=f	0.478
:-)=f	H=f	C=t	0.752
:-)=f	H=f	C=f	0.793

g ₄ (:-),C)		
:-)=t	C=t	0.7(0.5723)+0.3(0.2468)=0.4747
:-)=t	C=f	0.4(0.522)+0.6(0.2063)=0.3326
:-)=f	C=t	0.7(0.4278)+0.3(0.752)=0.5251
:-)=f	C=f	0.4(0.478)+0.6(0.793)=0.667

P(H C)	H=p	H=f
C=t	0.7	0.3
C=f	0.4	0.6

Happiness and Class Attendance

$$\mathbf{P}(:-), C) = Pr(C)g_4(:-), C)$$

$$\mathbf{P}(:-) \mid C) = \frac{Pr(C)g_4(:-), C)}{\sum_{:-)} Pr(C)g_4(:-), C)}$$

$$= \frac{Pr(C)g_4(:-), C)}{Pr(C)\sum_{:-)} g_4(:-), C)}$$

$$= \frac{Pr(C)g_4(:-), C)}{Pr(C)}$$

$$= g_4(:-), C)$$

g ₄ (:-),C)		
:-)=t	C=t	0.4747
:-)=t	C=f	0.3326
:-)=f	C=t	0.5251
:-)=f	C=f	0.667

Variable Elimination as Pictures

Variable Elimination and Fill Edges

$$g(C, D, G, F) = \sum_{e} P(E = e|C, D)P(G|E = e, F)$$

Recall The Happiness Problem

- We eliminated:
 - P,E,O,H
- Producing Functions
 - g₁(O,H,E)
 - $= g_2(0,H,C)$
 - $= g_3(:-),H,C)$
 - $= g_4(:-),C)$

Recall The Happiness Problem

- \bullet P: g₁(O,H,E)
- \bullet E: $g_2(O,H,C)$
- \bullet O: g₃(:-),H,C)
- \bullet H: g₄(:-),C)

Summary

- Covered basic concepts of Variable Elimination
 - Worked through an example
 - Observed correspondence to graph operations
- Remember
 - There are other inference algorithms
 - Graphical models are a generic framework for modeling probability
 - Exploit structure (conditional independence) to manage representation and computational complexity
- Don't forget Midway milestone due Monday