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ABSTRACT

We present a self-calibrating algorithm for audio-visual track-
ing using two microphones and a camera. The algorithm uses a
parametrized statistical model which combines simple models of
video and audio. Using unobserved variables, the model describes
the process that generates the observed data. Hence, it is able to
capture and exploit the statistical structure of the audio and video
data, as well as their mutual dependencies. The model parameters
are estimated by the EM algorithm; object templates are learned
and automatic calibration is performed as part of this procedure.
Tracking is done by Bayesian inference of the object location us-
ing the model. Successful performance is demonstrated on real
multimedia clips.

1. INTRODUCTION

Overwhelmingly, audio and video signals are treated separately in
most systems dealing with digital media, be it stored home or pro-
fessional videos, live audio in speech recognition systems or live
video in tracking applications. Since both signals usually come
from the same sources (a talking head, a moving car, etc.), it is
obvious that an optimal system would exploit correlations among
the two modalities.

For example, in Fig. 1, for the audio-visual capture system on
the left we show an audio waveform captured by one of the mi-
crophones and a few frames captured by the camera. The frames
contain a person moving in front of a cluttered background that
includes other people. The audio waveform contains the subject’s
speech but also some background noise, including other people’s
speech. The audio and video signals are correlated on various lev-
els. The lip movement of the speaker is correlated with the am-
plitude of part of the audio signal (e.g. [1]). Also, the time delay
between the signals arriving at the microphones is correlated with
the position of the person in the image as in [2, 3]. In principle,
tasks such as tracking may be performed better by taking advan-
tage of these correlations.

However, relevant features are not directly observable. The au-
dio signal propagating from the speaker is usually corrupted by re-
verberation and multipath effects and by background noise, mak-
ing it impossible to identify the time delay. The video stream is
cluttered by objects other than the speaker, often causing a tracker
to lose the speaker. Furthermore, audio-visual correlations usually
exist only intermittently.
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Fig. 1. (left) Experimental setup for audio-visual capture: O
denotes the object of interest, and I, its horizontal position.
(right top) Audio waveform. (right middle) Selected frames
from associated video sequence (120x160 pixels®) (right bot-
tom) Posterior probability over the time delay 7 (vertical axis,
7 € {-15,...,15}) for each frame of the sequence: darker ar-
eas represent higher probability, with each frame separately nor-
malised. The direction of time is left to right.

This paper presents a new framework for jointly modeling
audio-visual data and exploiting correlations between the two
modalities in a systematic manner. This framework uses statis-
tical models to describe the observed data in terms of the process
that generated them. In particular, the audio signals are generated
by the speaker’s original signal, which arrives at microphone 2
with a time delay relative to microphone 1. The speaker’s signal
and the time delay are unobserved variables in our model. Simi-
larly, the video signal is generated by the speaker’s original image,
which is shifted as the speaker’s spatial location changes. Thus,
the speaker’s image and location are also unobserved variables in
our model. Finally, the model also describes the dependence of the
time delay on the spatial location.

Statistical models have several important advantages which
make them ideal for our purpose. First, since we explicitly model
the actual sources of variability in the problem, e.g. object appear-
ance and background noise, the resulting algorithm turns out to be
very robust. Second, using statistical models leads to a solution by
a Bayes optimal estimation algorithm. Third, parameter estima-
tion and object tracking are both performed efficiently using the
EM algorithm, as is customary for models with unobserved vari-
ables.

To illustrate the power of the graphical modeling paradigm, we
make the problem more difficult by assuming no prior calibration
of the system, such as the parameters needed to define the map-
ping between the object position in video and the waveform delay
in audio, or the attenuation parameters of the microphones. Also,
we do not allow manual initialization in the first frame, i.e., defin-
ing the template or the contours of the object to be tracked. This is
in contrast with previous research on the subject, which usually re-
quired specific and calibrated configurations, as in [3, 4]. Even the



recent paper [2] which, in terms of the probabilistic approach, is
similar in spirit to our research, reports results that require contour
initialization in video and the knowledge of the microphone base-
line, camera focal length, as well as the various thresholds used in
visual feature extraction.

In our approach, the only information the model is allowed to
use before or during the tracking is the raw data itself. The track-
ing algorithm we present in the next few sections will have to find
the source of the sound in the images without any help from the
user, learn the object’s appearance, microphone attenuations, the
mapping between the audio waveform delay and the object posi-
tion in images, and sensor noise parameters for all sensors. Using
all these parameters, the system will find the object automatically
in all frames, including the first, making the best use of all sensors
through various situations, such as increased visual distraction or
absence of the audio signal.

2. THE AUDIO-VISUAL GENERATIVE MODEL

Video components: Video frames are modeled using a statistical
model introduced in [5] and termed transformed mixture of Gaus-
sians (TMG). This is a simple general-purpose generative model
that describes the observed image y in terms of an original image
z that has been shifted by I = (I, [,) pixels, and further contam-
inated by additive noise with precision matrix ). To account for
the variability in the original image, 2 is modeled by a mixture
model with components s. Component s consists of a template
with mean u, and precision matrix ¢, and has a prior probability
ms. Hence, we have

p(Z|8)=N(Z|uS,¢S), p(s) =ms ,
p(ylz0)=N(y|Gz7). @)

G, denotes the shift operator, i.e. (Giz)n = zn—1, Where n runs
over the pixel coordinates. The prior probability for a shift [ is
assumed flat, p(I) = const. In our notation, V(2 | p, ¢) denotes
a Gaussian distribution over the random vector z with mean p and
precision matrix (defined as the inverse covariance matrix) ¢.

The model parameters, including the image templates ., their
precisions ¢s, and the noise precision ¢, are learned from se-
quence data using EM. This model has proven successful for tasks
such as object tracking and image stabilization [5], when the object
of interest is large and salient compared to the noisy background.
Tasks are generally performed by Bayesian inference: Tracking,
for example, is done by computing the posterior distribution over
the shift, p(l | y), and identifying the most probable .

However, on the data in Fig. 1 this model fails to perform track-
ing (see the last row in Fig. 3) as it sometimes locks on the back-
ground. Instead of using more complex and thus more expensive
models as in [6], we focus on improving performance by combin-
ing it with an equally simple model for the audio data.

Audio components. In analogy with the video model, the audio
model describes the observed signals z1, > in terms if an original
signal z, which has been attenuated by a factor \; on its way to
microphone 7 = 1, 2. Itis received at microphone ¢ = 2 with a de-
lay of 7 time points relative to 7 = 1. To account for the variability
in the original signal, = is modeled by a mixture model with com-
ponents r. Each component has mean zero, a precision matrix »,,
and a prior probability 7. Viewing it in the frequency domain,
the precision matrix corresponds to the inverse of the spectrum
template for each component. A similar model was used in [7] to
perform noise removal from speech signals. Hence, we have

Fig. 2. Graphical model representation of the full Bayes net to
model both audio and video signals jointly. The dotted rectan-
gle encompasses the hidden variables and the data, and denotes
iid repetitions over the data (frames of the multimedia sequence).
That is to say the same parameters are used to model all the data;
just the hidden variables change across time frames.

p(x“"):/\/(x“)ﬂ?r) I p(r):ﬂ-T )
p(r1 | z) =N(z1 | \z,01)
p(z2 | z,7) = N(z2 | \oLrz,12) . 2

L. denotes the temporal shift operator, in analogy with the spatial
shift operator G; above.

Audio-visual link: The delay 7 on the image location [ are related
by a noisy linear mapping:

p(r ) =N(r|ade+B,vr) . ®)

In our setup (see Fig. 1), the mapping involves only the horizon-
tal position, as the vertical movement has a significantly smaller
affect on the signal delay (the extension to a mapping involving
both dimension is straightforward). It can be shown that the lin-
ear approximation is fairly accurate for the pinhole camera and the
microphone baseline small in comparison to the object distance.
To account for deviations from linearity and other inaccuracies in
the simplified model, such as reverberation, we allow the mapping
to be noisy, with a noise precision v;.

A graphical representation of the audio-visual generative model
is displayed in Fig. 2.

3. PARAMETER ESTIMATION AND OBJECT
TRACKING

In the model of Fig. 2, the joint distribution of the observed sensor
signals and the unobserved original signals, shifts, and component
labels, is given by

p(ﬁl,ﬁz,y,T,l,T‘,S,ﬁ,Z) :p(xl | $)p($2 | xJT)p(x | T‘)
p(r)p(y | 2,Dp(z | s)p(s)p(r | Dp(D), O]

which is the product of the joint distributions defined by the audio
and the video models.

The model parameters 0 =
{A1,v1, A2, v2, 0, T, O, s, s, s, 0, B, 07} are  estimated
from the data sequence using the EM algorithm, which is straight-
forward to derive for this model (some details are given in the
appendix). In the E-step we compute sufficient statistics (SS) for



the unobserved variables. As is well known, the sufficient statis-
tics are moments of the posterior distribution over the unobserved
variables p(z, 7,7, 2,1, s | 1, x2,y), which is obtained by Bayes’
rule. The required SS turn out to be (1) mean and covariance of
x given r,7, (2) mean and covariance of z given s,l, (3) joint
distribution of I, s, r, (4) distribution of 7 given ... As usual, these
quantities are conditioned on the observed data, and are computed
separately at each frame. Using these SS, the model parameters 6
are updated in the M-step. We then recompute the SS and repeat
until an appropriate convergence criterion is satisfied.

After estimating the parameters, tracking is performed by com-
puting the posterior distribution p(l | z1,z2,y) of the location
variable [ from the joint distribution in (3) above. Our estimate
for the object’s location at each frame is given by its most likely
location given the data, [ = arg max; p(I | 1, z2, ).

In Fig. 5 we show how the posterior p(l, 7 | 21, x2,y) evolves
over the iterations of EM.

4. RESULTS

We tested the tracking algorithm on several audio-visual sequences
captured by the setup in Fig. 1 consisting of low-cost off the shelf
equipment. The video capture rate was 15 frames a second and
the audio was digitized at the sampling rate of 16kHz. This means
that each audio-visual frame contained one 160x120 image frame
and two 1066 samples long audio waveforms. No model parame-
ters were set by hand, and no initialization was required; the only
input to the algorithm was the raw data itself. The algorithm was
consistently able to estimate the time delay of arrival and the ob-
ject position while learning all the model parameters, including the
calibration parameters. The processing speed of our Matlab im-
plementation was about 50 frames per second per iteration of EM.
Convergence was generally achieved within only 10 iterations.

We present the results on two sequences that had substantial
background audio noise and visual distractions. In Fig. 3, we
compare the results of tracking using an audio only model, full
audio-visual model and the video only model on the multimodal
data containing a moving and talking person with a strong distrac-
tion consisting of another two people chatting and moving in the
background (Fig. 1).

We assumed a single template class s and a single audio source
class r. The left two columns in Fig. 3 show the learned image
template and the variance map. (For the audio model, these im-
ages are left blank.) Note that the model observing only the video
(bottom row) failed to focus on the foreground object and learned
a blurred template instead. The inferred position stayed largely flat
and occasionally switched as the model was never able to decide
what to focus on. This is indicated in the figure both by the white
dot in the appropriate position in the frames and in the position
plot. The model observing only the audio data (top row) provided
a very noisy estimate of I,. As indicated by the white vertical
lines, no estimate of [, could be obtained, due to the horizontal
alignment of the microphones.

The full audio-visual model (middle row) learned the template
for the foreground model and the variance map that captures the
variability in the person’s appearance due to the non-translational
head motion and movements of the book. The learned linear map-
ping between the position and delay variables is shown just below
the template variance map. The tracker stays on the object even
during the silent periods, regardless of the high background audio
noise, and as can be seen form the position plot, the tracker had

inferred a smooth trajectory with high certainty, without need for
temporal filtering.

In Fig. 4, we show another example of tracking using the full
audio-visual model on the data with strong visual distractions. One
might note the step-like trends in the position plots in both cases,
which really does follow the stepping patterns in the walk of the
subjects.

In Fig. 5 we illustrate the parameter estimation process by
showing the progressive improvement in the audio-visual tracking
through several EM iterations. Upon random initalization, both
the time delay and location estimates are very noisy. These es-
timates consistently improve as the iterations proceed, and even
though the audio part never becomes fully confident in its delay
estimate, mostly due to reverberation effects, it still helps the video
part achieve near certainty by the tenth iteration.

5. CONCLUSIONS

We developed a self-calibrating audio-visual tracking algorithm.
The algorithm uses a combination of simple structured probability
models of video and audio. Parameter estimation, including au-
tomatic calibration, is performed by the EM algorithm. We used
cheap, off the shelf cameras and microphones.

Beyond self calibration, our tracker differs from the state of the
art in two other important aspects. First, the tracking paradigm
does not assume incremental change in object location, which
makes the algorithm robust to sudden movements. At the same
time, the estimated trajectories are smooth as the model has ample
opportunity to explain noise and distractions using data features
other than the position itself. This illustrates the power of model-
ing the mechanism that generates the data.

Second, the paradigm can be extended in several ways. For in-
stance, [8] has recently proposed more sophisticated layered video
models that can capture multiple possibly occluding objects in the
scenes, while powerful audio source separation and speech denois-
ing algorithms were developed in [9, 7]; both sets of work use the
statistical modeling framework. Such models may be incorporated
into the present framework and facilitate handling richer multime-
dia scenarios.
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Fig. 3. Tracking results for the (first row) audio only, (second row) combined, and (third row) video only models. Each row consists of
(bottom) the inference for 1., and (top) selected frames from the video sequence, positioned in time according to the vertical dotted lines.
Note that whilst the subject moves horizontally the bottom plot of each row depicts . inference on its vertical axis for clarity.
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Fig. 4. Tracking results on a data set with significant visual noise.
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Appendix: EM algorithm details

E-step. It can be shown that the posterior over the unobserved
variables can be written in a product form,

p(x,7,r, 2,0 s |z, 22,y) = q(@ | 7,r)q(z [ 1, s)a(7 | gl T, 5)
where each factor ¢ is understood to be conditioned on the data.
q(z | 1, s) is Gaussian, with mean yj , and precision v ,. q(x |
T,r) is also Gaussian, with mean p% .. and precision vf .. These

means and precisions constitute SS and are straightforward to
compute. For example,

pis = (Wia) Hdsms + Gl by)
with analogous equations for 7 ,. and v7
conditional probability table
q(r | 1) oc p(r | D) exp(Aadorvav®(v7 ) " rr) (6)

where r is the cross-correlation between x; and z». The last SS
is the table ¢(l, r, s) whose form is omitted.

Vis=¢s+¢ (5
. Another SS is the

M step. Where used, (-) notation denotes expectation under the
hidden state posterior Q(t, ., ly, s, x, z) and expectation over all
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Fig. 5. Learning the combined model with EM iterations.
(left) Uncertainty in 7 represented by the posterior distribu-
tion Q(7), with darker areas representing more certainty (= €
{—15,...,15}) and (right) Uncertainty in horizontal position
represented by the posterior distribution Q(I,), similar shading.
The (rows) correspond to the inference after 2, 3, 4 and 10 itera-
tions, by which point the algorithm has converged. In particular
note how the final uncertainty in 7 is a considerable improvement
over that obtained by the naive model in Figure 1.

the data. o denotes element-wise multiplication. Updates for the
video model are:

uy v (dan, + 0 (Glyls))
o v+ (I -

- 21/”/ M (

vy 9s) o pg + v
7o) o (Gi'yls)
Updates for the audio-visual link parameters:

(la) = (1) {lz)
‘—W B (1) — alls)

L () 4 a? (1) 67 + 20 (1) — 2ac () 26 (r)

o ([GI yT’ls )

For the sake of brevity, we omit the other update equations. They
can be derived following the instructions in the paper.



