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ABSTRACT
Work stealing is a popular method of scheduling fine-grained
parallel tasks. The performance of work stealing has been
extensively studied, both theoretically and empirically, but
primarily for the restricted class of nested-parallel (or fully
strict) computations. We extend this prior work by consider-
ing a broader class of programs that also supports pipelined
parallelism through the use of parallel futures.

Though the overhead of work-stealing schedulers is often
quantified in terms of the number of steals, we show that a
broader metric, the number of deviations, is a better way to
quantify work-stealing overhead for less restrictive forms of
parallelism, including parallel futures. For such parallelism,
we prove bounds on work-stealing overheads—scheduler time
and cache misses—as a function of the number of deviations.
Deviations can occur, for example, when work is stolen or
when a future is touched. We also show instances where
deviations can occur independently of steals and touches.

Next, we prove that, under work stealing, the expected
number of deviations is O(Pd+td) in a P -processor execution
of a computation with span d and t touches of futures. More-
over, this bound is existentially tight for any work-stealing
scheduler that is parsimonious (those where processors steal
only when their queues are empty); this class includes all
prior work-stealing schedulers. We also present empirical
measurements of the number of deviations incurred by a
classic application of futures, Halstead’s quicksort, using our
parallel implementation of ML. Finally, we identify a family
of applications that use futures and, in contrast to quicksort,
incur significantly smaller overheads.

Categories and Subject Descriptors
C.4 [Performance of systems]: Performance attributes;
D.3.2 [Language Classifications]: Concurrent, distributed,
and parallel languages
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Performance
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1. INTRODUCTION
Work stealing [12, 18] is a popular class of schedulers for

balancing load among processors with relatively low over-
head. The performance of these schedulers has been exten-
sively studied, both theoretically [9] and empirically [10] for
nested-parallel (or fully strict) programs. Nested parallelism,
however, is a fairly restrictive form of parallelism and cannot
be used to implement parallel pipelining [5]. In contrast, par-
allel pipelines can be constructed using parallel futures [18]
as well as other more general forms of parallelism. Though
previous work has described and bounded the number of
steals for a work-stealing scheduler that supports futures [3],
the scheduler overhead, including time and additional cache
misses, cannot be bounded in terms of the number of steals.

As an alternative to the number of steals, we show that
the number of deviations is a better metric for measuring
the performance of work-stealing schedulers for unrestricted
parallelism. Informally, a deviation occurs in a parallel execu-
tion whenever a processor executes instructions in a different
order than the sequential implementation (but without vi-
olating sequential dependencies). Deviations are necessary
to exploit parallelism in an application, but in general, the
fewer the deviations the better. We prove that for general
forms of parallelism, the number of deviations can be used
to bound both forms of overhead mentioned above.

Unfortunately, in programs that use futures, deviations
can occur much more frequently than steals. For example,
parallel executions under work stealing with only a single
steal and a single “touch” of a future can still result in up
to d deviations where d is the span of the computation. We
provide the first non-trivial upper bound on the number of
deviations, as follows. We say that a work-stealing scheduler
is parsimonious if there is one task queue per processor and
a processor only steals when its local queue is empty. (Both
the implementation in Cilk [15] and the scheduler described
by Arora et al. [3] are parsimonious.) We prove that the
expected number of deviations using a parsimonious work-
stealing scheduler in a P -processor execution is O(Pd+ td),
where t is the number of touches of futures. Moreover,
we describe a family of computation graphs derived from
programs that use futures for which this bound is tight.

These ideas arose in the context of our parallel extension
of Standard ML [23]. Lacking a good model for performance,
it was not clear to us how to implement futures using a
work-stealing scheduler and, in particular, how to apply opti-
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Figure 1: Computation Graphs. Parallelism is well-
nested in part (a) but not parts (b) or (c). Part (b)
shows an example of a parallel pipeline, and part (c),
a single future interleaved with nested parallelism.

mizations described in previous work to our implementation.
The current work serves to guide how and when these op-
timizations can be applied and suggests some alternatives
that we plan to explore in our ongoing work.

Finally, we consider applications that use futures and have
appeared in previous literature. We show one case where
parsimonious work stealing will incur high overheads. We
also give a set of strong but not onerous restrictions that
guarantee significantly less overhead.

In summary, the contributions of this work include an
analysis of an implementation of parallel futures using work
stealing and specifically: (i) examples of new and subtle
cases where deviations can occur and bounds on overheads
as a function of deviations (Section 3); (ii) upper and lower
bounds on the number of deviations for parsimonious work-
stealing schedulers in the presence of futures (Section 4); and
(iii) an empirical study of a classic application of parallel
futures and a characterization of a class of programs that
use futures in an efficient way (Section 5).

2. PRELIMINARIES

Futures and Parallel Pipelining. Parallel futures enable
an expression to be computed in parallel with the context
in which it appears. We consider parallel futures where the
body of the future begins evaluation before its enclosing
context [19]. Any expression can be computed in parallel
by adding the future keyword in front of it. We refer to
the result of evaluating that expression as the value of the
future. Programmers demand the value of a future using an
explicit touch operation [4].1 If that value has not yet been

1Explicit touches enable the language implementation to
omit runtime checks to determine if a value is a future or

computed, then the touch will suspend the current thread
and that thread will be restarted after the value is ready.

Futures can be used to write strictly more programs than
can be written with nested parallelism. The intuition behind
this is twofold: first, futures syntactically separate the be-
ginning of parallel execution from its end; second, futures
may be embedded within data structures to create streams of
values that are computed in parallel. Parallel pipelining is an
example of a style of program that uses futures and cannot
be expressed with nested parallelism. Parallel pipelines can
be as simple as a single producer-consumer pair or far more
sophisticated [5].

This paper focuses on futures as they seem to be a modest
extension of nested parallelism that already reveals funda-
mental differences. Many of our results carry over to even
more expressive forms of parallelism, including synchroniza-
tion variables [6], that can be used to implement futures.

Parallel Computation Graphs. As in previous work
[8, 9, 7], we use directed acyclic graphs to represent parallel
computations. Each graph represents the dynamic execu-
tion of a program for a particular input, but as we limit
ourselves to deterministic parallelism, this graph does not
depend on the order in which nodes are executed. Nodes in
a computation graph represent instructions or tasks, while
edges represent sequential dependencies. An edge from u to
v means that u must be executed before v. Edges are added
to the graph to show where new threads are created, at join
points, at touches of a future, or because of ordinary con-
trol dependencies. Each node is given a (non-zero, integral)
weight that indicates the time required to execute it. A node
v is ready if all of v’s predecessors have been executed but v
has not. The span (equivalently, depth or critical path length)
of a graph is the weight of the heaviest weighted path from
the root node to the sink.

Figure 1(a) shows an example of a program that uses
nested parallelism. This form of parallelism is also known as
fork-join or fully strict parallelism, and the resulting graphs
as series-parallel graphs. Figure 1(b) shows an example of a
use of futures to create a parallel pipeline. Here the pipeline
has three stages, represented by the three columns of nodes.
Figure 1(c) shows the use of a single future and touch within
the context of a larger computation. Note that parallelism
is not well-nested in this case, because there is a fork on the
right-hand side that occurs after the future is spawned but
is not joined until after the touch. The left edge leading out
from the root of this example is a future edge and the edge
leading back from the left-hand sub-graph is a touch edge.

As in previous work [3, 1], we assume that nodes in the
computation graph have both out-degree and in-degree of
at most two. This assumption fits with our model of nodes
as the instructions of the program. A future that is touched
several times can be implemented by a sequence of nodes
with out-degree two. Below, we define a unique sequential
execution for each computation graph. Nodes in Figure 1(a)
and (b) are labeled according to the order of this execution,
and we will render graphs so that the sequential execution is
the left-to-right, depth-first traversal of the graph.

Work-Stealing Schedulers. In this work, we are inter-
ested in a style of work stealing implemented and studied as

not and instead to insert these checks only when the user
has explicitly used a touch operation.
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/* Each processor i maintains a deque Qi of tasks. */
Processor i repeatedly executes the following:

If Qi is empty, select another deque Qj at random and
steal the top task of Qj (if any), pushing it onto Qi

Else
Pop the bottom task t from Qi and execute it
If t forks a new task

† Push the continuation task onto the bottom of Qi

Push the spawned task onto the bottom of Qi

Else if t joins two tasks (as part of a fork-join)
If both such tasks are finished, push the

continuation task onto the bottom of Qi

Else do nothing
Else if t spawns a future

Push the continuation task onto the bottom of Qi

Push the future task onto the bottom of Qi

Else if t touches a future but that future has not yet
been computed

Mark t as a task suspended on that future
Else if t finishes computing the value of a future

If some task is suspended on that future, push the
suspended task onto the bottom of Qi

Push the continuation task (if any) onto the bottom
of Qi

Else /* t is an ordinary task */
Push the continuation task onto the bottom of Qi

Figure 2: ws Scheduler. This abstract description of
the ws scheduler for programs using parallel futures
shows the order in which parallel tasks will be exe-
cuted but does not include any optimizations. The
line marked † is considered in Section 3.2.

part of the Cilk programming language [9, 15]. While Cilk
supports only nested parallelism, Arora et al. [3] extend the
work to more general forms of deterministic parallelism, and
prove that the expected number of steals in a P -processor ex-
ecution of span d is O(Pd) (the same as in the nested-parallel
case). Though they did not explicitly study futures, the
class of parallelism considered subsumes the use of futures,
and hence we can consider how their scheduler would handle
them. Figure 2 depicts the scheduler, which we call ws.

For our lower bounds, we shall consider any work-stealing
scheduler that is both greedy as well as parsimonious, that
is, any scheduler that maintains one deque per processor and
only steals when a processor’s local deque is empty. Parsimo-
nious work-stealing schedulers attempt to avoid paying for
steals by executing tasks that are available locally. This class
includes ws and, to our knowledge, all prior work-stealing
schedulers.

3. STEALS AND DEVIATIONS
As in previous work, our goal is to quantify the perfor-

mance of a parallel execution in terms of the performance
of the sequential execution and properties of the parallel
computation graph. We define a metric, called a deviation,
that precisely captures when and where a parallel execution
differs from the sequential execution. Though similar met-
rics have been used in previous work [11, 1] as vehicles for
relating performance to the number of steals, we show that
for programs that use futures, deviations are a better metric
than steals. In this section, we define deviations, discuss the

sources of deviations, and use deviations to extend previous
bounds on the performance of work stealing to more general
forms of parallelism.

Deviations. We define the sequential execution to be the
strict linear order on nodes of the computation graph deter-
mined by the 1-processor execution of the ws scheduler and
write u <1 v if u appears before v in the sequential execution.
Any order gives rise to a notion of adjacency (or a covering
relation). Given an order < we say that two nodes u and v
are adjacent and write u � v if u < v and there is no node w
such that u < w and w < v. If the order is linear, then there
is at most one u for each v such that u � v.

For any fixed schedule, each processor p gives rise to a
strict linear order <p on the nodes executed by that processor.
We now define a deviation from the sequential execution, or
more briefly a deviation, as follows.

Definition 1 (Deviation). A deviation occurs when a pro-
cessor p executes node v if there exists a node u such that
u �1 v but u 6�pv.

In other words, if v is executed immediately after u in
the sequential execution, a deviation occurs whenever the
processor that executes v does not execute u, when that
processor executes one or more additional nodes between u
and v, or when that processor executes u after v. We define
the total deviations of a parallel execution as the sum of the
deviations of each processor.

Deviations in Nested Parallelism. Acar et al. [1] show
that for nested-parallel programs, each deviation incurred by
ws is caused either directly or indirectly by a steal and that
at most two deviations can be attributed to each steal.2 We
briefly review these sources of deviations before considering
those in programs that use parallel futures.

Figure 3(a) shows a small parallel computation graph
where nodes are labeled by the order in which they are exe-
cuted in the sequential execution. Nodes at which deviations
occur are circled. Part (b) shows one possible schedule using
two processors. Maximal sequences of non-deviating execu-
tion are boxed. Note that while deviations take up space in
our illustrations, they do not correspond to a period of time
during which a processor is idle.

In the schedule in Figure 3(b), processor p begins by exe-
cuting tasks 1, 2 and 3. Processor q steals work from p and
executes tasks 4 and 5. Since processor q does not execute
task 3, this steal results in a deviation at task 4. A steal
will always result in at least one deviation. A second devia-
tion at task 6 will occur because q finishes task 5 before p
finishes task 3. Though p itself does not steal any work, we
can attribute this deviation to the earlier steal. As noted
above, for nested-parallel programs, ws will incur at most
two deviations per steal.

3.1 Deviations Resulting From Futures
We now describe additional sources of deviations in pro-

grams that use parallel futures when using a work-stealing
scheduler. Figure 3(c) shows a computation graph that will
be used as a running example in this section.

Suspend Deviations. A deviation occurs when a task
attempts to touch a future that has not yet been computed.

2Acar et al. [1] use “drifted node” instead of deviation.
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Figure 3: Example Deviations. A parallel compu-
tation graph (a) and a schedule (b) for nested par-
allelism. A parallel computation graph (c) and a
schedule (d) for parallel futures. The edges between
nodes (13, 17) and (14, 22) are touch edges. Nodes
at which deviations occur are circled.

In Figure 3(d), task 17 is the touch of the future that is
computed by task 13. In the schedule shown in part (d),
processor q executes task 16 but deviates by executing task
18 (since task 17 is not yet ready). Note that this does not
require an additional steal: in ws, task 18 sits at the bottom
of q’s deque.

Resume Deviations. A deviation also occurs when a sus-
pended task is resumed. In the figure, task 17 is ready only
after task 13 is completed. Thus after task 13 is executed,
both tasks 17 and 14 will be pushed on to p’s deque (in
that order). When task 17 is later popped and executed,
a deviation will occur. In this example, there are no other
tasks in p’s deque when task 17 is executed, but it is possible
that there could be more tasks in the deque above task 17.
In that case, a second deviation would occur when the first
of these tasks is popped and executed.

Indirect Deviations. The most subtle deviations occur
through the use of multiple futures or a combination of nested
parallelism and futures. Deviations can occur when a task is
suspended waiting for another task which is itself suspended.
In Figure 3, this occurs when task 20 is executed. This
deviation cannot be attributed directly to a steal. Instead, it
is caused indirectly by the suspension of task 17. As shown
in Section 4.2, a single steal followed by a single touch of a
future can result in up to d/2 deviations (where d is the span
of the graph).

Indirect deviations can also occur on the processor that
resumes a suspended touch. In this example, deviations occur
at tasks 19 and 21 on a processor that has neither stolen
work nor touched a future. These deviations occur when a
series of suspended tasks must be resumed once the value of
a future is finished. In general, finishing the evaluation of
the value of a future and resuming suspended tasks resulting

from a single touch can also lead to up to d/2 deviations (see
Section 4.2).

In the remainder of the paper, we shall refer to any devi-
ation incurred by a processor after suspending on a touch
as a suspend deviation (whether it is directly or indirectly
caused by that touch), and similarly for resume deviations.
Just as at most one deviation occurs at a join for each steal
in nested parallelism [1], deviations that occur as a result of
futures can also be loosely paired as shown by the following
lemma.

Lemma 1. There is at least one steal or suspend deviation
for every two resume deviations.

Proof. Assume that there is some node v that corresponds to
a touch. We will show that if a resume deviation occurs when
executing v, there is at least one steal or suspend deviation
and that the number of steal and suspend deviations related
to v is no less than half the number of resume deviations re-
lated to v. Assume that processor p deviates when executing
(and therefore, resuming) v. This implies that some processor
q suspended rather than executing v and incurred either a
steal or suspend deviation at that time. Processor p may also
deviate after executing v and one or more of its descendants,
so we have one or two resume deviations and one steal or
suspend deviation. Now consider each descendant u of v at
which p incurs an indirect resume deviation. This implies
that some other processor (possibly q) already executed u’s
other parent but not u itself, at which time it incurred a
suspend deviation.

3.2 Performance Bounds
For nested-parallel computations, the number of steals can

be used to bound the overhead of the scheduler, including
scheduler time and cache misses. Using deviations, we can
extend these bounds to more general parallel computations.
In the remainder of this section, we consider a scheduler
called generalized ws that is a version of the scheduler shown
in Figure 2 extended for unrestricted parallelism (and also
defined in Arora et al. [3]). These results, together with
results in the next section, show that for programs that use
parallel futures, ws will incur overhead proportional to both
the number of touches and the span of the graph. Below,
∆ indicates the number of deviations from the sequential
execution.

Scheduler Time. Cilk-style work stealing derives much
of its performance from the application of the “work-first”
principle. This states that overhead should be moved away
from the “work” and onto the critical path [15]. For example,
Cilk compiles two versions of each function: one to be run in
the common case (the fast clone) and one to be run only after
a steal (the slow clone). Because fast clones are expected to
be run much more frequently, most of the synchronization
overhead is moved into the slow clones. When running a
fast clone, no checks are required to determine which sub-
tasks have already finished: in a fast clone, sub-tasks are
always executed by the same processor as the parent task.
In contrast, a slow clone must stop at each synchronization
point to check for a concurrently executing task and see if
it has finished. In the implementation shown in Figure 2,
if the continuation task pushed in the line marked † is not
executed by the same processor that pushed it, then the last
task before the corresponding join must be run using the

94



slow clone; if it is executed by the same processor, then the
fast clone can be used. It can be shown for nested-parallel
computations that the number of invocations of slow clones is
bounded by the number of steals. By bounding the number
of invocations of slow clones, we also bound a significant
portion of the time used by the scheduler. This optimization
for nested parallelism is less effective in programs that also
use other forms of parallelism. In this case, the number of
executions of slow clones is bounded only by the number of
deviations.

Theorem 1. The number of invocations of slow clones using
generalized ws is no more than the number of deviations.

Proof. Assume a slow clone is executed for a node v by
processor p. This is only the case when (i) v has a successor
w, and w has an in-degree greater than one, (ii) v �1 w,
and (iii) the other predecessor of w (call it u) has not (yet)
been executed by p. (If v is the sole predecessor of w then
no synchronization is necessary. Likewise, if v 6�1w then v
need not be executed using a slow clone since any necessary
synchronization will occur as part of popping an element from
the deque. Finally, if u <p v then p need not synchronize
before executing w since it already knows that u has been
executed.) From assumption (ii) it follows that u <1 v since
otherwise w would not be ready after the execution of v. Let
x be the last node executed by p no later than v at which a
deviation occurred. Such a node x must exist either because
another processor executed u or because p executes u after
v. For example, the first node x executed by p with u <1 x
would incur a deviation. If no additional deviations occur
between x and v (which is the case since we take x to be the
last such node) then no node between x and v is executed
with a slow clone other than v. This follows from the fact
that every task executed by p in this interval is pushed by p
onto its own deque. Thus the number of invocations of slow
clones is bounded by the number of deviations.

The number of deviations also provides a lower bound for
the number of slow clone invocations for parallel programs
that use futures. A slow clone will be executed after every
steal and every suspend deviation (direct or indirect). In the
latter case, this follows since each such deviation corresponds
to the execution of a task pushed at the line marked † of
Figure 2 where one or more predecessors of the task pushed
on the following line have not yet been executed. By Lemma 1
this is a constant fraction of all deviations.

Cache Misses. If we consider a shared memory architecture
with a hardware-controlled cache, then we can bound the
additional cache misses incurred during a parallel execution.
We assume that each processor has a private cache with
capacity C. Acar et al. [1] bound the number of cache misses
in nested-parallel computations in terms of the number of
steals. To extend this to general parallelism, we must under-
stand how data communicated between processors through
uses of futures can affect cache behavior. We assume a fully
associative cache with an LRU replacement policy. As in
[1], we further assume there are no misses caused by two
processors accessing different words of the same cache line
(i.e., no false sharing); e.g., it suffices to assume the dag
consistency [11] cache consistency model.

Theorem 2 (extension of Theorem 3 in Acar et al. [1]). The
number of cache misses incurred using generalized ws is less

than M1(C) +C∆ where C is the size of the cache, M1(C) is
the number of cache misses in the sequential execution, and
∆ is the number of deviations.

The original theorem is proved using the fact that the
computation is race-free, i.e., for two unrelated nodes in
the computation graph, there is no memory location that
is written by one node and either read or written by the
other. We assume deterministic computations are race-free.
For nested-parallel computations, race-free implies that any
locations read by the thief must have been written before the
steal or by the thief. Therefore, after C misses, the thief’s
cache will be in the same state as that of the sole processor
in the sequential schedule. From that point forward, such
a processor will only incur misses that also occur during
the sequential schedule. In this proof, we consider an im-
plementation that flushes the cache at each deviation. An
alternative implementation that did not flush the cache after
each deviation will incur no more misses.

Proof. Given a graph g and a schedule S determined by
generalized ws, assume that the implementation flushes the
cache after each deviation. Consider a node v that reads a
memory location m and a second node u that writes to that
memory location. Assuming the program is deterministic,
then there is exactly one such u whose value should be read
by v and there is at least one path from u to v in g.

If no deviation occurs between u and v then a cache miss
occurs at v in S if and only if a cache miss occurs at v in
the sequential schedule: either m must have remained in the
cache since u was visited, or C other locations were accessed
in the interval between u and v.

If a deviation occurs between u and v, let w be the most
recent deviation incurred by the processor q that executes v.
Assume that no miss occurs at v in the sequential schedule,
and further assume, for a contradiction, that q has already
incurred C cache misses since w. This implies that there
have been C distinct memory accesses since w. However, q
visits all nodes between w and v in the same order as the
sequential schedule, so the state of q’s cache at v must be
identical to that of the sequential schedule. If no miss occurs
in the sequential schedule at v then no miss occurs when v
is visited by q, a contradiction. Therefore, q incurs at most
C more misses than the sequential schedule.

Acar et al. [1] showed a family of graphs (which can be
constructed using futures) where Ω(Ct) cache misses occur
with two processors (where t is the number of touches), while
only O(C) cache misses occur when using a single processor.
Because each of these touches incurs a deviation under a
parsimonious work-stealing scheduler, the number of misses
is M1(C) + Ω(C∆).

4. TIGHT BOUNDS ON DEVIATIONS
In this section, we give the main results of this paper:

upper and lower bounds on the number of deviations that
occur when using ws to schedule parallel programs that use
futures. Given the results of the previous section, these
bounds imply that using work stealing to schedule tasks in
programs that use futures may incur high overheads.

4.1 Upper Bound
This bound is given in terms of the number of touches

that appear in the computation graph. Note that this is not
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Figure 4: Graphs Used in Proof of Upper Bound.

the number of touches that appear in the program source
code, but the number of touches that occur dynamically in
the program execution.

Theorem 3 (Upper Bound). For computations with span d
and t touches, the expected number of deviations by ws on
P processors is O(Pd+ td).

A proof of this theorem appears below, but we first give
the following lemmata that are used in the proof. These
rely critically on the structure of graphs arising from uses
of futures and the behavior of parsimonious work-stealing
schedulers.

Lemma 2. Given a node v in a computation graph with
out-degree two and right child u, if y is a descendant of v
and y <1 u, but y has a parent that is not a descendant of v,
then y is a touch.

Proof. If y is a descendant of v but it also has a parent that
is not a descendant of v, then y must have in-degree two.
Therefore it is either a join or a touch. Suppose the other
parent of y is x. As we have y <1 u and x <1 y, it follows that
x <1 u. Furthermore, x is not a descendant of v and so x <1 v.
If x was executed before v in the sequential execution then
x and v share a common predecessor w (possibly x). Since
the two parallel paths between w and y are not well-nested
with respect to v’s two children, y must be a touch.

Lemma 3. Given a node of out-degree two with children u
and v, let V be the set of nodes executed in the sequential
schedule between u and v (inclusive). For some processor p
and for each touch y ∈ V , if v is not stolen and x�1y ⇒ x�py,
then for all y, z ∈ V , y <1 z ⇒ y <p z.

Proof. Assume otherwise, for the sake of contradiction. Take
the first pair of nodes y, z ∈ V (ordered lexicographically
according to the sequential order of execution) such that
y <1 z, but y 6<p z. There are three possibilities: either y
or z is not executed by p (and thus p does not relate y and
z) or z <p y. If y is not executed by p (and similarly for z)
then it must have a parent that is not a descendant of u. By
Lemma 2, y is a touch, a contradiction, since we assumed
that p executed all touches in V . In this case, neither y nor
z can be stolen since v would be stolen first. Alternatively,
we have z <p y. If this is the case, then up to the point that
p executes z, p has executed every node x such that x <1 y
(since otherwise y and z would not be the first offending pair).
Let x be the last such node: x �1 y. If p does not execute y
immediately after x, then y must have another parent that
is not in V . This again (by Lemma 2) implies that y is a
touch, a contradiction, since we assumed that x �1 y implies
x �p y for all touches in y in V .

Lemma 4. When executing a graph of span d, the number
of elements in any processor’s deque is at most d.

Proof. Each processor only pops from the bottom of its own
deque and only steals when its deque is empty, therefore the
parents of all nodes in a deque must lie on a single path from
the root to the currently executing node. Thus if there are d
elements in a processor’s queue, there must exist a path of
length d. If such a path exists, then the span of the graph is
at least d.

Lemma 5. For a graph g with root u and sink v, for any
other node w in g, if there is a path from w to v that does
not include any touch edges, then there is a path from u to
w that does not include any future edges.

Proof. By induction on the length of the path from w to v.
First take the case where there is an edge connecting w and v
(a path of length one) that is not a touch edge. Edges in the
computation graph are either (i) future or touch edges, (ii)
are added to between two sub-graphs that must be computed
serially, or (iii) are added to compose two sub-graphs as a
nested-parallel computation. The edge from w to v cannot
be a future edge (i) as a future edge cannot lead to the sink
of a graph. If that edge was added as part of the serial
composition of two sub-graphs (ii), then every path from
u to v that does not include a future or touch edge must
include w (and there is always at least one path from u to
v that does not include either future or touch edges). If an
edge was added as part of a nested-parallel composition (iii)
(i.e. leading to a join), then there must be a corresponding
fork with an edge that leads to w as well as a path without
future edges that leads from u to that fork.

Now take the case where the length of the path from w to
v is greater than one. Assume that there is a node y with
an edge (w, y), a path from y to v, and that none of those
edges is a touch edge. By induction, there is a path from
u to y that does not include any future edges. As above,
consider how the edge (w, y) was added to the graph. This
edge cannot be a future edge (i) since if it was then every
path from y to v must include a touch edge and we assumed
at least one path that does not. If that edge was added
during a serial composition (ii) then again every path from
u to v that does not include a future or touch edge must
include w. (iii) If the edge (w, y) is a join edge, then there
must be a corresponding fork and that fork must lie on the
path between u and y; it follows that there is a path without
future edges from that fork to w. Finally, if the edge (w, y)
is a fork edge, then every path without future edges from u
to y also goes through w.

Proof of Theorem 3. We consider each node in the graph
and determine whether or not a deviation could occur at
that node. We divide nodes into three classes based on
the in-degree of each node and (possibly) the out-degree of
its parent. Only the root node has in-degree zero, but a
deviation never occurs at the root. If a node v has in-degree
one and either (i) its parent has out-degree one, or (ii) its
parent has out-degree two and v is the left child of its parent,
then v will always be executed immediately after its parent
by the same processor and no deviation will occur.

Consider the case where v has in-degree one, its parent has
out-degree two, and v is the right child of its parent as shown
in Figure 4(a). In this case, there is some descendant x of u
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such that x �1 v. Assume that v is executed by processor p.
A deviation occurs when executing v only if at least one of
the following three conditions holds: (i) v is stolen, (ii) there
is a touch at some node w that is executed between u and
v in the sequential schedule along with a node y such that
y �1 w and p executes y but y 6�pw, or (iii) there is a node x
such that x �1 v and x is executed by p, but p also executes
at least one other node between x and v.

First, we show that these conditions are exhaustive. As-
sume that a deviation occurs when executing v but suppose,
for the sake of contradiction, that none of these conditions
is true. If v was not stolen then u was also executed by p
and v was pushed onto p’s deque. By assumption, for every
touch w that appears in the sequential execution between u
and v with y �1 w, we have y �p w. It follows from Lemma 3
that for every pair of nodes y and z that appears in the
sequential execution between u and v (inclusive), we have
y <1 z ⇒ y <p z. This implies x <p v for the node x such
that x �1 v. Finally, by assumption, there is no other node
that p executes between x and v and so x �p v. Therefore,
no deviation occurs at v, a contradiction.

Now we count the number of nodes that can be described
by one of the three conditions above. First, from the proof
of Theorem 9 in Arora et al. [3], the expected number of
steals is O(Pd), bounding the number of nodes that fall into
the first category. Second, if there is a touch w such that
y 6�pw and v was not stolen, then v was on p’s deque when p
executed y. Moreover, since y �1 w, there is exactly one such
y for each touch. By Lemma 4, there are at most d elements
on p’s queue at any time, and thus O(td) nodes in the second
category. Finally, there is exactly one node v for each node
x such that x �1 v. The number of nodes that finish the
value of a future is bounded by the number of touches. If p
executes another node between x and v, then x is a future
and the number of nodes such as x is O(t). It follows that
the number of nodes that immediately follow x is also O(t).
Thus the expected number of deviations occurring at nodes
of in-degree one is O(Pd+ td).

Now take the case where v has in-degree two. Deviations
only occur here if v is enabled by its left parent (i.e., if its left
parent is visited after its right parent), so consider that case
(Figure 4(b)). Define ĝx to be the sub-graph of g rooted at
some node x formed by removing any future or touch edges
as well as any nodes that are not reachable from x through
the remaining edges. In this case, a deviation occurs when
executing v only if one of the two following conditions holds:
(i) there is a touch of a node y and a node x (possibly the
same as y) that is a predecessor of both v and y such that v
lies on all paths from y to the sink of ĝx, or (ii) there exists
a node w such that u �1 w and w is stolen.

Assume that a deviation occurs when executing v but
suppose again, for the sake of contradiction, that neither
of the above conditions is true. First, v cannot be a touch.
(If it were, then it would lie on all paths between itself and
the sink of ĝv.) Therefore, v must be a join. Let x be
the corresponding fork and w be the right child of x. It
follows that u �1 w. By assumption, w is not stolen and is
therefore executed by the same processor p that executes x.
Since a deviation occurs at v, w and its descendants before
v are executed before u. However, if p executes w before
u is executed, then there must be some node y that is a
predecessor of u and a descendant of x but is not dominated
by x. The graph might look something like Figure 4(c). If y

is not dominated by x then it must be a touch. If there is
more than one such touch, let y denote the one that is closest
to u. Then any edges between y and u are not touch edges.
By Lemma 5 there is a path from x to y that does not include
any future edges. Thus y is in ĝx. Since ĝx is series-parallel
and y appears after x but before v, any path in ĝx from
y to the sink must go though v, a contradiction. Thus no
deviation can occur unless one of the above conditions holds.

We now count the number of nodes that can fall into one
of the two categories above: in the first case, the number of
nodes such as v is bounded by the number of touches times
the span of ĝx (which is in turn bounded by the span of g);
in the second case, there is exactly one node v for each steal
of w such that v follows some node u with u �1 w. Thus the
number of deviations occurring at nodes of in-degree two is
O(Pd + td), and the total number of expected deviations,
including nodes with both in-degree one and two, is also
O(Pd+ td).

4.2 Lower Bound
While this upper bound is high, we show that there are

programs that use futures for which this upper bound is
tight. We assume that the scheduler is parsimonious (i.e., it
maintains one task queue per processor and each processor
only steals when its local queue is empty). This class of
schedulers includes ws. In the computations we construct,
each time we increase the span by one, we can either double
the number of touches (and the number of deviations incurred
as a result of those touches) or we can cause each existing
touch to incur an additional deviation.

Theorem 4 (Lower Bound). There exists a family of parallel
computations derived from programs that use parallel futures
with span d and t touches where Ω(Pd+ td) deviations occur
when executed on P processors with any parsimonious work-
stealing scheduler and when d > 8 log t and d > 2 logP .

Proof. The proof is given by constructing such a family
of computations. Graphs that incur Ω(Pd) deviations can
be constructed using only nested parallelism, for example,
by chaining together sequences of fork-join pairs. In such
examples, d must be greater than 2 logP to ensure there is
adequate work for P processors. Below, we construct graphs
with Ω(td) deviations for two processors and assume that
they can be combined (in parallel) with such chains yielding
a family of graphs with the required number of deviations.

For ease of presentation, we will carry out this construction
in stages. In the first step, we show that one steal and one
touch is sufficient to generate Ω(d) deviations on a graph of
span d with two processors. Figure 5(a) shows one such graph.
The program starts by using a future to split the computation
into two parts. The value of the future is finished at node w
and the edge from w to v is a touch edge.

Assume that processor p starts execution of the graph
and processor q steals work corresponding to the right-hand
sub-graph. We assume that steals require unit time, but
our examples can be extended to account for larger costs.
(A heavy line in the figure divides those nodes executed
by p from those executed by q.) This steal means that q
immediately incurs a deviation. As above, nodes at which
deviations occur are circled. The left-hand sub-graph is a
sequence of nodes that ensures that q finishes node u before
p finishes w.
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After q finishes u, it cannot continue sequentially to v.
However, there are several nodes in q’s deque. Since we
assume the work-stealing scheduler is parsimonious, q will
continue by removing elements from its queue, incurring
a deviation each time. These deviations occur as indirect
results of a suspension.

Meanwhile, p will finish the value of the future and continue
by executing v (again, since this node was on its own deque
and it has no other nodes to execute). Then p will execute
all of the nodes along the lower-left side of the right-hand
sub-graph, incurring a deviation at each node. These are
examples of indirect deviations that occur after resuming a
suspended touch.

In the second step, we show that one steal and t touches
is sufficient to generate Ω(t) deviations on a graph of span
Ω(log t) as in Figure 5(b). Graphs of this form are generated
from a pair of functions which produce and consume a binary
tree in parallel. Each node in this tree, both internal and
external, is defined by a future.

These graphs are constructed so that p and q alternate
between suspending on the touch of a future and resuming it.
The gray sub-graphs (drawn as diamonds in the figure) are
small sequences of nodes introduced to ensure this alternation.
In the figure, each such sub-graph requires two or three nodes.
Processor q incurs a deviation after executing node x. There
are several nodes in q’s deque, but the graph is constructed
so the next touch will also result in suspend, no matter
which node is chosen. This graph may be generalized to an
arbitrary number of touches so long as the span of the graph
is at least 4 log t.

Finally, we define a family of computations with span
d that incur Ω(td) deviations on two processors. We do
so by first taking a graph as described in the second step
(Figure 5(b)) of span d/2. We then replace each touch in that
graph (e.g., nodes y and z in the figure) with an instance of
the right-hand portion of the graph described in the first step
(Figure 5(a)) of span d/2. In addition, each diamond sub-
graph on the producer-side of the graph must be extended
with an additional delay of d/2 nodes. This results in a graph
of span d with t touches and a total of Ω(td) deviations. Note
that this construction requires that d > 8 log t so that there
is adequate parallelism to produce and consume the tree in
parallel.

5. IMPLEMENTATION & APPLICATIONS
In this section, we give empirical results showing that

deviations occur more frequently than steals not just in
constructed examples, but also in a program proposed in
previous literature. We also examine a class of programs
that use futures in a limited but more efficient way. We first
give some background on our parallel implementation of ML.

Parallel ML. We performed our experiments with Hal-
stead’s quicksort (described below) using our parallel imple-
mentation of ML. This is a parallel extension of Standard ML
[23] based on the MLton compiler and runtime system [26].
In addition to adding multi-processor support to this runtime,
we also implemented several different schedulers, including
work-stealing and parallel depth-first schedulers [7]. One
of our goals was to factor the implementation so that the
scheduler can be easily replaced with an alternative while at
the same time allowing for (and implementing) optimizations
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p q

(a) Ω(d) deviations

x
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p q

(b) Ω(t) deviations

Figure 5: Graphs Demonstrating Lower Bounds. In
part (a), one future, one steal, and one touch lead
to Ω(d) deviations on a graph of span d. In part (b),
one steal and t touches leads to Ω(t) deviations.

that have been suggested in previous work (e.g., Cilk). For
example, we have implemented the fast clone/slow clone com-
pilation strategy used by Cilk at the source level in ML using
higher-order functions. This implementation relies heavily
on MLton’s aggressive inlining and optimizations to achieve
good performance.

We have also implemented several parallel primitives, in-
cluding primitives for nested parallelism, futures, and write-
once synchronization variables [6]. Though all of these con-
structs could be implemented using expressive primitives
like synchronization variables, some optimizations can be
performed only if the more restrictive constructs are also
built as primitives. While implementing futures, we faced
certain issues as to how and when these optimizations (e.g.,
fast/slow clones) could be applied and these issues have led
us to the current work. These and other implementation
details are described in our previous work [25].

Halstead’s Quicksort. Halstead [19] uses an implementa-
tion of quicksort as an application of parallel futures. (The
full source code for this example is given in Figure 1 of that
work.) This implementation uses futures in two ways. First,
it streams the partition of the input so that while one proces-
sor continues to partition the remainder of the input, other
processors can select new pivots and recursively partition the
two halves of the input. Second, it uses a future to compute
both recursive calls in parallel. While in many cases this
can be accomplished using nested parallelism, this implemen-
tation uses a well-known technique to avoid concatenating
the results of the two recursive calls. Instead it passes the
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result of one recursive call as an argument to the other. To
enable these to execute in parallel, this argument is passed
as a future. It appears that it is not possible to implement
this with nested parallelism.

This implementation of quicksort has span O(n) and work
O(n logn). It also creates O(n logn) futures and touches
each future at least once. Figure 6 shows the number of steals
(squares) and deviations (circles) measured empirically in our
implementation of the ws scheduler. (The variation in some
points is due to effects of the operating system scheduler.)
Note that only a small fraction of the deviations can be
attributed to steals.

Pipelining. Recall that Figure 1(b) shows an example of a
computation graph derived from a program that uses futures
to implement a parallel pipeline. Though the computation
shown in the figure does not use any nested parallelism, this
example can be extended by replacing each node in such
a graph with a nested-parallel computation (e.g., if each
stage in the pipeline is a matrix multiplication). We call
such a computation a pure linear pipeline if it meets the
following restrictions: (i) there is at most one read for each
future, (ii) touches are nested within a constant number of
forks and futures, and (iii) the value of each future has at
most one additional future embedded within it. The last
condition requires more explanation. It allows programmers
to use linear streams of futures (e.g., lists whose tails are
futures) but not trees of futures. This restriction can be
easily enforced in a typed language by restricting those types
α that appear as α future. These three conditions imply that
at most one thread can suspend waiting for the value of each
future and that at most one thread must be resumed. As
touches only appear within a constant parallel nesting, there
is at most a constant number of tasks on a processor’s deque
at the time of a suspension. Finally, there is at most one
unfinished future in the environment of each thread. This
implies that after a suspension, only a constant number of
deviations can occur before another steal. As the expected
number of steals is O(Pd), this is also an upper bound on
the expected number of deviations for pure linear pipelines.

6. RELATED WORK
The principle of work stealing goes back at least to work

on parallel implementations of functional programming lan-
guages in the early 1980’s [12, 18]. It is a central part the
implementation of the Cilk programming language [15]. Cilk-
style work stealing has also been implemented in Java [22],
X10 [2, 13], and C++ [20].

Work stealing for nested-parallel programs (such as those in
Cilk) was studied by Blumofe and Leiserson [9] who bounded
the execution time in terms of the number of steals as well
as the additional space required. Agarwal et al. [2] extend
Blumofe and Leiserson’s work on space bounds to terminally
strict parallelism, a class of parallel programs broader than
nested-parallel (fully strict) programs but still not sufficiently
expressive to build parallel pipelines. Arora et al. [3] give
a work-stealing scheduler for unrestricted parallelism and
bound the number of steals and execution time but not space.
They also consider performance in a multi-programmed en-
vironment. Acar et al. [1] bound the cache overhead of
this scheduler using drifted nodes (which we have re-dubbed
deviations) but only for nested-parallel programs.

0 1,000 2,000 3,000 4,000 5,000
0

20,000

40,000

60,000

80,000

# deviations

# steals

input size

#
st

ea
ls

/
d
ev

ia
ti

o
n
s

Figure 6: Empirical Measurements for Quicksort.

Parallel depth-first scheduling [7] is another form of dy-
namic scheduling with proven bounds on overhead. It has
been extended to support synchronization variables [6], which
in turn can be used to implement futures, but it is unclear
if the overhead of this scheduler can be reduced to support
parallelism at the same granularity as work stealing.

Static scheduling determines the mapping between parallel
tasks and processors at compile time and has been used
in the implementation of stream processing languages (e.g.,
[17]) where the hardware platforms are determined in ad-
vance. Stream processing includes limited forms of parallel
pipelining, but static scheduling is not applicable when the
structure of the pipeline depends on the program input.

Parallel futures of the form we use were first proposed
by Halstead [18] as part of Multilisp and also appeared in
work by Kranz et al. [21]. Light-weight implementations of
futures were described by Mohr et al. [24] and Goldstein et al.
[16]. Parallel pipelining can also be implemented using a
number of other language features such as I-structures in ID
[4] and streams in Sisal [14]. Blelloch and Reid-Miller [5] give
several examples of applications where the use of futures can
asymptotically reduce the span of the computation graphs.
They also give an upper bound on the time required to
execute these computations by giving an implementation
of a greedy scheduler that supports futures. Blelloch and
Reid-Miller limit each future to a single touch to enable a
more efficient implementation.

7. CONCLUSION AND FUTURE WORK
Using deviations, we have shown that the overheads of

work-stealing schedulers for programs using parallel futures
can (only) be bounded in terms of the number of touches
and the span of the computation graph: steals do not suffice
once we go beyond nested parallelism.

While previously described work-stealing schedulers have
focused on limiting the number of steals and moving overhead
into the critical path, it would be interesting to explore
alternatives that attempted to limit the number of deviations,
perhaps at the cost of additional steals. Moreover, deviations
may also be of use in bounding the overhead of schedulers
that do not rely on work stealing. We also leave as future
work a formal characterization of the family of graphs arising
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from uses of futures as well as bounds on the number of
deviations for other forms of deterministic parallelism.
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