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Abstract Robots are increasingly autonomous in
our environments, but they still must overcome
limited sensing, reasoning, and actuating capabil-
ities while completing services for humans. While
some work has focused on robots that proactively
request help from humans to reduce their limi-
tations, the work often assumes that humans are
supervising the robot and always available to help.
In this work, we instead investigate the feasibility
of asking for help from humans in the environ-
ment who benefit from its services. Unlike other
human helpers that constantly monitor a robot’s
progress, humans in the environment are not su-
pervisors and a robot must proactively navigate to
them to receive help. We contribute a study that
shows that several of our environment occupants
are willing to help our robot, but, as expected,

S. Rosenthal (B) · M. Veloso
Computer Science Department,
Carnegie Mellon University,
Pittsburgh, PA, USA
e-mail: srosenth@cs.cmu.edu

M. Veloso
e-mail: veloso@cs.cmu.edu

A. K. Dey
Human-Computer Interaction Institute,
Carnegie Mellon University,
Pittsburgh, PA, USA
e-mail: anind@cs.cmu.edu

they have constraints that limit their availability
due to their own work schedules. Interestingly, the
study further shows that an available human is not
always in close proximity to the robot. We present
an extended model that includes the availability of
humans in the environment, and demonstrate how
a navigation planner can incorporate this informa-
tion to plan paths that increase the likelihood that
a robot can find an available helper when it needs
one. Finally, we discuss further opportunities for
the robot to adapt and learn from the occupants
over time.

Keywords Human–robot interaction ·
User study · Asking for help · Planning
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68T40 · 68T37

1 Introduction

Robots are becoming increasingly able to perform
services autonomously in our environments. They
can give visitors directions in malls [35] and tours
in museums [36], and act as companions for in-
dividual users [29]. Despite these great strides,
robots are still not ubiquitous due to their sens-
ing and actuation limitations that can affect their
task performance. For example, many robots have
difficulty recognizing speech in loud environments
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or recognizing obstacles to avoid while navigating,
and they may not have the physical ability to
manipulate objects.

To overcome these limitations, some work has
focused on reasoning about a robot’s current state
and proactively requesting humans to direct the
robot’s actions during tasks [2, 16, 29, 39]. How-
ever, there is always an assumption that humans
are available to help a robot in any location,
whether the help comes from supervisors who
assign tasks and have incentive for it to perform
[2, 16], or from bystanders who do not benefit
from the robot’s tasks [39]. Additionally, the work
has been limited to asking for only one kind of
help (e.g., localization) at a time.

In this work, we instead focus on asking for sev-
eral types of localization and manipulation help
from the actual occupants of the environment and
beneficiaries of a robot’s services. We argue that
robots that ask for help from occupants combine
the benefits of asking bystanders and supervisors
in the following ways:

– Occupants should answer robots’ questions
during tasks for other occupants with the in-
centive that the help will be reciprocated dur-
ing tasks for them.

– The burden of help is distributed among many
occupants in the environment.

However, unlike supervisors and bystanders:

– Occupants are not always available to help the
robot.

– Occupants are spatially-situated and cannot
help the robot at every location in the envi-
ronment.

We first review our building environment, ro-
bot, and its limitations and define several types of
help that a robot could request from occupants to
overcome those limitations. We, then, contribute
a study that shows that, despite our busy office
environment, several occupants are willing to help
our robot with its limitations, but they have work
constraints that limit their availability. Addition-
ally, there are few available occupants in our en-
vironment (and likely in many environments) at

any given time and a robot will have to proactively
navigate to seek help if it needs it. Based on these
findings, we contribute a model of an environ-
ment, robot, and occupants in it and demonstrate
how a navigation planner can plan paths around
available occupants’ known locations to increase
the likelihood that a robot can find help quickly
when it needs it, rather than assuming there is
always a human available. Finally, we discuss sev-
eral qualitative results of our study which indi-
cate the need for further extending the models of
occupants.

2 Related Work

Robots have limitations that affect their task per-
formance. Human supervisors have traditionally
been used to overcome a robot’s limitations by
monitoring robot progress and intervening when
necessary, but such help can be very expensive in
terms of monitoring time and cognitive load on
the helper [40]. Much recent work has focused
on different techniques to allow robots to reason
about their own limitations and capabilities to
proactively ask for help from supervisors, teach-
ers, and bystanders in the environment. These
different types of help have been classified in
a variety of ways [17, 20, 26, 31], but we focus
in particular on supervisors and bystanders and
investigate a new classification of helpers—the in-
environment beneficiaries of robots’ tasks (i.e.,
the robot users [23, 29]).

2.1 Supervisors

Many different methods have been proposed for
supervisors to help including providing assistance
at different levels of granularity depending on
the robot’s capabilities [12] and participating in
mixed-initiative interactions to ensure the robot
performs its task effectively [33]. Initial work in
robot learning required teacher supervisors to
physically perform the task for the robot to im-
itate [19, 24, 28]. Since then, teachers have been
able to accurately label data both when the robot
requests it during tasks and through corrective
feedback after tasks are performed in order for
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robots to learn policies for which actions to take
[2].

Two important assumptions are made in terms
of robots employing help from supervisors: super-
visors have incentives to respond and they partic-
ipate in long-term interactions giving both robot
and human chances to learn about each other.

Incentives It is assumed that teachers and super-
visors have incentives to help their robots com-
plete their tasks. They are either paid to monitor
the robot’s movements or they do so for research
and teaching purposes that further the robot’s
knowledge. Additionally, while it is assumed that
teachers will provide less feedback over time, they
are still available to provide corrective feedback
or wait for questions during the entire learning
process. As a result, the robot does not need
to take into account the number of times or
frequency that it has needed help to determine
whether it should ask for help at the present time.
This is in contrast to other active learning methods
which assume that there is a cost, such as time
to respond or annoyance, associated with asking
[1, 8, 27].

Long-Term Interaction Because supervision oc-
curs over time, there are additional opportunities
for robots to take advantage of the long-term
interactions to model and learn about the human
and vice versa. Supervisors are often assumed,
with few exceptions (e.g., [16]), to have in-depth
knowledge about how robots work so that they
can help them appropriately. However, even with-
out this assumption, robots with knowledge of
supervisors should (1) take into account helper
expertise to determine the type of question that
the robot should ask [5, 15, 16], (2) ground or
familiarize the helper with the robot’s current
state to increase the likelihood of accurate re-
sponses [7, 30], and (3) model the helper’s in-
terruptibility or availability to answer questions
[14, 35].

While supervision ensures that a robot will
always be able to find help from a trusted hu-
man helper, it is an expensive requirement that
cannot be scaled as we continue to deploy more
and more robots. To reduce the dependency on a
single supervisor, it has recently been suggested

that bystanders in the environment can help
a robot.

2.2 Bystanders

The number of bystanders is assumed to be high
compared to supervisors, distributing the burden
of help across a large number of people [4, 21, 25,
39]. Robots can benefit from the distributed help,
but the requirement of a crowded environment
requires spatial constraints on where these robots
can be deployed.

Distributed Help Human computation (e.g., [37,
38]) and crowd-sourcing (on websites like Ama-
zon.com’s Mechanical Turk) gather help from
a distributed set of people. Crowd-sourcing has
been used to label pictures [37] and translate au-
dio [6, 34]. In robot domains, bystanders in busy
environments have helped robots complete tasks
in locations as varied as offices [4], conferences
[25], and even on the street [39]. Because the num-
ber of people in these areas is so high, there is a
very limited possibility that any particular person
will be asked for help too frequently, limiting the
annoyance and interruption of the requests for
help.

Spatial Constraints Bystanders are more often
found in crowded spaces, adding spatial con-
straints to the robot’s deployment. While humans
are not actively in contact with the robot all the
time, there is still an assumption that at least one
human will help the robot shortly after it requests
it. Because these robots do not model humans in
the environment in terms of who will be available
or where they are located, nor do they proactively
contact a known helper, they have little control
over the help they receive and cannot plan to
optimize their performance using that help. As
a result, their performance is dependent on the
crowds in the environment.

2.3 Our Work

We argue that asking for help from occupants
in the environment combines the benefits of
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supervisors in terms of incentives to answer and
long-term interactions and the benefits of by-
standers to distribute help among many peo-
ple. Additionally, seeking help from occupants in
offices relaxes the spatial constraints of crowded
areas but requires proactive navigation to find
available occupants. We expect that because the
office occupants are the beneficiaries of the ro-
bot’s tasks, they will be likely to respond to
requests for help to complete tasks. However,
there has been little prior work focused on the
opportunities for robots to ask for help from these
occupants (e.g., users of the robot [23, 29]).

In this work, we first define the problem of
seeking help from building occupants. Then, we
review our environment, robot, and our robot’s
limitations that it requires human help with. We
present a study to understand the willingness and
availability of occupants to help a robot that per-
forms services for them. We find that few people
are willing to help at any given time, and in order
for the robot to find these people during tasks,
it will need to model where they are located and
modify its navigational plans to move near them.
We then contribute a model of the environment
that includes not only the robot and its robot
limitations, but also available humans and demon-
strate that a robot can use this model to optimize
its navigation for a task to increase the likelihood
of finding an available occupant.

3 Seeking Help from Spatially-Situated
Building Occupants

We define occupants of buildings as having pre-
defined work spaces and conducting work which
requires that they be present over a period of
time. While occupants have similarities to both
supervisors and bystanders, they also have con-
straints which violate the assumptions of previous
work. In particular, they are spatially-situated in
the environment so no single occupant can help
a robot at every location. Additionally, the occu-
pants are not necessarily monitoring a robot or
their email, and may miss or be late to respond to
electronic requests for help. As a result, a robot
will need to navigate to an occupant’s office to
request help. It will also need to learn and model

each human’s availability through long-term in-
teraction to avoid navigating to empty offices or
interrupting meetings in offices. We discuss each
of the aspects of building occupants in turn and
the research questions we address.

Distributed Help Because there are many occu-
pants in a building, the burden of helping a ro-
bot is distributed among them. This is important
because occupants are busy and may not be able
to answer too frequently. However, it is unclear
whether occupants are willing to help at all given
that they have other work to do. This work will ad-
dress the following questions related to occupant
help:

– Are office occupants willing and available to
help a robot perform its tasks?

– Are they willing to provide one type of help
more than others (e.g., are they unwilling to
help with tasks that require them to leave their
office)?

– Are office occupants willing to help the robot
even if they are busy in meetings or on the
phone?

Incentives Because a robot would know occu-
pants’ office locations, it could provide services
or incentives to encourage occupants to help it.
If occupants want to continue to receive services
and incentives from the robot (e.g., mail delivery),
they must also agree to help the robot at some
times. In this work, we aim to answer the following
questions relating to incentives:

– Do office occupants report that they are moti-
vated to answer questions with incentives?

– Do they actually answer more frequently
when offered an incentive?

Long-Term Interaction Unlike bystanders who
may only have to answer a particular robot’s ques-
tions once, an office occupant will be asked ques-
tions more often including times that may cause
interruptions to meetings and other work or other
annoyances. However, unlike supervisors, there
are possibly several helpers to choose from. Long-
term interactions allow the robot to learn who is
often available at certain times and preferences
for when and what types of help they are willing
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to answer. We address the following questions
towards this interaction:

– Is there a novelty effect associated with will-
ingness to help the robot and does willingness
to help decrease over time?

– Can the availability of occupants be modeled
to take into account who will be able to help?

– Does occupant availability change through the
day and do we need to model this change?

Navigation Finally, due to the lack of constant
supervision and asynchronicity of email, the robot
must navigate to the spatially-situated occupants
to determine their availability and to ask them for
help if needed. Current navigational models have
included multiple layers of costs of navigation
around people, such as the uncertainty in the path
and the path distance (e.g., [9, 13, 22]), but have
not included costs of who along the path is avail-
able to help. Intuitively, a robot should choose
short paths that also have humans available to

help it if necessary. We will answer the following
question:

– Can a robot use availability information to
determine a path that increases its likelihood
of finding help when it needs it?

Next, we will describe our robot and environ-
ment with office occupants that were used to
answer these questions and to understand the fea-
sibility of asking occupants for help with a variety
of different robot limitations.

4 Robot and Environment Domain

Our environment consists of one floor of an aca-
demic building containing 79 offices: 35 individ-
ual offices for faculty and administrators and 44
offices each shared by 2–3 graduate students. Our
robot, CoBot (Fig. 1a), is capable of autonomous
localization and navigation in the environment as

Fig. 1 a CoBot has
manipulation limitations
without arms and b has
localization uncertainty
in the hallways of the
building (the darker the
grey the more uncertainty
in that location)

(a) The CoBot Robot (b) Areas of Uncertainty
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well as dialog with humans. It has a laptop with
the screen facing backwards, away from the di-
rection of movement, that occupants can use to
interact with the robot while it performs tasks
autonomously for them in the building.

However, like many robots today, CoBot has
limitations. CoBot has high localization uncer-
tainty in large open spaces (Fig. 1b—darker grey
areas indicate more uncertainty) and also has
difficulty perceiving chairs found in common areas
resulting in increased navigation time as it at-
tempts to re-localize or avoid these areas entirely.
Additionally, CoBot does not have arms or the
ability to manipulate objects to push chairs out of
the way or pick up the mail to give to the building
occupants. While the robot can overcome some of
these challenges autonomously, inevitably, it must
ask for help from humans sometimes to resolve
each of these limitations.

In particular, we are interested in occupants’
willingness to help the robot with these different
limitations when the robot proactively navigates
to their door to request the help. These requests

potentially take different amounts of time to an-
swer and some require the occupant to leave their
office to perform the requested help. The ques-
tions are all spoken out loud for the occupants to
hear and displayed on the robot’s laptop screen,
but we require that the occupants answer the
questions using the visual user interface on the
laptop as it cannot understand speech.

4.1 Localization Help

When CoBot requires localization help, it can find
an open door to ask the occupants to share their
room number in the following way:

I cannot determine my location. What is
the room number of this office? (multiple
choice)

After speaking the question, CoBot lists three
predictions of the possible office numbers and
an additional textbox (in case the three office
numbers were all incorrect) for the occupant to
respond with. Because building occupants should

(a) Localization (b) Moving Chairs (c) Writing Notes

Fig. 2 Occupants were asked to answer a multiple choice localization question, move chairs out of the way, and write a note
on another occupant’s door
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know their own office number, CoBot’s localiza-
tion questions should be fast for them to respond
to and do not require the occupants to leave their
offices except for accessing the robot’s backwards
facing screen (Fig. 2a).

4.2 Moving Chairs Help

Our building contains many seating areas with
moveable chairs that are hard for the robot to
detect. Even if CoBot could detect the chairs, it
has no way of physically moving chairs that are
blocking its path. CoBot navigated to occupants’
offices and asked them to check and move chairs
in the closest common area so that it could pass:

My laser range finder cannot determine the
location of chair legs in the common area.
Can you please move chairs in the common
area to clear a path for me?

While occupants can easily identify and move
chairs out of CoBot’s way, this task requires that
participants leave their offices to help the robot
(Fig. 2b). Help with this limitation ensures that
CoBot can safely navigate through the environ-
ment, assuming that the occupants actually move
the chairs as requested. The occupants are asked
to confirm their action on the laptop user interface
so that the robot knows it is safe to continue.

4.3 Writing Notes About Mail Delivery

In this work, we assume that CoBot will eventu-
ally perform a mail delivery task. CoBot does not
have the manipulation abilities to select mail for
an occupant or leave a message that a package is
available. This limitation affects its ability to per-
form its task for occupants and therefore requires
occupants to perform some of the robot’s task
for it. The robot requested that occupants write a
note to notify a nearby occupant that they have a
package waiting in the mailroom located one floor
below our test floor (Fig. 2c):

I am trying to deliver a package to room
7505, but the door is closed. Can you please
use the paper and pen in the bag on my left
to write a note that a package is available
downstairs and place it on their door?

We assume that the robot can find an office close-
by to write the note. In this study, the office
number of the nearby office (here 7505) changed
depending on the occupants’ location to ensure
the occupants did not have to walk too far out of
their office to deliver this message—the room was
on average five offices away from a helper. When
CoBot navigated to offices to request help writing
a note, it carried paper and pens in a tote bag for
the occupants to use.

5 Occupant Availability Study

In order to understand the feasibility of asking
occupants for different types of help, we designed
a study in which CoBot visited every office on one
floor of our building to ask each type of question
at different times of day. We measure the number
of times each occupant is available in their office
and willing to help for each question type as well
as the amount of time they spend helping the
robot. Because we were exploring the feasibility
of asking different types of questions in this study
and not testing the autonomy of the robot, CoBot
was wizard-of-oz’d [18].

5.1 Study Design and Procedure

Prior to the study, occupants on one floor of our
academic building were told that the robot would
soon be deployed in our environment to perform
services for them, such as mail delivery. Addi-
tionally, they were told that it sometimes requires
help to overcome its limitations, and that we were
currently testing the robot’s ability to ask for and
receive help. Occupants were given the choice to
help the robot if they were available, but did not
have to help if they did not want to and could
close their office doors to indicate that the robot
should not ask them for help. Only one graduate
student office emailed the authors to ask not to
participate. As a result, CoBot sought help from
each of 78 offices, nine times over three days
(three times per day).

In order to compare occupants’ availability to
help with each request, CoBot attempted to ask
each occupant for each type of help each day for a
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within-subjects study design. In order to simulate
an actual deployment of the robot, we:

– randomly assigned the order of the three re-
quests each day such that each question was
asked once per day and at different times on
different days,

– randomly chose two of the nine requests to
offer a gift of candy to represent the benefit
provided when a robot performs services for
them (i.e., brings mail).

The occupants each received at most two gifts
total during Cobot’s nine potential visits to reflect
the fact that the robot will likely need help from
an occupant even when they are not receiving
some benefit (e.g., his/her mail). The assignment
of gifts for each occupant was randomly cho-
sen before the study started, and it was not
guaranteed that the occupants would be avail-
able at the gift times. However, occupants were
told about the gifts ahead of time so these gifts
served as the incentives for occupants to help the
robot.

The robot traversed the floor at 9:30 am,
12:00 pm, and 2:30 pm for three days along the
same predefined path. The occupants were not
able to see the wizard drive the robot or trigger
the question from their offices. When the robot
arrived at the door to each office, it first spoke
“Hello” to get the occupant’s attention and then
spoke the the question and printed it on the laptop
screen. The robot required participants to click
on the laptop to respond. Upon pressing “Done,”
the robot would speak “Thank you” as an indica-
tion to the wizard to move the robot to the next
office. Some occupants ignored the robot and did
not click “No, I cannot help.” After 10 seconds
without a response from an occupant, the wizard
timed out the question, moved the robot to the
next office in the sequence, and this was logged
as a refusal to help the robot. The wizard skipped
offices that had closed doors.

After the study, the authors conducted inter-
views with occupants to understand their percep-
tions of the robot, their feelings about answering
questions through the study, and to follow up
on any observations about the occupants’ interac-
tions with the robot.

5.2 Robot Apparatus

In order to ensure that the robot stopped at the
correct sequence of doorways, the wizard con-
trolled the robot’s motion and triggered the robot
to speak the questions and display them on the
screen. The screen interface on the robot’s laptop
contained one large text area with the question,
and two buttons—“Yes, I am willing to help” and
“No, I cannot help”. For all questions, if the occu-
pant clicked yes, the robot automatically provided
instructions to click an additional “Done” but-
ton when the task was complete. Multiple choice
locations were also displayed for the localization
question. Whether the task was completed or not,
the robot thanked the occupant and the wizard
navigated the robot to the next office. As occu-
pants clicked on the interface, it logged the office
number along with the question type, responses
to the question and the time stamp to use in
the analysis. The occupants were required to use
the screen interface—the robot did not respond
to speech.

5.3 Measures

In order to evaluate the willingness of occupants
to answer the robot’s questions we use four main
measures: number of open doors, number of times
occupants helped, locations of the occupants, and
time spent responding. The number of open doors
is an upper bound on the number of occupants
who will help the robot. The number of times
each occupant helped the robot allow us to under-
stand the availability of humans to help the robot
throughout the building. We determine whether
there is a difference in response frequency and
the amount of time it took occupants to respond
to the different question types over time. Due to
the small sample size (78 rooms tested nine times
each), we only test for trends in our data and not
statistical significance.

5.4 Results

Our results show that some, but not all, occupants
were available to help the robot at any given trial
and that they were largely distributed through
the environment. Interestingly, this availability
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changes by time of day but not depending on the
type of question. Participants were equally willing
to help with all types of questions although some
took much longer than others.

Distributed Help In total, 130 doors were open
out of a combined 702 in nine trials (Fig. 3a—
darker means the door was open more fre-
quently). Occupants helped the robot 78 times out
of the 130 possible open doors. 46 offices were
open at least once and 31 of those offices con-
tributed responses. Each office was open on av-
erage 1.8 (s.d. 1.9) times out of 9 possible and
occupants answered on average 1.1 questions
(s.d. 1.7). The high standard deviation for the
offices indicates that there were a few occupants
available almost all of the time, while many occu-
pants were unavailable. Seven out of the 78 offices
contributed 36 of the 78 responses to the robot.
This indicates that there is a group of people that

would likely be available for the robot to ask for
help, although at any particular time there are
likely to be many more occupants that the robot
could ask to further distribute the help.

In terms of the question types, we found that
each type of question took a very different amount
of time to complete but occupants helped equally
with them all. Occupants took on average 30.1 sec-
onds (s.d. 18.1) to complete localization questions,
55.6 seconds (s.d. 24.6) for chair questions, and
88.3 seconds (s.d. 45.3) for the note writing ques-
tions. Despite these differences, when occupants
were available to help, they were willing to answer
any type of question. We found little difference in
the response rate for each question type—57.5%
of the localization questions, 62.5% of the chair
questions, and 50% of the notes questions. This
finding indicates that a robot would not need to
reduce the asking frequency of questions that take
longer to answer.

Fig. 3 a 130 doors were
open out of 702 in nine
trials (darker means the
door was open more
frequently). b Out of
130 open doors,
53 occupants in those
offices refused to help
the robot

(a) Total Open Doors (b) Refused or Ignored Robot
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Incentives We found no statistical difference
in answering frequency when occupants were
offered gifts to when they were not, but some
occupants indicated in interviews that the gift did
affect their decision to help. In particular, we ob-
served some occupants deliberately opening their
doors when they heard the robot down the hall so
that they could help and possibly receive a gift.
While gifts were only offered at random times,
some participants stated in the interview that they
would be more willing to help the robot if it
offered candy more often.

Long Term Interaction On an average trial, 14.4
(s.d. 7.5) doors were open, and occupants in those
offices responded to the robot’s requests for help
8.7 times and refused to help or ignored the robot
the remaining 5.7 times (Fig. 4). However, there is
a strong effect of day on the proportion of open
offices and available helpers. The number of
open office doors dropped each day likely due to
occupants’ prior knowledge about when the robot
would be visiting.The number of occupants that did
help the robot remained constant over the three
days indicating less of a novelty effect for those
seven occupants who helped the robot the most.

Navigation Figure 5a–c show the frequency of
help from each office by time of day, with darker

colors representing more frequent help. Interest-
ingly, the few frequently available occupants were
largely distributed around the building - especially
in the areas where the robot has the most un-
certainty (Fig. 1b). A random selection of seven
offices would not necessarily result in such an even
distribution across the building. Every location
in the building was at most ten offices from an
occupant that helped the robot during many of
the trials, except for the north side of the build-
ing at 2:30. Because the robot is least uncertain
in the north side of the building, the robot may
be able to navigate despite the low availability.
However, the distance between available occu-
pants indicates that the robot will have to plan
its navigational paths to increase the likelihood of
finding available occupants at execution time to
complete its tasks.

To summarize, based on the initial questions we
asked about office occupants, we found that some
office occupants were willing to help the robot,
although not all were. The number of people who
helped the robot shows that it is feasible for a
robot to use office occupants as distributed help
through the building. Interestingly, this willing-
ness to help was not affected by the length of
time the question took to answer nor the incen-
tives the occupants received. CoBot was able to
collect data to begin to model the availability of

Fig. 4 On average, 14.4
(s.d 7.5) offices were open
for each trial and 8.7 (s.d.
3.6) occupants helped the
robot. While there were
fewer open doors over
time, more occupants
with open doors were
willing to help the robot
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(a) Helped at 9:30am (b) Helped at 12:00pm (c) Helped at 2:30pm

Fig. 5 a–c While occupants in each part of the building
answered the robot’s questions for most times of the day,
we find almost no available occupants at 2:30 on the north

side of the building. The darker the office color, the more
often the occupant responded to questions

different offices throughout the day and could
continue to do this through long-term interac-
tions. Because the occupants that helped CoBot
were, for the most part, distributed throughout the
environment, CoBot cannot assume that someone
will be very close to help it and therefore must
proactively navigate to those occupants in order
to seek help.

By creating a model of occupants based on
long-term interactions with them, we will show
next that it is possible for the robot to plan paths
that minimize its own limitations and increase the
likelihood that occupants will be available to help
when needed.

6 Proactive Navigation for Help

While previous work has taken into account the
robot limitations, constraints, and uncertainty of

a path or state of a robot (e.g., [9, 13, 22]), little
work has modeled the states and actions that can
resolve such limitations such as human helpers
[29]. Robots that depend on supervisors and by-
standers often assume that their human helpers
are always available (e.g., [3]). In these always-
available cases, the robot need only determine
when it requires help and does not take into ac-
count locations of available help to plan paths for
its task.

However, when there is limited and/or proba-
bilistic availability of human helpers distributed
through the building, we argue that a robot should
plan its paths to increase the likelihood of finding
available occupants. The shortest distance path
may result in a longer navigation time if there
is high uncertainty along that path and no avail-
able occupants to help reduce that uncertainty.
There are several planning frameworks that could
possibly be modified to incorporate help from
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occupants including traditional A* path planners
with added constraints [9, 13] and POMDPs that
model human help [3].

We, first, contribute a model of the environ-
ment that includes spatially-situated occupants
and their availabilities collected through long-
term interactions. We, then, demonstrate one way
to use this model for path planning, namely adapt-
ing the A* algorithm to reason about the ro-
bot’s capabilities and the available humans to help
reduce limitations.

6.1 Model with Spatially-Situated Occupants

We define our model in terms of the building
layout, robot capabilities and limitations, and oc-
cupant abilities. Our building layout includes:

– vertices V of locations in the building,
– edges E where eij is the hallway segment that

connects vi and v j, and
– distances D where dij is the length of eij

The robot navigates and performs services in the
building with the following limitations:

– speed s which we assume, for simplicity, is
constant over all edges,

– help types H that it requires to resolve
its localization, perception, and actuation
limitations,

– need matrix N where nh
ij is the probability of

needing help h on edge eij, and
– cost matrix C where ch

ij is the time to au-
tonomously overcome a limitation without
asking for help h

For example, in our study, CoBot had three
types of help: localization, perceiving and mov-
ing chairs, and writing notes to occupants. For
localization, nloc

ij is dependent on the robot’s un-
certainty on edge eij and CoBot does have the
capability of overcoming its uncertainty without
asking for help with a cost cloc

ij that represents its
replanning and relocalizing time. For the other
two types of help, CoBot cannot perform the
tasks autonomously so it always needs a human
to help it (nh

ij = 1) and the cost of performing
autonomously is ch

ij = ∞. For example, CoBot
cannot move chairs or write notes, so the expected

time to complete these tasks on an edge is infinite.
Our planner considers the expected time to tra-
verse an edge tij to include the distances and
velocity of the robot and its additional costs. With
probability nh

ij, the robot will experience cost ch
ij on

eij. Otherwise, it will not experience any cost.

tij = dij

s
+

∑

h∈H

(
nh

ij ∗ ch
ij

)
(1)

In order for a robot in the environment to
perform all of its tasks, we assume that the build-
ing layout includes offices with occupants on the
edges. These occupants have the following con-
straints:

– availability A where ah
ij is the probability of an

occupant helping with type h on edge eij and
– response time R where rh is the average time

it takes all occupants to respond to help h

Using this help, the robot can determine its new
expected traversal time in terms of the availability
of help and time for an occupant to provide that
help. If the robot is uncertain and a human is
available, the robot can traverse the next edge
without ch

ij but incurs a response cost rh. If it is
uncertain but no human is available, it traverses
the edge with ch

ij.

tij = dij

s
+

∑

h∈H

nh
ij

(
ah

ijrh +
(

1 − ah
ij

)
ch

ij

) )
(2)

We can use the results from our study to define
the availabilities on the edges and we found the
average response times for the 3 types of help to
30.1, 55.6, and 88.3 seconds respectively. Next, we
show one example of how a robot might use this
model to determine its paths to navigate.

6.2 Navigating Towards Occupant Help

There are many possible planning algorithms that
could take this new model into account. While
models such as POMDPs can take into account
uncertainty and availability for localization and
navigation tasks, they cannot easily be adapted to
actions or tasks in which the robot cannot func-
tion without occupant help, such as moving chairs
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and writing notes. Instead, we chose to adapt A*
planners, because they

– are commonly used on robots today,
– can be applied to many different types of help

we discussed previously and implemented
quickly,

– and are easily modifiable by changing the edge
weights to plan different shortest paths.

We will show that our planner consolidates all
robot and occupant limitations and considers
expected navigation time to both perform au-
tonomously and ask for help.

Formally, a robot navigates along a path of
edges in order to complete its tasks. We define a
path pg

b = 〈Ep〉 from a beginning vb to goal vg as
a set of edges that connect vb to vg, and Pg

b ={pg
b }

as the set of all such paths. Traditionally, the path
with the shortest navigation time is the one with
the globally shortest travel time:

min
p∈Pg

b

DistOnly(p) = min
p=〈Ep〉∈Pg

b

∑

eij∈Ep

dij

s
(3)

A more realistic estimate of the shortest path
takes into account uncertainty. Specifically, in
addition to distance, we calculate the expected
time to traverse the path in terms of the time to
autonomously traverse the edges:

min
p∈Pg

b

UncertDist(p)

= min
p=〈Ep〉∈Pg

b

∑

eij∈Ep

(
dij

s
+

∑

h∈H

(
nh

ij ∗ ch
ij

))
(4)

This formulation assumes that the robot needs
each type of help once per edge. If the edges
are long, an extra parameter might be added to
include multiple help costs.

When we include the human help available and
the costs of needing help, the robot has the oppor-
tunity to resolve its uncertainty or limitations as it
navigates autonomously or with help:

min
p∈Pg

b

HelpUncert(p)

= min
p=〈Ep〉∈Pg

b

∑

eij∈Ep

(
dij

s
+

∑

h∈H

nh
ij

(
ah

ijrh+(1 − ah
ij)c

h
ij

))

(5)

Using this shortest navigation time formula-
tion, we can show that a robot navigates to-
wards available humans when the expected time
to travel with a need for help is longer than the
expected time to travel when stopping and asking
for help. Because the robot can reason about its
limitations and the availability of the humans in
the environment, it can decide which path to take
and when to ask for help and could easily be
implemented in our environment. Additionally, as
the expected availability of occupants in our envi-
ronment (and many others) changes, the robot can
replan its path to be sure someone is available to
help it if necessary. Next, we provide an example
of the differences between these plans and show
that the shortest path can include human help to
reduce the time to navigate autonomously.

6.3 Example

Figure 6 illustrates a simple example building with
six vertices and relevant distances D, time costs C
and availability A for a robot that only needs help
with localization. For simplicity, we remove the
help superscripts because there is only one type
of help. We define the need for help for each edge
nij to be 0.5. We evaluate which of the three non-
cyclic paths from v1 to v6 a robot should take:

– p1: 〈e12, e25, e56〉
– p2: 〈e12, e24, e45, e56〉
– p3: 〈e12, e23, e34, e45, e56〉

Fig. 6 There are three paths from v1 to v6 and a human is
available between v3 and v4
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Using only the edge distances dij, the DistOnly
travel time estimates are DistOnly(p1) = 3,
DistOnly(p2) = 4, and DistOnly(p3) = 5 respec-
tively. When we account for the time to relocal-
ize due to uncertainty using Eq. 4, path 2 is the
shortest:

– UncertDist(p1) = 11
– UncertDist(p2) = 10
– UncertDist(p3) = 11

In other words, if the robot were to navigate
autonomously through this environment, it would
be faster for it to take the second path rather than
the first.

If we also include localization help based on
the availability of humans in the offices on the
edge between v3 and v4 using Eq. 5, the third path
is the shortest. Because aij = 0 for all occupants
except between edge e34, the aij ∗ r term does not
contribute to the traversal time of paths 1 and
2 and the expected times are the same as Eq.
4 (11 and 10 respectively). The expected cost of
traversing the third path includes stopping and
waiting for help on e34:

– HelpUncert(p1) = 11
– HelpUncert(p2) = 10
– HelpUncert(p3) = 9.25

The robot is able to plan to navigate toward the
occupant for help rather than attempt to relocalize
while traversing another path. Notice that if c25 =
c24 = c34 = ∞, then the third path with help is the
only valid one.

To summarize based on our original research
questions, we have demonstrated that, using the
locations and an availability model of the building
occupants developed through long-term interac-
tions, the robot can determine which offices to
navigate to if it needs help. More importantly,
we have demonstrated that the robot can find the
shortest path to its destination which increases
the likelihood that it will pass by many available
offices so that it can proactively stop at those
offices in case the robot needs help to overcome
its limitations. The robot does not need to stop
to request help if it can navigate autonomously.
Our model can also be used by other planners
such as POMDPs for localization and navigation.

Next, we discuss the opportunities to improve and
extend the model using results from our post-
study interviews.

7 Discussion and Future Work

CoBot was able to elicit responses from many
building occupants over the nine trials and collect
information about who was available, where and
when. Next, we discuss our qualitative observa-
tions and interviews with occupants after the study
to illustrate opportunities to add further occupant
constraints based on those results.

Interruption In designing the robot’s initial inter-
action, we used an assumption that an open office
door indicates that the occupant is interruptible.
However, we found that often doors are left open
even when occupants are in meetings or on the
phone. Occupants who were in meetings and did
not want to help the robot either verbally tried
to send the robot away or ignored the robot until
it left their doorway. Surprisingly, however, many
occupants did interrupt their meetings or put their
phone call on hold to help the robot and some
reported that the interruptions were “well-needed
breaks in their day.”

Models of interruption have been used for su-
pervisors to warn them about the robot needing
help soon [35]. While it might seem obvious that
a robot in human environments should also have
a model of interruptibility through real-time sens-
ing, a naïve interruption model may predict that
occupants are not available to help when they are
in meetings or on the phone [14]. However, if
CoBot used this model, it would have received
fewer responses compared to asking for help at
every open door. A robot must learn, through
its long-term interactions, which occupants are
willing to be interrupted and under which condi-
tions (e.g., who they are speaking with, whether
they are working on the computer) to take full
advantage of the occupant help.

Deception We also assumed that participants
would answer the robot’s questions accurately
and completely when they agreed to help. While
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occupants did answer 100% of the localiza-
tion questions accurately, we found that several
participants deceived the robot, responding that
they moved the chairs or that they had written the
note when they had not. In particular, two occu-
pants submitted blank notes and two wrote notes
with incomplete information about the package
location.

It is unclear whether participants deceived the
robot because they were told it was a study and
not deployed for real. However, these results indi-
cate that a robot must maintain some uncertainty
about whether a task was actually performed
for it. The robot could ask another occupant to
confirm the task was completed since it may be
difficult for the robot to detect deception itself, or
otherwise use extra sensors to detect that the task
was completed (e.g., a sensor near the paper and
pens to detect if an occupant picked them up to
write a note), or mitigate failures by apologizing
and requesting help from someone else [23]. If the
robot can determine and learn through its inter-
actions over time which occupants are deceptive
[10, 11], it should avoid asking for help from them
in the future by either lowering the availability of
the occupant or adding additional costs related to
the trustworthiness of the occupants.

Question Repetition While most participants did
respond to the repeated questions (each of the
three questions were repeated each day), during
the interviews, occupants reported that they were
confused as to why the robot asked them to per-
form the same tasks multiple days in a row. One
occupant reported that he wrote the incomplete
notes out of frustration when he was asked to do
the same task multiple times. This finding mirrors
previous work that showed that people who are
asked for help too frequently tend to stop re-
sponding to help requests in the future [32].

While this repetition of questions is an artifact
of our study, it indicates the need for the robot
to keep track of which occupants it has asked for
help to purposefully plan to avoid those offices
unless there is no other help available. This would
require that the robot also model the history of
questions to more heavily weigh the occupants
who have not been asked for help recently. The
robot would then need to model not only who is

available to help but the cost of asking someone
too frequently, and the additional constraints for
navigational planning and determining who to ask
for help.

During actual deployments of a robot, how-
ever, reducing question repetition could be
difficult. If only a single occupant is frequently
available in areas of frequent limitations, the ro-
bot would have no choice but to travel in that
area sometimes. In order to reduce the likelihood
of this happening, it could request help from an
occupant who is further away and is not asked
for help as often. Additionally, the robot could
include time in planning to vary the time of day
it would complete the task (possibly delaying its
task) if another occupant is available at another
time.

Supervisors and Bystanders Finally, although
our model is based on occupants and their avail-
ability and locations, this same model can be used
to model supervisors and bystanders as well. Su-
pervisors are typically equally available on all
edges of the graph and can be modeled that way.
However, if there is limited wireless communica-
tion range with the supervisor, for instance, the
availability of the supervisor can reflect the signal
strength of communication as the robot moves in
the environment. The robot could then navigate
towards the higher signal strength edges to ensure
that the communication is clear to request help
from its supervisor.

Robots that depend on bystanders assume that
there is an even and high traffic flow along the
path the robot could take. Instead, the availability
of bystanders in our model could reflect the traffic
flow through different areas of the graph. A robot
that requests help from bystanders would then
navigate towards a path with more people. In
this way, it would be able to find help faster as
it travels rather than necessarily waiting on low-
traffic edges for help.

8 Conclusion

We have argued that robots that ask for help
from occupants of the environment combine the
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benefits of asking bystanders with those of super-
visors in the following ways:

– Occupants have incentive to answer questions
while the robot is completing services for oth-
ers in order to reciprocate the help that other
occupants provide the robot when it is per-
forming services for them.

– The number of occupants can distribute the
burden of help among many more people.

However, unlike supervisors and bystanders:

– Occupants are not always available to help the
robot, and this availability can be measured
through long-term interactions

– Occupants are spatially-situated and the robot
must navigate to the occupants to receive help.

We have shown that, in terms of distributed help,
several occupants were willing to help the robot
with any of our three types of questions, irrespec-
tive of the question response time. Additionally,
we found that some occupants were even willing
to interrupt their meetings and phone calls to
help the robot. In terms of incentives, we found
no significant different in answering frequency
when gifts were offered, but some occupants that
expected gifts did open their door to help the
robot. We found some novelty effect of occupants
increasingly closing their doors over our three
day study, but the number of available occupants
remained constant. This indicates that a robot
should be able to take advantage of occupant
help over long-term interactions, and there are
opportunities to learn availability based on the
time of day from those interactions. We have
introduced a model of the environment that in-
cludes the learned availability information, and
demonstrated its use in an A* planning algo-
rithm. Finally, we discussed additional qualitative
findings and opportunities to extend our model
of humans in the environment to include other
parameters such as interruptibility that can be
learned through the long-term interactions with
occupants.
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