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Abstract We consider mobile service robots that carry out
tasks with, for, and around humans in their environments.
Speech combined with on-screen display are commonmech-
anisms for autonomous robots to communicate with humans,
but such communication modalities may fail for mobile
robots due to spatio-temporal limitations. To enable a bet-
ter human understanding of the robot given its mobility and
autonomous task performance, we introduce the use of lights
to reveal the dynamic robot state. We contribute expressive
lights as a primary modality for the robot to communicate
to humans useful robot state information. Such lights are
persistent, non-invasive, and visible at a distance, unlike
other existing modalities. Current programmable light arrays
provide a very large animation space, which we address
by introducing a finite set of parametrized signal shapes
while still maintaining the needed animation design flexibil-
ity. We present a formalism for light animation control and
an architecture to map the representation of robot state to
the parametrized light animation space. The mapping gen-
eralizes to multiple light strips and even other expression
modalities.Wedemonstrate our approach onCoBot, amobile
multi-floor service robot, and evaluate its validity through
several user studies. Our results show that carefully designed
expressive lights on amobile robot help humans better under-
stand robot states and actions and can have a desirable impact
on a collaborative human–robot behavior.
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1 Introduction

1.1 Motivation

Mobile robots are entering our daily lives and are expected
to carry out tasks with, for, and around humans in environ-
ments such as hospitals, supermarkets, hotels, offices, and
shops. For effective operation of these robots in these human-
populated environments, it is important that humans have an
understanding of some of the processes, information, or deci-
sions taking place on the robot. Due to their mobility and
possible diversity of states, as well as actions, while evolv-
ing in a dynamic environment, revealing information about
a robot’s state over the course of its task execution is crucial
to enable: (1) effective collaboration between humans and
the robot, (2) better trust in the robot, and (3) more engaging
human–robot social interactions.

Central to the scope of this work is the idea of expres-
sion, which we think of as externalizing hidden information
of an agent, in our case a mobile robot. We will be dis-
cussing expressive behaviors, in other words robot behaviors
that have a specific communicative purpose about the robot
itself, in particular its state and actions, as well as expres-
sion channels available to the agent to use those expressive
behaviors. Current expression channels for mobile robots
mainly include speech and on-screen display.However,when
it comes to mobile robots traveling long distances, these
expression channels may fail for different reasons. First,
humans are not always in close proximity to the robot, in
which case the speech might be inaudible and the on-screen
text not visible. Second, speech is transient in that its associ-
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Fig. 1 Augmenting a mobile
robot’s communication
capabilities with a new
modality: expressive lights

ated expressive behaviors only last the duration of a sentence.
The mobile aspect of these robots, also shared by other
embodied agents such as self-driving cars or aerial robots,
hence calls for other methods of communication that are both
persistent and perceivable at a distance.

To remedy these problems, we contribute expressive lights
as an expression channel communicating useful information
about a mobile robot’s state (see Fig. 1). Such lights are
visible at a distance, provide a persistent visualization of
the state information, and are non-invasive as compared to
other possible modalities such as loud non-verbal expressive
sounds. By using such lights, we are effectively enabling
the robot to modify its appearance as a method of com-
munication with humans, which is a distinguishing feature
for expression as compared to other modalities. Literature
has shown that abstract dynamic visual cues [23], and more
specifically dynamic lighting [29], have been shown to elicit
interactive social responses. These results potentially sug-
gest that expressive lights on a robot are also likely to create
more engaging interactions with humans if, first, they are
communicating useful information - in other words they are
informative - and, second, if they do so in a legible (i.e.,
readable) manner. These persistent lights may also serve as
a complement to existing modalities of interaction that are
transient (e.g., speech) or that require close proximity (e.g.,
on-screen text).

Throughout this paper, we will focus our analysis on an
autonomous mobile service robot, CoBot, which provides
different types of services to people in a building across mul-
tiple floors. However, the ideas we present are made general
enough to be easily ported to different platforms and designs
than the ones adopted in this paper. Nevertheless, CoBot con-
stitutes an interesting platform for the purpose of expression
of the state information to humans through lights. Indeed, the

ways in which CoBot interacts with humans are diverse: it
can ask for help from humans when facing limitations (so-
called symbiotic autonomy [27]), influence change in human
behavior for the needs of its tasks, or provide useful infor-
mation for the task at hand. The spectrum of information
potentially communicated through expressive lights is hence
greatly diverse and non-simplistic.

In summary, this paper will be investigating the use of
lights to make elements of a robot’s state visible to humans,
in an abstracted fashion. We focus on light animations that
are informative, i.e., providing useful information for the sit-
uation at hand, and legible i.e., whose meaning is intuitive
and doesn’t require prior training.

1.2 Approach

Figure 2 summarizes our approach to map the robot state
information to expressive light animations. The relevant state
information is first formalized in a formatwhichmakes it easy
to map to an expressive behavior such as a light animation
representing a concrete state of the robot. We then provide
a formal control method for light strips, on which we base
our mapping from robot state to light animation. The map-
ping and the designed expressive light animations are finally
designed, validated, and tested, by running appropriate user
studies.

1.3 Contributions

The contributions of this paper are as follows:

1. An efficient robot state representation and mapping
method suited for expression of state the information,
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Fig. 2 Overview of our robot state/light animation mapping approach

2. A formal framework for animation control focusing on
addressable light strips and generalizable to other forms
of light arrays,

3. User studies to investigate the design and impact of ani-
mating robot state through expressive lights.

1.4 Reader’s Guide

The rest of the paper is organized as follows:

– Section 2 summarizes relevant literature on expressive
lights, their use in technology and robots, as well as gen-
eral non-verbal robot communication.

– Section 3 presents a general formalism for a mobile
robot’s state suitable for expression of the state infor-
mation.

– Section 4 lays out our formalism for light animation and
specifically control of addressable colored light strips.

– Section 5 presents our theoretical framework for map-
ping robot state to an expressive behavior, such as a light
animation.

– Section 6 reports three studies that were conducted to
inform: (1) the design of appropriate light animations
(parameter selection), (2) their evaluation and generaliza-
tion to similar scenarios, and (3) their impact on human
behavior in the real world.

– Section 7 reports three studies that we conducted to
inform: (1) the design of appropriate light animations
(parameter selection), (2) their evaluation and generaliza-
tion to similar scenarios, and (3) their impact on human
behavior in the real world.

2 Related Work

This paperwill be focusing on the use of lights as a communi-
cationmedium formobile robots. In this section,we therefore
first present a short overview of general uses of lights in dif-
ferent applications, and how they have previously been used
as an expressive medium.We then focus our review on lights
on robots and other existing expressive non-verbal modali-
ties.

2.1 Short Survey of Uses of Lights

In this subsection, we discuss different general uses of lights
in technology.

2.1.1 Lights for Communication at a Distance

Light signals have beenwidely used in the history ofmankind
to convey information at a distance or in low visibility envi-
ronments, such as in aviation and maritime navigation [21],
where the use of acoustic signals is not possible because
of signal attenuation. However, most of these signals often
need to be learned since they rely on codes (an extreme case
being Morse code communication before radio technologies
existed).

Nowadays, we see lights in our daily lives for communi-
cation at a distance, especially on roads, thanks to indicators
such as traffic lights that control traffic flow through a simple
color code, or lights on cars such as flashers communicat-
ing upcoming driver actions, emergency flashers expressing
an unusual or dangerous situation, brake warning rear lights
indicating the status of the brake, and headlights sometimes
used by drivers to acknowledge or communicate with other
cars or pedestrians.

Light also plays a role in some biological systems, espe-
cially in animal communication. Through a process called
bioluminescence [22], some animal species such as jelly-
fish, octopus, anglerfish, or fireflies can emit light to deceive,
attract, or communicate different messages to other animals
[13].

2.1.2 Lights for Revealing State Information

Asdiscussed in the previous paragraph, cars are a good exam-
plewhere lights are used to reveal information about the car or
the driver’s state. Similarly, personal electronic devices and
appliances often make use of light indicators with usually
intuitive, walk-up-and-use patterns to convey information
to the user. We see light indicators on all sorts of devices
including cell phones, washing machines, toasters, laptops,
cameras, battery chargers and more.

Such uses pose the problem of a mapping from a concrete
state of the device to an abstract visualization into a light
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animation, which we will be investigating in Sect. 5. We
can exploit the fact that humans generalize from their daily
experience, to get inspiration in our light animation design
from standard patterns, codes and meanings associated with
some of these existing light behaviors.

2.1.3 Lights and Aesthetics

Because of their visual aesthetic appeal and wide flexibility
in configuration and modularity, expressive lights have been
featured extensively in contemporary art including interac-
tive art installations [17], bridge art (e.g., the Pausch bridge
at Carnegie Mellon University1) or large scale visualizations
of data such as the state of the Internet [15]. Expressive lights
have also been used on wearable apparel [7].

Stage and scene lighting share common expressive fea-
tures with indicator lights like color, intensity and time-
varying patterns [9], but there the purpose is to illuminate
rather to use the light source itself as an expressive commu-
nicationmodality. The same holds formodern programmable
luminaires, mainly used for creating diverse moods in phys-
ical spaces [16].

2.2 Light as an Expressive Medium

Because of the way humans process visual information,
which includes color and motion as “undoubtable attributes”
guiding the human attention process [34], programmable
multi-color lights, which combine color and motion to cre-
ate light animations, are a good candidate for changing a
robot’s appearance in order to communicate different types
of information to humans.

2.2.1 Light Control

Addressable LED technology has unlocked fine control of
multiple light sources with possible color changes and gave
rise to several control protocols of which DMX512 is prob-
ably the most popular, especially for large installations or
multiple light devices.2 Color Kinetics3 offers a wide variety
of tools to design and control large-scale light installations
through various animations.

Smaller scale options include addressable RGB LED
strips, on which we will be focusing in this paper. Each
LED has a built-in microcontroller that controls the asso-
ciated LED intensity as a function of time. By propagating
serial communication packets throughout the strip, one can

1 http://www.cmu.edu/randyslecture/bridge.html.
2 http://opendmx.net/index.php/DMX512-A.
3 http://www.colorkinetics.com/.

achieve appealing light animations using only one physical
data communication pin.4

2.2.2 Light Expression Space

Light signals generally allow for a large expression space
with several degrees of freedom. For example, light com-
munication in insects have been found to use modulations
in spectral composition, brightness, shape, size, and timing
[22]. Technologically speaking, there has been efforts to stan-
dardize color spaces (RGB, HSV etc.), but not much work
has been done when it comes to standardizing light patterns
[14]. Also, parametrized abstract motifs have been used for
spatial layout modulation [5].

Current LED technology offers control of brightness and
color for individual light sources and allows for customizable
layout options,5 unlocking very flexible designs for light ani-
mations.

2.2.3 Light Animation Semantics

Because of thewide use of lights to convey concrete informa-
tion, it seems that humans tend to associate specificmeanings
to different light animations.

For a single light source of a fixed color, different light
patterns seem to convey diverse information about a personal
device’s operation [14]. In a traffic setting, flashing lights, for
instance, seem to be associatedwith the idea ofwarning (such
as an out-of-service traffic light or an emergency car flasher).
Also, some studies have been conducted on the conspicuity
of light patterns as a function of frequency, duration and con-
trast [12], but also on the perception of emergency warning
signals, especially in terms of color combinations [8]. Color
has also been associated to the expression of emotions in dif-
ferent contexts, such as general perception of color [36], uses
in clothing [7], or on virtual agents [9,24].

Color theory [36], as well as learned color codes (e.g.,
traffic lights), provide a good starting point for the design
of colored light animations carrying meaning (in our case
related to robot state). However, it remains difficult to predict
the appropriateness of colored animations for light sources
extending in space beyond a single point (namely a light strip)
and expressing meaning in relation to a complex machine
such as a robot.

2.3 Robot Expression

In this subsection, we discuss different ways of expressing
hidden robot information to humans.

4 https://learn.adafruit.com/adafruit-neopixel-uberguide/advanced-
coding.
5 http://www.colorkinetics.com/.

123

http://www.cmu.edu/randyslecture/bridge.html
http://opendmx.net/index.php/DMX512-A
http://www.colorkinetics.com/
https://learn.adafruit.com/adafruit-neopixel-uberguide/advanced-coding
https://learn.adafruit.com/adafruit-neopixel-uberguide/advanced-coding
http://www.colorkinetics.com/


Int J of Soc Robotics (2018) 10:65–92 69

2.3.1 Lights on Robots

The use of lights for non-verbal communication on robots
remains rudimentary. Most of these uses do not have a direct
functional role but rather focus on creating abstract impres-
sions (such as “artificial subtle expressions” [20]), expressing
emotions [18], or serving as very basic indicators (such as for
battery level). Often, we see these light expressions dissoci-
ated from the robot’s state, such as for instance expressing
people’s emotions in a cafe-style room on a Roomba robot
[26]. To the best of our knowledge, the only instances of
functional and state-related light communication in robots
are for human–robot speech synchronization using a Nao
robot [11], and for communicating intent in robot navigation
using a drone [32]. In [11], an animated LED is used to avoid
utterance collisions in verbal human–robot communication
by subtly blinking between the user’s speech end and the
robot’s speech start. In [32], an array of LED’s are used to
communicate direction of navigation on a quadcopter. This
lastworkfitswithin our idea of expressing a part of the robot’s
state through light animations. However, in the prior work,
the expressed feature (directionality) remains a low-level one
and the light expression has a low level of abstraction. In
contrast, we will be focusing on higher-level features of the
robot’s state related to the robot’s tasks in the (often unpre-
dictable) environment.

2.3.2 Other Non-verbal Modalities for Robot Expression

Several non-verbal modalities have been considered for
human–robot communication. Some of them, such as eye
gaze [1], proxemics [6] are more suited for expressing an
emotional or affective state of the robot. In this paper, we are
interested in expressing robot states that are related to tasks,
and as such, there exist twomain other non-verbal modalities
which could be used for such expression. The first modality
is expressive motion, which has been studied in different
settings such as manipulators expressing goal and planning
information [10], as well as mobile robots expressing affec-
tive states [19]. The type of mapping problem in which we
are interested in this paper has been studied for a continuous
input signal such as music or speech beingmapped to motion
sequences on a humanoid robot [37]. The second modal-
ity is expressive sound and vibration [30], which have been
less explored for robotics applications and are usually more
prevalent in electronic devices (e.g., phone notifications).

3 Mobile Service Robot State and its Expressible
Elements

In this section, we first introduce a representation of robot
state that is suited for expression of elements of robot state

on a given expression channel (expressive lights in our case).
Our analysis focuses on CoBot, a collaborative mobile ser-
vice robot with diverse capabilities. We then discuss the
process ofmapping the robot state information to light anima-
tions with respect to the formalism presented in the previous
section. We illustrate this mapping through the selection of
informative elements of CoBot’s state to be displayed using
expressive lights. We then discuss the generalizability of
our mapping framework to multiple light strips/modalities
expressing different aspects of the robot’s state. We end the
section by providing details about how the mapping frame-
work was implemented on the CoBot robot with two light
strips expressing task-related and navigation-related aspects
of the robot’s state, respectively.

3.1 CoBot Overview

In this paper, we use CoBot, a collaborative mobile ser-
vice robot, as an example to illustrate the ideas presented.
CoBot can perform a set of services to humans in a building
across multiple floors. Building locations (rooms, kitchens,
and elevators), as well the navigationmap of the building, are
known to the robot. CoBot robustly navigates autonomously
[33] from location to location while avoiding obstacles dur-
ing its navigation, whenever possible, or stopping in front
of unavoidable obstacles such as humans obstructing its
path. When facing limitations, the robot asks for help from
humans. For example, unlike some other robots that can oper-
ate elevators [31], or load/unload objects on/from the robot,
CoBot is unable to perform these tasks alone. However, it
is able to overcome those limitations by proactively asking
help. This is the main idea behind symbiotic autonomy [27],
illustrated in Fig. 3.

3.1.1 CoBot Tasks and Services

The tasks performed by CoBot are of one of two types:

– Navigation tasks involve navigating from a start location
to a goal location according to a predefined navigation
map on which a path planning algorithm is run, and

– Human interaction tasks involve asking for human help
(referred to as an ‘ask’ task) or waiting for human input,
such as confirmation, service initiation, or dismissal
(referred to as a ‘wait’ task).

Tasks can be combined to form services. The three ser-
vices offered by CoBot and considered in this paper are the
following:

– Go-to-Room service, in which the robot goes from its
current position to a goal location.
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Fig. 3 An example of symbiotic autonomy: CoBot getting help from
a human at an elevator

– Item-transport service, in which the robot transports an
item in its basket from a start location to a goal location.

– Escort service, in which the robot escorts a person from
a start location (typically an elevator) to a goal location.

Figure 4 shows CoBot performing some of these services.
An example of a service broken down into individual tasks

is shown below.

Example 1 Sample service: Transport an object from room
7002 (on the 7th floor) to 3201 (on the 3rd floor):

– Task 1: Navigate from current location to service start
location (room 7002).

– Task 2: Wait for human to put the object to be transported
in basket, and get confirmation.

– Task 3:Navigate from room7002 to the 7th floor elevator.
– Task 4: Ask for human assistance to take the elevator to
the 3rd floor.

– Task 5: Navigate inside the elevator.
– Task 6: Ask for human assistance to know when correct
floor is reached.

– Task 7: Navigate out of the elevator.
– Task 8: Navigate from the 3rd floor elevator to service
goal location (room 3201).

– Task 9: Wait for human to collect object and get service
completion confirmation.

3.1.2 CoBot User Modalities

Robot services can be requested in three different ways, cor-
responding to three different input modalities:

– Through the robot’s touch screen:AGraphicalUser Inter-
face (GUI) enables scheduling services fromCoBot itself
by letting users choose the service type and its required
parameters. It can also be used to interrupt the execution
of task if needed.

– Through the speech interface [25]: TheGUI also includes
a button that enables speech interaction with the robot.
The user can issue service commands using simple struc-
tured language that the robot understands.

– Through a web interface: People in the building can
schedule a robot service in a time window through a web
interface.

3.1.3 Robot Motion Modes

Mobility constitutes an important distinguishing feature of
CoBot compared to other types of robots. We can distin-
guish three different motion modes in which the robot can
be, summarized below.

– Moving in this mode, the robot is executing a navigation
task successfully. We distinguish these two cases:

– the robot moves with someone (escort service),
– the robot moves on its own (all other tasks).

– Stopped in this mode, the robot is not moving, which can
be due to several reasons. We also distinguish two cases:

– the robot is intentionally stopped, either because it is
idle, or because it is performing an interaction task.

– the robot is forced to be stopped, because of some
unexpected event such as the presence of an obstacle
or internal failure. In the presence of an obstacle, the
robot says “Please excuse me” to incite any human
obstacles to move away. If it is blocked for more than
a few minutes, it will send an email to the developers
for help.

In the next section we present a formalism for CoBot’s
state. The formalism presented is however made general
enough to easily apply to other robots with different types
of services and capabilities.
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Fig. 4 CoBot performing
different services: (a) an escort
service; (b) a transport service

3.2 Robot State Representation

3.2.1 Robot Variables

Definition 1 The robot variables represent any relevant
quantity (discrete or continuous) that the robot maintains
through its software. We categorize robot variables into ser-
vice variables (related to the robot’s services and tasks and the
planning associated with them), execution variables (related
to task execution in the environment), and internal variables
(related to the internals of the robot’s software and hardware).

The robot variables that we consider for CoBot are the
following:

– Service variables

– the current service typeservice (‘go-to-room’,
‘transport’, or ‘escort’),

– the current task type task (‘navigate’, ‘ask’,
or ‘wait’),

– the service path plan path-plan (list of position
vertices (x , y, floor#)),

– the service start location start-loc, and
– the service goal location goal-loc.

– Execution variables

– the current robot location loc,
– the current robot speed speed
– a boolean indicatorpath-blocked forwhether the

robot’s path is blocked, causing the robot to stop,
– the duration of the path blockage block-time

(None if path-blocked is false),

– a boolean indicator GUI-interrupt for whether
the robot’s task was interrupted from the GUI, and

– the duration of the interruption from the GUI
interrupt-time (None ifGUI-interrupt is
false).

– Internal variables

– the list sens-status of sensor statuses (0 for nor-
mal / 1 for faulty),

– the list act-status of actuator statuses (same),
– the software status soft-status (0 for normal / 1

for important error),
– The gravity of the fault if it occurs fault-level
(e.g., on a scale from 1 to 5).

– a boolean indicatorcharging for whether the robot
is charging, and

– the percentage battery level batt-level

Note that the value of some of these variables might be
undefined depending on the situation the robot is in; in that
case, we assign a value ofNone to those variables with unde-
fined values.

3.2.2 State Features and Robot State

We build upon the robot variables defined in the previous
section to generate states in which the robot may find itself.
The robot state is determined using state features, as defined
below.

Definition 2 Robot state features are discrete (usually high-
level) aspects of the robot’s state. They are represented as
logical expressions over robot variables. The state features
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we consider are only those who are relevant to humans that
potentially interact with the robot such as users, humans in
the navigation environment, and developers.

The state features for CoBot considered in this paper are
listed below:

– ‘Escorting’: (service = ‘escort’) ∧ (task =
‘navigate’).
The robot is in the process of escorting the user.

– ‘Blocked by an obstacle’: (path-blocked = True)
∧ (task = navigate). An obstacle is impeding the
navigation task progress.

– ‘Asking for help at an elevator’: (task =‘ask’)
∧ (isElevator(loc)) (where isElevator(a)
returns True if location a is an elevator and False
otherwise).
The robot is waiting to get help at an elevator.

– ‘Charging’: (charging = True).
The robot is connected to power and charging its battery.

– ‘Interrupted by user’: ¬ (task = None) ∧ (GUI-
interrupt = True).
The robot has been interrupted by a user through theGUI.

– ‘Waiting for object loading’: (service =
‘transport’) ∧ (task = ‘ask’) ∧ (loc =
start-loc).
The robot is waiting for the object to be transported at
the service start location.

– ‘Stopped because of faulty component’: (contains1
(sens-status))∨ (contains1(act-status))
∨ (contains1(soft-status)) (where
contains1(a) returns True if list a contains at least
one 1 and returns False otherwise).
One or more execution-time fault(s) occurred in the soft-
ware or hardware of the robot (e.g., the LiDAR sensor
gets reading errors when the robot navigates in areas with
a lot of sunlight).

– ‘Waiting for dismissal’: (task = ‘ask’) ∧ (loc =
end-loc).
The robot is waiting for the user to dismiss it by pressing
its “Done” button on its touch screen.

– ‘Navigating’: (task = navigate).
The robot is performing a navigation task.

– ‘Turning’: (distanceFromNextVertex(loc,
path-plan)< dth) ∧ (|nextTurnAngle(loc,
path-plan)| > αth) (where dth and αth are thresh-
olds for the distance to the next vertex in path-plan
and for the upcoming turning angle; distanceFrom
NextVertex(.,.) returns the distance between the
current location loc and the next vertex in the path-
plan andnextTurnAngle(.,.) returns theupcom-
ing turn angle α shown in Fig. 5).
The robot is about to take a turn in its navigation path.

Fig. 5 Turn detection check used for computation of feature ‘Turning’

Note that state features are not necessarilymutually exclu-
sive: more than one state feature could be true at the same
time. Since this might pose a problem for the purpose of
expression (we can only visualize one or at most a few of
these features at a time), we will handle this issue in Sect. 5.

Definition 3 The robot state is defined as the set of all state
features that are true at a given time t . Since the state of the
robot is constantly changing as a function of time, the state
is a dynamic process S(t) = {s1, s2, . . . , smt } where s1...mt

are the state features true at time t .

3.3 What Part of the Robot State to Express?

So far, in this section, we have looked at robot state dissoci-
ated from robot expression. Even though state features have
been defined to be relevant to users (and hence would gain
at being expressed to them in some way), the actual nature
of the medium used for expression hasn’t been taken into
account yet in our analysis.

Definition 4 We denote by expression channel any com-
munication medium (verbal or non-verbal) that can be
potentially used to express elements of a robot’s state. The
expression channel we consider is expressive lights.

In particular, in this section, we are interested in two
aspects of state representation for the purpose of expression:

– Modulation State features are a discrete representations
of high-level, user-relevant elements of the robot’s state.
However, this representation is rigid and doesn’t allow
for modulation (no possible expression of “microstates”
within the state feature or of continuous quantities that
might be relevant when a particular state feature is true).
For this reason, in this section we will be introducing
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what we call “expressible state tuples”, a data structure
which takes into accountmodulationof expressive behav-
iors (such as light animations) according to modulation
quantities.

– Simplification For a given expression channel, there is a
trade-off between complexity of the expression vocab-
ulary (total number of different expressive behaviors
used) and legibility of expressive behaviors (how read-
able or intuitive these expressive behaviors are). For
better legibility, it might be useful to group or cluster
some expressible elements of states together into classes
which are expressed using the same expressive behaviors.
For this reason, in this sectionwewill be introducingwhat
we call “expressible classes”.

3.3.1 Expressible State Tuples

We introduce expressible state tuples, which are tuples con-
taining all state information relevant to a particular robot
situation and expressible on a given expression channel.

Definition 5 An expressible state tuple on a given expres-
sion channel is defined as a tuple 〈s, vs〉, where s is a state
feature and vs is a vector of modulating variables, relevant
for expression of state feature s on the considered expres-
sion channel. These additional variables can either be robot
variables (defined in Sect. 3.2.1) or variables computed from
robot variables, referred to as computed variables.

To illustrate the concept of an expressible state tuple,
here are a few examples based on the state features listed
in Sect. 3.2.2:

– 〈 ‘Escorting’, (percentDone(loc,path-
plan)) 〉, where percentDone(.,.) computes the
percent distance traveled along the path plan (progress
so far towards goal location); this expressible state tuple
could be translated into some sort of progress indicator
visible to the escorted user.

– 〈 ‘Blocked by an obstacle’, (block-
time) 〉; this expressible state tuple could be translated
into a blockage indicator which gets more noticeable as
the blockage time increases.

– 〈 ‘Charging’, (batt-level) 〉; this expressible
state tuple could be translated into a visual indicator
changing as the percentage battery level increases.

– 〈 ‘Turning’, (nextTurn(loc,path-plan),
speed) 〉 (where next-turn(.,.) is a function
returning ‘left’ or ‘right’ according to the direc-
tion of the upcoming navigation turn); this expressible
state tuple can be translated into a turn indicator showing
the upcoming turn direction.

3.3.2 Clustering Expressible State Tuples: Expressible
Classes

For decreased complexity and increased legibility of expres-
sive behaviors, we introduce in this section classes of
expressible state tuples, or expressible classes for short. The
clustering is dependent on the expression channel considered
(different expression channels might require different lev-
els of abstraction depending on their complexity/legibility
tradeoff). We cluster in the same class those expressible
state tuples which possess semantic similarities, allowing
us to express them in a similar fashion through the expres-
sion channel. The expressible classes suggested below were
designed for expressive lights as our expression channel; for
other expression channels, as noted above, the classification
may vary, even for the same expressible state tuples.

Based on the expressible state tuples listed in the previous
subsection, we propose the following expressible classes:

– Class ‘Progressing through a process with known
goal’: There are different kinds of processes that the robot
goes through in which the goal is known. The progress
on such processes could be expressed in the same way
across different kinds of processes such aswhen the robot
is escorting a person to a specific location or when it is
charging its battery towards the maximum charge level.
For both of the escorting and charging cases, the addi-
tional variable in the expressible state tuple represents a
percentage completion.
The expressible state tuples corresponding to this express-
ible class are:
〈 ‘Escorting’, (percentDone(loc,path-
plan)) 〉
〈 ‘Charging’, (batt-level) 〉

– Class ‘Interrupted during task execution’: There are
different ways in which the robot’s task execution gets
interrupted. From the perspective of expressive lights,
it doesn’t matter knowing why the interruption occurred
(e.g., because of an obstacle, a faulty robot component, or
a user-initiated interruption through the GUI) as much as
communicating a state of interruption. (Other expression
channels such as screen display or voice could eventu-
ally complement the expressive behavior with additional
information.)
The expressible state tuples corresponding to this express-
ible class are:
〈 ‘Blocked by an obstacle’, (block-
time) 〉
〈 ‘Interrupted by user’, (interrupt-
time) 〉
〈 ‘Stopped because of faulty
component’, (fault-level) 〉
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Fig. 6 Summary of the
introduced robot state concepts

– Class ‘Waiting for human input’: As described previ-
ously, there are several situations for which the robot is
waiting for some sort of human input (corresponding to
tasks of type ‘wait’ or ’ask‘): the robot can be waiting for
a task to be initiated by a user or confirmed at completion
time, or it can be waiting for help in cases where it uses
symbiotic autonomy to overcome some of its limitations.
The expressible state tuples corresponding to this express-
ible class are:
〈 ‘Asking for help at an elevator’,
None 〉
〈 ‘Waiting for object loading’, None 〉
〈 ‘Waiting for dismissal’, None 〉

3.4 Section Summary

In this section, we focused on extracting informative ele-
ments of a robot’s state to be expressed through an expression
channel, such as expressive lights. We presented a general
representation of a mobile service robot’s state (robot vari-
ables, state features, expressible tuples) that is suited for
expression on an expression channel (Fig. 6).

4 Animating Light Sources

The goal of this section is to provide a framework for ani-
mating a set of fixed light sources. This framework will help
us design appropriate animations in a simple fashion and
facilitate the process of mapping robot state space to light
animation space. We begin by defining the concept of a light
animation and reduce thedimensionality of the very large ani-
mation space by introducing a finite number of parametrized
signal shapes.We then present the algorithms used to dynam-
ically control a digital light strip according to the presented
animation options. Our framework can be easily extended to
other signal shapes or to multiple light strips.

4.1 Light Animation and Animation Space Definitions

4.1.1 Light Animation as a Continuous Intensity Function
Matrix

Definition 6 An animation A(t), within a three-dimensional
color space, of a set of n fixed point source lights is defined
as a time-varying n × 3 matrix of light intensities:

A(t) =

⎛
⎜⎜⎜⎝

i1c1(t) i1c2(t) i1c3(t)
i2c1(t) i2c2(t) i2c3(t)

...
...

...

inc1(t) inc2(t) inc3(t)

⎞
⎟⎟⎟⎠ (1)

where the rows represent the indices of the individual point
source lights or pixels and the columns represent dimensions
of the color space or color channels c1, c2 and c3 (e.g., RGB,
XYZ [28]). The intensity values represent a percentage of an
allowed maximum intensity, and hence:

∀t : 0 ≤ i jck (t) ≤ 100 j = 1, . . . , n; k = 1, 2, 3

4.1.2 Spatial Layout

The animation matrix above does not capture the spatial lay-
out of these pixels, which could be arranged in a linear, planar
or three-dimensional fashion. For the rest of this work, we
will focus on linear light strips. They simplify the analysis
and representation of light animations and allow for greater
mounting flexibility from a physical point of view. For lin-
ear strips, we let the pixel index (row index of the animation
matrix) represent the position of the pixel on the strip, along
a predefined direction.

4.1.3 Animation Space Intensity Functions

The space to which A(t) belongs is very large, as each of
the intensity functions i jck (t) can be any continuous func-
tion of t bounded between 0 and 100 and hence belongs to
an infinite-dimensional space. As a result, we will only focus
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Table 1 List of parameterized signal shapes considered for each i jck (t)

on a limited set of possible intensity functions i jck (t), which
we group into classes. We call these classes parametrized
signal shapes, summarized in Table 1. There are plenty of
light animations (either in libraries for light strips,6 or in art
projects using lights [15]) whose goal is to create aesthet-
ically pleasing animations. These types of animations are
usually sophisticated, fast-changing in space, time or color.
We will be focusing on the simple signal shapes shown in
Table 1 which, through efficient parametrization, will still
provide us with great flexibility.

As a result of considering a handful of parameterized sig-
nal shapes, we have now reduced the dimensionality of the
animation space drastically, and the analysis of this space is
now simpler to work with.

4.1.4 Animation Tuple Representation

For compactness of representation, we define an animation
tuple, which fully characterizes the animation behavior for a
subset of the light pixels.

Definition 7 An animation tuple is defined as a tuple
〈sh, psh, jstart, jend〉, where:

– sh is a string identifier for the signal shape used in the
animation. It can take on the following values: “rect” for
rectangle waveform, “tri” for triangle waveform, “sinl”
for sinusoidal waveform, “modw” for modulated wave-

6 https://github.com/adafruit/Adafruit_NeoPixel.

form, “step” for step function, and “ramp” for clipped
ramp function

– psh = (
psh1 , psh2 , . . . , pshmsh

)
is a vector of parameters

associated with that particular signal shape, where msh is
the number of parameters for shape sh

– jstart and jend are the indices of the start and end pixel,
respectively, to be animated. In other words, the anima-
tion described by sh andpsh is applied to pixels jstart up to
jend, inclusive

The behavior of a full light strip is represented by a set of
animation tuples {〈sh1, psh1 , jstart1 , jend1〉, . . . , 〉〈shm, pshm ,

jstartm , jendm 〉} such that:

m⋃
i=1

({
jstarti , . . . , jendi

}) = {1, . . . , n}
m⋂

i=1

({
jstarti , . . . , jendi

}) = ∅
(2)

where n is the number of pixels on the strip. In other words,
first, the pixel indicesmust cover the whole strip and, second,
there should be no overlap in the specified pixel ranges. We
call an animation tuple set satisfying conditions 2 a complete
animation tuple set. It fully characterizes an animation of a
whole light strip.

4.2 Signal Shape Parametrization

We now present a detailed description of each of the
parametrized signal shapes shown in Table 1. For periodic
signals of period T , we refer to the portion of the signal
extending from t = zT to t = (z + 1)T (where z ∈ Z) as a
cycle.

4.2.1 Rectangle Waveform

The parameter vectorprect for this periodicwaveform is com-
posed of the following components:

– (Ic1,min, Ic2,min, Ic3,min)≡prect1 , (Ic1,max, Ic2,max, Ic3,max)

≡ prect2 : the minimum and maximum intensity values,
respectively, of color channels c1, c2 and c3 (in %)

– T ≡ prect3 : the period (in absolute time unit)
– Drect ≡ prect4 : the fraction of the period in which the
signal is maximal

A rectangle waveform rect(t) on a color channel ck is defined
by:
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rect(t) =
{

Ick ,max 0 ≤ t < DrectT
Ick ,min DrectT ≤ t < T

rect(t) = rect(t + zT ) z ∈ Z

(3)

4.2.2 Triangle Waveform

The parameter vector ptri for this periodic waveform is com-
posed of the following components:

–
(
Ic1,min, Ic2,min, Ic3,min

) ≡ ptri1 ,
(
Ic1,max, Ic2,max, Ic3,max

)
≡ ptri2 : the minimum and maximum intensity values for
each color channel (in %)

– T ≡ ptri3 : the period (in absolute time unit)
– Dtri ≡ ptri4 : the ratio of the rise time to the period

A triangle waveform tri(t) on a color channel ck is defined
by:

tri(t) =
{ Ick ,max−Ick ,min

DtriT
t+ Ick ,min 0 ≤ t < DtriT

Ick ,max−Ick ,min

1−Dtri

(− t
T +1

)+ Ick ,min DtriT ≤ t <T

tri(t) = tri(t + zT ) z ∈ Z

(4)

4.2.3 Sinusoidal Waveform

The parameter vector psinl for this periodicwaveform is com-
posed of the following components:

–
(
Ic1,min, Ic2,min, Ic3,min

) ≡ psinl1 ,
(
Ic1,max, Ic2,max, Ic3,max

)
≡ psinl2 : the minimum and maximum intensity values for
each color channel (in %)

– T ≡ psinl3 : the period (in absolute time unit)

A sinusoidalwaveformsinl(t)on a color channel ck is defined
by:

sinl(t) = sin

(
2π

T
t − π

2

)
Ick ,max − Ick ,min

2
+ Ick ,min (5)

4.2.4 Modulated Waveform

This is a special kind of waveform combining several
cycles from the three previous periodic signal shapes to cre-
ate a “supercycle”. This “supercycle” is then periodically
repeated. The parameter vector pmodw for this periodic wave-
form is composed of the following components:

– nsub ≡ pmodw
1 : the number of subcycles in one supercy-

cle.
– vsup = (

vsub,1, . . . , vsub,nsub
) ≡ pmodw

2 : a vector of
nsub shape identifier - shape parameters pairs vsub,i =(
shsub,i , psub,i

)
, describing the light behavior in each sub-

cycle.

A modulated waveform modw(t) on a color channel ck is
defined by:

modw(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

shsub,1(t) 0 ≤ t < T1
...

...

shsub,i (t) Ti−1 ≤ t < Ti

shsub,nsub(t) Tnsub−1 ≤ t < Tnsub

modw(t) = modw(t + z
nsub∑
i=1

Ti ) z ∈ Z

(6)

where Ti represents the period of the i th subcycle.

4.2.5 Step Function

The parameter vector pstep for this periodic waveform is only
composed of the following component:

–
(
Ic1, f , Ic2, f , Ic3, f

) ≡ pramp
1 : the final intensity value for

each color channel (in %). The initial intensity value(
Ic1,i , Ic2,i , Ic3,i

)
(previous state of the strip) is not rele-

vant for animating the strip from t = 0 onward, so it is
not included in the parameter vector.

A step function step(t) on a color channel ck is defined
by:

step(t) =
{

Ick ,i t < 0

Ick , f t ≥ 0
(7)

4.2.6 Clipped Ramp Function

The parameter vector pramp for this periodic waveform is
composed of the following components:

–
(
Ic1,i , Ic2,i , Ic3,i

) ≡ pramp
1 ,

(
I1, f , I2, f , I3, f

) ≡ pramp
2 ::

the initial and final intensity values for each color channel
(in %)

– trise ≡ pramp
3 : the rise time (in absolute time unit)

A clipped ramp function ramp(t) on a color channel ck is
defined by:

ramp(t) =

⎧⎪⎨
⎪⎩

Ii t < 0
I f −Ii
trise

+ Ii 0 ≤ t < trise
I f t ≥ trise

(8)

For all of these animations, note that, in a Red–Green–
Blue (RGB) color space (c1 = R; c2 = G; c3 = B), if the
color ratios r1 and r2 listed below are constant as a function
of time, then the animation is of a single color. If the ratio
is not respected however, we would observe color changes
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throughout the animation. Color ratios r1 and r2 are defined
as:

– r1 ≡ IR,max : IG,max : IB,max and r2 ≡ IR,min : IG,min :
IB,min for the periodic signal shapes, and

– r1 ≡ IR, f : IG, f : IB, f and r2 ≡ IR,i : IG,i : IB,i for
the non-periodic signal shapes

The case where r2 = 0 : 0 : 0 results in a single color
animation for any r1 values.

4.3 Animating a Digital RGB LED Strip

The animation model described in the previous sections is
useful for design and visualization purposes. However, this
model presents us with some limitations in practice when
working with digital addressable LED strips. For the rest of
this section,we assumewe areworking in aRGBcolor space.

4.3.1 Light Animation as a Sequence of Frames

Most light strips nowadays are digital LED strips and there-
fore have a finite refresh rate frefresh. This means that the
intensity functions i jc(t) (c = R, G, B) are actually synchro-
nized discrete signals i jc[l] = i jc(l.�t) where �t = 1

frefresh
.

Moreover, the color levels are quantized (usually into 256
levels) for each Red, Green or Blue color channel. The com-
bined discrete i jc[l] values form the discrete-valued matrix
Â[l], which we call an animation frame.

Definition 8 An animation frame Â[l], at time step l, for
a 256-level RGB digital LED strip containing n pixels is
defined as:

Â[l] =
⎛
⎜⎝

i1R[l] i1G[l] i1B[l]
...

...
...

in R[l] inG[l] inB[l]

⎞
⎟⎠ (9)

where the rows represent the pixel indices and the columns
represent the R, G and B color channels. The intensity values
are discretized and quantized such that:

∀l ∈ N : i j,c[l] ∈ N, 0 ≤ i j,c[l] ≤ 255 j = 1, . . . , n;
c = R, G, B

4.3.2 Episodic Animation Control

The animations as described in the previous paragraph start
at time step l = 0 and extend arbitrarily in time. However,
if these lights are going to be used to express a dynamic
process, such as the varying state of a robot, then frequent
switches fromone animation to anotherwill be needed, hence
the notion of episodic animation introduced next.

Definition 9 An animation episode is defined as a fixed por-
tion of a particular animation. Animation episodes can be
arbitrarily defined; for the signal shapes we considered, we
define an episode to be:

– A single signal cycle, for periodic signal shapes, and
– The portion of the signal needed to transition from the
initial to the final intensity value, for non-periodic signal
shapes.

For a complete animation tuple set containing different ani-
mations for different pixels, each with its own episode, we
define the complete animation episode to be lasting as long
as the shortest of the individual episodes.

Based on the above definition, we propose an episodic
animation control algorithm, which given a dynamic process
DP of time-varying complete animation tuple sets, generates
a sequence of animation episodes, as shown in Fig. 7. For
illustration purposes, we assume that pixels 1 through n have
the same animation, so we only show the corresponding ani-
mation tuple (the complete animation tuple set in this case
is a singleton containing that tuple). The algorithm used to
achieve this behavior is summarized in Algorithm 1. At the
beginning of each episode, the algorithm gets the current ani-
mation tuple set value from DP and animates the strip with
one episode of the animation corresponding to that tuple set.
We assume that the choice of episode length is small com-
pared to the dynamics of DP, in other words the minimum
switching time for the animation tuple set values is greater
than any single animation episode.

Let d f rame be the total delay between two animation frame
updates. d f rame comprises several sources of delays includ-
ing the time to compute the frame and the time to refresh
the strip. Note that for a specific animation, d f rame = �t =

1
Refresh Rate . Since these delays can differ from frame to frame,
it is best to keep track of time using a timer and sample
the original A(t) curves at the corresponding time values, as
shown in the “Episode” procedure of Algorithm 1, to get the
corresponding discrete and quantized frames Â[l], computed
by the “GetFrame” procedure.

As a final note, we can easily extend our framework
to more than one light strip to be independently animated.
For N light strips, each will have its own dynamic process
DPi , i = 1, . . . , N to be animated. Let P1, . . . , PN be inde-
pendent control process, one for each strip. Each Pi will be
independently running Algorithm 1 on DPi to episodically
control light strip i .

4.3.3 Section Summary

In this section, we presented a formal framework for rep-
resenting and controlling light animations, summarized in
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Fig. 7 Episodic animation
example: animation tuple as a
function of time and
corresponding intensity
functions for each pixel of the
strip

Fig. 8.Wefirst introduced a representationof light animations
as complete sets of animation tuples. We then focused on the
control of RGB LED strips and present an episodic anima-
tion control algorithm to enable the translation of a dynamic
process of complete animation tuple sets into a sequence of
frames on a light strip. Our framework (Arduino code avail-
able online7) is not platform-specific and can be used by any
device using our communication protocol.

7 https://github.com/kobotics/LED-animation.

5 Robot State/Animation Mapping: Formalism

Now that we have discussed our representation of the robot
state both on its own and in relation to an expression chan-
nel, we look at the problem of mapping expressible classes
to specifically light animations, whose formalism was pre-
sented in Sect. 3.
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Algorithm 1 Episodic animation control algorithm
RunAnim
1: procedure RunAnim(DP)
2: tuplenow ← NULL
3: StartTimer(t) � t globally stores the time elapsed in seconds
4: while true do
5: tupset prev ← tupsetnow

6: tupsetnow ← FetchAnimTuple(DP)
7: if tupset prev �= tupsetnow then ResetTimer(t)

8: Episode(tupsetnow)

9: procedure Episode(
{〈
sh1, psh1 , jstart1 , jend1

〉
, . . . ,〈

shm, pshm , jstartm , jendm

〉}
)

10: {e1, . . . em} ← GetEpisodeLengths(psh1 , . . . , pshm )

11: emin ← min
i

ei

12: while t < emin do
13: Â ← GetFrame(

{〈
sh1, psh1 , jstart1 , jend1

〉
, . . . ,〈

shm, pshm , jstartm , jendm

〉}
, t)

14: UpdateStrip( Â) � Updates the strip with the current frame
15: procedure GetFrame(

{〈
sh1, psh1 , jstart1 , jend1

〉
, . . . ,〈

shm, pshm , jstartm , jendm

〉}
, t)

16: for i ← 1, . . . , m do
17: for j ← starti , . . . , endi do
18: Â j,1:3 ← (round( 255100 .i j,R(t)), round( 255100 .i j,G(t)),

round( 255100 .i j,B(t)))

Fig. 8 Summary of the animation framework described in this section

5.1 Mapping Architecture

The mapping we define between expressible classes (state
information) and animation tuples (light animation informa-
tion) is divided into two parts:

– Animation determination: The signal shape sh as well
the default parameters psh and ji (i = start, end) are
determined by the ‘feature’ part of expressible state tuple,
which is by definition discrete and communicateswell the
presence of distinct robot states.

– Animation modulation: We allow modulation in the ani-
mation by modifying the value of the parameters (for a

fixed signal shape) based on the value(s) of the ‘variable’
part of the expressible state tuple.

Figure 9 summarizes the mapping architecture, and Fig. 10
shows the flow of the mapping process for robot state all the
way to the light animation module.

5.2 Expression of Non-exclusive State Features

As can be observed in theway state features are defined, there
is no constraint on their mutual exclusivity, whichmeans that
there could be two ormore featureswhich are true at the same
time, and hence more than one expressible tuple competing
to be expressed on the same channel. If we assume that only
a single expressible state tuple can be expressed on a single
channel then we need a way of selecting one out of the set
of expressible state tuples, which we call state preference
function.

Definition 10 A state preference function for a given expres-
sion channel is a function φ : P(F) → F where F is the set
of state features and P(F) is the power set of F . φ selects
one preferred state feature given a set of true state features.

In practice, theremight be sets ofmutually exclusive features,
which can reduce the domain of φ. Also, it might be possible
to create a strict total order on the state features,which greatly
simplifies the representation of φ, as is shown in the example
below, but it might generally not be the case.

Example of preference ordering on sample features:Con-
sider the three features ‘Escorting’= f1, ‘Blocked by an
obstacle’= f2, and ‘Asking for help at an elevator’= f3.

If the robot is blocked by an obstacle ( f2 is true), then
it should express it even if it currently escorting a person
( f1 is true). ( f2 and f1 are mutually exclusive since the robot
cannot be blocked by an obstacle while it is statically waiting
at an elevator).

Similarly, if the robot is escorting a person ( f1 is true) but
across multiple floors, it will encounter situations where it is
asking for help at an elevator ( f3 is true) while performing
the escort task. In such situation, we prefer f3 over f1 since
the service cannot continue if the ‘ask’ task is not completed,
which is hence more important.

Therefore we have the following total order: f2 > f3 >

f1, where x > y indicates that x is preferred over y.

5.3 Extension to Multiple Light Strips/Expression
Channels

The mapping method introduced above for a single channel
can easily be extended to handle multiple expression chan-
nels. Even though our analysis focuses on two channels of the
same modality (expressive lights), the architecture presented

123



80 Int J of Soc Robotics (2018) 10:65–92

Fig. 9 Architecture of the
robot state/animation mapping

Fig. 10 Flow diagram of the
robot state/animation mapping

is general enough to be applied to other modalities such as
speech, expressive motion, etc.

5.3.1 Mapping Architecture

Figure 11 shows our mapping architecture when more than
one light strip, or more generally more that expression chan-
nel, is present. Each channel has their relevant state features
(possibly repeated), preference function, expressible state
tuples and expressible classes.

5.3.2 Example Using Two Light Strips for Multi-level
Expression

To demonstrate the extensibility of our concept to more
than one expression channel, we consider one light strip
for expression of higher-level state information (related to
tasks and services), and another light strip for expression of
lower-level state information (related to navigation param-
eters). Implementation details on hardware mounting and
animation control can be found in the next section. The
two strips can be seen in Fig. 12. The high level strip
animations will be informed by user studies in the next
section. For the low-level strip, we considered a turn indi-
cator animation, which lights either the left or the right
part of the strip depending on the turn the robot is about
to take. The rest of the strip changes color as a func-
tion of speed (red for fast, orange for medium speed and
green for low speed). The corresponding expressible tuple

for this strip’s expressive behavior is: < ‘Turning’,
(next-turn(loc,path-plan), speed) >.

5.4 Implementation of the Mapping on a Real Robot

The framework discussed above for mapping robot state to
light animations has been implemented on one of our CoBots
and has been robustly running for more than a year whenever
the robot is deployed. In this section we provide some details
about the hardware and software components used to robustly
integrate the light expressive behavior on CoBot.

5.4.1 Hardware Components

For our light sources, we used two programmable, fully
addressable NeoPixel LED strips8 with 91 and 144 pixels
respectively mounted on the robot’s body and around its base
respectively, as can be seen in Fig. 13. Acrylic diffusers were
added around the body LED strip to achieve omnidirectional
visibility. Compared to other options like luminous fabrics
or LED panels, linear strips are both simple in structure and
flexible to adopt different mounting alternatives on CoBot.
The NeoPixels strip moreover provides high light intensity
thanks to its density of 144 LEDs/m (35Watts/mmax) which
makes it suited for good visibility in luminous areas such as
indoor bridges or other areas with glass windows.

8 https://www.adafruit.com/products/1507.
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Fig. 11 Mapping architecture
for multiple expression channels

Fig. 12 Two expressive light
channels for multi-level
expression on CoBot (left) and
turn indicator snapshots for the
low-level strip

The light strips are controlled by Arduino Uno micro-
controllers9 (one per strip). The data pin of the strips are
connected to a digital output pin of the corresponding
Arduino. The Arduino in turn is connected to the CoBot
on-board computer through a USB cable used for serial com-
munication.

9 http://store-usa.arduino.cc/products/a000066.

5.4.2 Control Architecture

The light interface control architecture is summarized in
Fig. 14. A Robot Operating System (ROS) node running
on the robot itself keeps track of the robot variables (by
subscribing to the corresponding ROS topics or calling the
corresponding ROS services) and computes the correspond-
ing expressible state tuples. It then maps these to animation
tuples for each strip, which are sent to the corresponding
microcontroller using serial communication. The protocol
used for communication between the ROS node and the
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Fig. 13 Hardware interface design

Fig. 14 Control diagram of the state animation interface

microcontroller is available online.10 Based on the animation
tuples received, the microcontroller controls the light strip
by running the episodic animation algorithm described in
Sect. 4. The flow of data from the ROS node to the microcon-
troller is synchronized with the animation episodes because
serial communication is only reliable when the microcon-
troller is not sending any data out to the strip. We ensure
such synchronization by a simple procedure similar to a hand-
shake at the end of each animation episode. The actual data
sent out to the LED strip on the digital pin of the Arduino

10 https://github.com/kobotics/LED-animation.

is determined by the Adafruit NeoPixel library11 and uses
serial packets that the WS2811-based pixels understand.

5.5 Section Summary

In this section, we showed how to map the extracted ele-
ments of the robot’s state to an expressive behavior, in
particular a light animation as defined in the previous sec-
tion. We extended our method to handle more than one
expression channel, which is illustrated using two light strips
on CoBot expressing different types of state information
(high-level task-related versus low-level navigation-related
information). Our process, although it has focused on CoBot,
is general enough to apply to other platforms, and other
expression channels than lights.

6 Design and Evaluation of the State/Animation
Mapping

The previous section was concerned with question of what
to express, i.e., selecting appropriate state information that
is useful and relevant for a given situation. In this section,
we focus on the question of how to express the selected state
information. In order to answer this question, we present
three studies. The first study [2] is concerned with the design
of appropriate animations for some of the expressible state
tuples discussed in Sect. 3, i.e. selecting the appropriate
animation parameters discussed in Sect. 4 according to the
different scenarios considered. The second study [3] evalu-
ates the legibility of the animations resulting from our design
study, as well as their generalizability to expression of state
tuples in the same class (refer to Sect. 3).While the first study
uses feedback from fully informed experts, the participants
of the second study were non-experts who were only given
minimal information about the testing scenarios. The third
study is a small experiment which proves that the presence
of these animated lights on the robot can actually influence
people’s behavior to help the robot perform better at its tasks.

6.1 User Study 1: Designing Appropriate Animations

In order to select suitable parameters for the animations
presented above, we conducted a study with a video-based
survey. Participants were given a detailed description about
three different scenarios involving CoBot and possibly a
human. There were then instructed (through email) to watch
videos of the robot in each of the scenarios, onwhich they had
to report answers through the form of a provided spreadsheet.

11 https://github.com/adafruit/Adafruit_NeoPixel.
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Table 2 Parameter values for
the animation choices shown

6.1.1 Preliminary Study

A preliminary study was conducted with the people who
have the most expertise for our purposes, namely the CoBot
developers. Eight developers participated in the survey, and
submitted their choices. To validate our design choices, we
recruited 30 more people to include in the study. The results
across both studies were consistent. The extended study is
described next.

6.1.2 Participants

A total of 38 participants took part in this study. Our recruit-
ment filter only included participants who have expertise in
one of the followingfields: robotics (61%of the participants),
design (18% of the participants), and engineering (21% of
the participants). The participants ages ranged from 19 to
50, with an average of around 25 years old. Because cul-
tural differences may have an impact on our results, we tried
to have diversity in our sample: 18% of the participants are
from North America, 32% from Europe, 29% from the Mid-
dle East and 21% from Asia. Additionally, 68% were male
and 32% female.

6.1.3 Survey Design

Participants were asked to give their input on three aspects of
the animation: animation pattern, speed and color. For each
scenario, a single video sequentially showed 3 different ani-
mation patterns (corresponding to signal shapes + dynamics
parameters) with the same neutral color (soft blue). Nuances
of 3 different speeds were also shown within each pattern.
The participants were prompted to select the (animation pat-
tern, speed) pair that they thought would fit best the robot’s
expression purposes in the given scenario, ofwhich theywere
fully informed. In the last section of the video, we showed
6 possible light colors (in the form of a static image of the
robot). The participants were also asked to report on the color
they thought was most appropriate for their selected (anima-
tion pattern, speed) choice, for each scenario. We made the
reasonable assumption that the choice of color for the anima-
tion is independent of the actual animation selected, which

helps reduce the amount of choices to be shown. Indeed,
while animation pattern and speed both relate to modulations
in time and intensity, color seems to bemuch less intertwined
to the other two. Furthermore, according to color theory [35],
color on its own plays a strong role in expression. Next, we
list and justify the choices of animation patterns shown to the
participants.

– Scenario “waiting”:A regular blinking animation (Blink);
a siren-like pattern; a rhythmic (non-regular) blinking
animation. We believe these to be good candidates for
grabbing attention because of the dynamic aspect, the
warning connotation and the non-regular pattern respec-
tively.

– Scenario “blocked”: A faded animation (that we call
“Push”) that turns on quickly and dies out slower (giv-
ing the impression of successively pushing against an
obstacle); an “aggressive” blink (fast blink followed by
slow blink); a simple color change at the time the robot
gets blocked. We believe these to be good candidates for
inciting the human to move away from the path.

– Scenario “progress”: A bottom-up progress bar where
lights gradually fill from top to bottom proportionally
to the distance from the goal; a top-down progress bar
where lights fill from the top towards the bottom; a grad-
ual change from an initial color to a final color, again
proportionally to the distance from goal.

The parameter values associated with these animations
are summarized in Table 2. In addition to the animation sum-
marized in the table, the following colors were shown for
each scenario as static images of the lighted robot: Red (R),
Orange (O), Green (G), Soft Blue (B), Dark Blue (B’) and
Purple (P).

6.1.4 Results

Figure 15 and Table 3 show the distribution of the results
in the extended study. In the following discussion, p-values
are obtained from a χ2 goodness-of-fit test against a uniform
distribution. Table 3 shows the selected best choices, which
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Fig. 15 Animation pattern
results

Table 3 Selected best animations for each scenario of user study 1

Scenario Animation and parameters

“Waiting” Soft blue “Siren” with period 2 s

wv D T (s) Color

0.5 2 Soft Blue

“Blocked” Red “Push” with period 1.5 s

wv D T (s) Color

0.25 1.5 Red

“Progress” Bottom-up progress bar

disp udisp In. color Fin. color

prog_bar bottom_up Red Green

were consistent between the preliminary and the extended
study.

In Fig. 15, we show the results for the animation pattern.
For the scenario “waiting” (p = 0.0137), among the partici-
pants who chose the winning animation “Siren”, 64% chose
the slower speed, 29% the medium speed and 7% the faster
speed. For the scenario “blocked” (p = 0.0916), among
the participants who chose the winning animation “Push”,
27% chose the slower speed, 40% the medium speed and
33% the faster speed. Note that the static color change was
the least preferred animation pattern for this scenario, which
aligns with Bertin’s result stating that motion (in our case a
non-static animation) being one of the most effective visual
features for attention grabbing [4] (for the “waiting” sce-
nario which relies even more on attention grabbing, all three
of our designed patterns were designed to be in motion). For

Table 4 Color results (color codes correspond to those used in the text)

R (%) O (%) G (%) B (%) B’ (%) P (%)

Scenario “waiting”

13 13 13 39 16 6

Scenario “blocked”

53 29 5 0 10 3

R/G (%) B/P (%) B’/G (%) O/G (%) O/B (%) P/B (%)

Scenario “progress” (top 6)

27 12 12 8 8 8

the scenario “progress” (p = 1.10−6), the participants chose
the bottom-up progress bar animation. All p-values obtained
are below 0.10, which indicates a strongly non-uniform dis-
tribution of preferences for each scenario, and this can clearly
be seen in Fig. 15.

The results for colors, summarized in Table 4 similarly
show a clear preference for one option in each case. For
instance, soft blue was selected for the “waiting” scenario.
This result supports the statement in [7] that cold colors are
better than warm colors at grabbing attention. Also, red was
selected as the best color for the “blocked” scenario. This is
consistent with the fact that red is often perceived as demand-
ing [35] or stimulating [7], which are both desirable in this
scenario. Even though the Red/Green color combination was
the most voted for in the “waiting” scenario, this study did
not account for interference between animations for different
scenario. As it turns out from real-world deployments, since
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the color red was associated with the “blocked” scenario, it
confusedpeople to also see it in the “progress” scenario.Also,
since Red–Green color blindness is themost widespread type
of colorblindness, it is a good design principle to avoid this
combination of colors in a single animation. For these rea-
sons, we opted to replace the background color with a faint
dark blue, while preserving the bright green progress bar.

6.1.5 Discussion

The results of the study demonstrate strongly non-uniform
selected choices on our (non-randomly) designed light ani-
mations, which suggests that there are some semantics
associated with simple animations of a colored light strip,
in relation to a concrete robot state. From a design choice
point of view, the results of this study suggest that we can
safely eliminate choices which received a poor rating, result-
ing in a small set which can be considered valid. Although,
for each scenario, there is generally a clear preference for
one of the choices, visualized in Fig. 16, the study was infor-
mative of the distribution of preferences, which can even
enable the possibility of generating animations in a proba-
bilistic way, especially if more information about the human
interacting with the robot is available (e.g., cultural back-
ground).

Moreover, the scenarios we looked at are quite generic,
and are commonly encountered in interactions involving a
social robot and a human. However, before extrapolating our
results to other platforms, we need to ensure that other factors
(e.g. strip size or placement, light diffusion mechanism…)
do not influence the perception of the expressive behavior.
The distinguishing feature of our robotic platform is motion,
which prompts us to think whether other mobile robotic sys-
tems such as autonomous cars or drones could utilize similar
animations if they encounter similar sates. Themain research
questions to investigate to study generalizability at this scale
(beyond the physical factors mentioned above) would con-
cern the effect of the context on the perception of the task
and the signals associated with it. For instance, would red
and green colors mean different things in an indoor envi-
ronment versus in a traffic scenario, or an aerial scenario,
where existing visual codes might influence the perception?
These results can however still serve as a starting point for
the design of future social robotic systems which use lights
as a means of communication.

6.2 User Study 2: Evaluating and Generalizing the
Designed Animations

In order to evaluate the effectiveness of the chosen expres-
sive light animations, we conducted an online survey in
which participants watched videos of a robot performing
tasks from afar. At the end of each video, participants were

asked to hypothesize about the robot’s current state, but
also about its actions (specifically reasons for performing
a specific action such as stopping or being unresponsive).
Questions were in a multiple choice format, with four possi-
ble answers.Half of the participants saw the robot performing
tasks with its expressive lights on (referred to as the “Lights
on” condition), and half saw the robot with the lights off
(referred to as the “Lights off” condition). The animations
for the “Lights on” condition were informed by the first
user study described in Sect. 6.1. Participants were ran-
domly assigned to one of the two experimental conditions,
resulting in a between-subject study. We analyzed partici-
pants’ hypothesis choices to demonstrate that those who saw
the robot with the lights were more accurate, but also and
gained a higher level of trust in robots, from watching the
videos.

6.2.1 Participants

A total of 42 participants, of which 14 were male and 28
were female, took part in the study. Ages ranged from 20
to 67 (M = 32.4, SD = 13.7). Out of the 42 participants,
33 live in the United States; the rest live in different coun-
tries across Asia and Europe. Even though computer usage
was relatively high amongst participants (31 out of 42 used
computers 30+ hours per week), experience with robots was
generally low. Only 5 out of the 42 participants reported
having worked with robots before, and 20 reported that they
have never seen a robot in person before (3 participants had
seen our particular robot, CoBot, before taking the survey).
Finally, we ensured that none of the participants were color-
blind, since our light animations included color and it could
have an effect on our results.

6.2.2 Survey Design

Our online video-based survey (running on the Limesurvey
platform) comprised nine video scenarios of CoBot acting
in our environment followed by a multiple choice ques-
tion asking participants to choose a hypothesis of what the
robot was doing. Four plausible hypotheses about the robot’s
state/actions were presented as choices for each video, of
which one had to be selected. Participants were also asked to
rate their confidence in their answer on a 5-point Likert scale.
The video order, as well as the choices for each answer, were
randomized to avoid any order effects.

Each of the video scenarios was recorded using our
autonomous robot with lights on and lights off. Some videos
involved humans, which were actors behaving naturally and
according to the specifications of the scenario. Although the
robot was acting autonomously, the videos were replicated
as close as possible for the two conditions. From the robot’s
perspective, we can reasonably assume that the only notable
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Fig. 16 Snapshots of the
winning animations for each
scenario of user study 1, also
used in the subsequent user
studies. a Green ascending
progress bar on an escort task, b
flashing red “push” animation
for path obstructions, c slow soft
blue “siren” to call for human
help. (Color figure online)

difference between the two videos for a given scenario is the
presence or absence of lights on the robot. The videos did
not include any robot speech or any visible information on
the robot’s screen.

After viewing all nine videos, some relevant background
and related information, including trust questions about this
particular robot and robots in general, was also collected.
Additionally, we recorded the time taken for completing the
survey and made sure everyone responded within reasonable
time limits (no disqualifications).

6.2.3 Scenario Descriptions

The nine scenarios shown in the videos were specifically
chosen based on actual tasks that the robot performs while
it is deployed in our buildings. We focused our scenarios

on the same three common scenario classes studied in our
prior work – “progressing through a process”, “blocked”,
and “waiting for human input”. For each scenario class, we
produced three distinct scenarios in which the robot’s state
or actions are ambiguous, which are summarized in Table 5
and described below.

The “progressing through a process” scenarios repre-
sent the robot taking actions for a long duration. For each
of these scenarios, the progression was modeled as the light
animation of a progress bar (see Subsection 1). The scenarios
chosen to represent this class are:

– Navigation task with human presence (P1) A person
participates in the Escort Task in which they are accom-
panied to their goal location.
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– Speech task (P2) The person asks a question to the robot,
which provides no immediate answer, as it is searching
the web for the required information. The video ends
before the robot responds. When present, the lights show
the progress on the web query task.

– Charging (P3) The robot is charging inside the labora-
tory, with no clear view of the power plug.When present,
the lights show the battery level increasing progressively
(video sped up 10 times).

The “blocked” scenarios represent the robot being inter-
rupted in its navigation by obstacles of different kinds. The
important blockage is supported by the fast red flashing light
(see Subsection 1). The scenarios chosen to represent this
class are:

– Human obstacle facing the robot (B1) The robot is
stopped in its navigation by a person standing in a narrow
corridor, facing the robot.

– Human obstacles looking away from the robot (B2) The
robot is stopped in its navigation by a person standing in
a narrow corridor, facing away from the robot.

– Non-human obstacle (B3) The robot, navigating down
a narrow corridor, detects a person walking towards it
and changes its navigation path to avoid the person. As a
result, it finds itself in front of a branch of plant, which
it considers as an obstacle, causing it to stop.

The “waiting for human input” scenarios represent the
robot stoppedwaiting for different types of actions to be taken
by a human. For each of these scenarios, the robot is waiting
patiently as represented by the slow flashing blue light (see
Subsection 1). The scenarios chosen to represent this class
are:

– Waiting for help at an elevator (W1) The robot is stopped
in front of the elevator, waiting for someone to press the
elevator button and let it in. People are passing by, ignor-
ing the robot’s presence.

– Object loading (W2) The robot is stopped in the kitchen
area, facing a counter onwhichwe can see a cup of coffee.
Next to the counter area, a person is washing the dishes,
presumably unaware of the robot’s presence.

– Confirming task completion (W3) The robot is stopped in
front of an office door, with coffee in its basket. A person
shows up from inside the office and takes the coffee. The
robot doesn’t react to the person’s action and remains
still. The person looks at the robot with a confused look
on their face.

For each scenario, when lights are present, the default
animation on the robot (when no expression is desired) is a
static soft blue color.

6.2.4 Multiple Choice Questions

After viewing each video, the participantswere given choices
to explain the robot’s state or actions. As discussed earlier,
each of the scenarios can be ambiguous to a person viewing
CoBot fromafar either because of lack of contextual informa-
tion or because of mixed signals in the robot’s behavior. The
corresponding answer choices for each video scenario were
specifically chosen to reflect many of the possible hypothe-
ses that could correspond to the robot’s behaviors. Given our
prior work, we theorize that the light animations will reduce
the uncertainty that people have in understanding robot’s
behavior, leading to more accurate answers to our multiple
choice questions.

Question examples
Some examples of questions and choices in the survey are:
In the video above, why did the robot stop? (a) The robot

recognizes the person, who was expecting it, (b) The robot
sees the person as an obstacle, (c) The robot needs help from
the person, (d) The robot is inviting the person to use its
services. (Scenario B1)

In the video above, why is the robot not moving after the
person has taken the coffee? (a) It is waiting for the person
to confirm the task is over, (b) It has nothing to do, (c) It is
low on battery, (d) It is trying to get inside the room but the
door is too narrow. (scenario W2)

6.2.5 Results

Responses to the surveymultiple choice questions in the nine
scenarios were coded in a binary fashion—three answers
were coded as wrong and one answer was coded as the
correct answer. The resulting dependent variable accuracy
was modeled as binary categorical. Additionally, we coded
the responses to our questions about robot trust (5-point
Likert scale). We analyzed the effects of our independent
variables—experimental condition (binary categorical vari-
able “Lights on” and “Lights off”) and scenario (nine
categories)—on the dependent variables.While our scenarios
had a range of difficulty resulting in a range of accuracies, our
light animations have a statistically significant effect across
all scenarios on participant’s accuracy. The participants who
saw the robots with lights on also indicated an increase in
their overall trust in robots more than those who saw the
robot with lights off.

Participant Accuracy In order to analyze our categori-
cal dependent variable accuracy, we used a McNemar’s χ2

test in a combined between- and within-subject design. The
“Lights on/off” condition is our between-subject variable.
All nine video scenarios were shown to all participants and
therefore is awithin-subject variable. Theparticipant ismod-
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Table 5 Scenarios used in user study 2

Scenario class Progress to a goal (P) Blocked (B) Waiting for human input (W)

Scenario 1 Navigation task with human
presence (P1)

Human obstacle facing the robot (B1) Symbiotic autonomy (elevator
button) (W1)

Scenario 2 Speech task (P2) Human obstacles looking away from the
robot (B2)

Object loading (W2)

Scenario 3 Battery charging (P3) Non-human obstacle (B3) Confirming task completion
(W3)

eled as a random variable within the model as each person
may be more or less accurate in general. The McNemar’s χ2

tested whether the participants’ answers depend on the pres-
ence/absence of lights, video scenario, and/or the interaction
effects of both the lights and video scenario together.

Our results indicate that there is a statistically significant
difference in the accuracy based on the presence/absence of
lights (“Lights on” M = 75.66%, SD = 18.20%; “Lights
off” M = 56.08%, SD = 19.16%, p < 0.0007). The accu-
racy was significantly higher for participants who saw the
lights. Additionally, there is a statistically significant differ-
ence in participants’ accuracy based on the video scenario
(see Fig. 17 for means and standard deviations, p < 0.0001)
(i.e., some videos were harder to determine the robot’s
state/actions than others for each participant). However, there
was no statistically significant effect by the interaction of the
light condition and the video scenario (p = 0.7), indicating
that the increased effectiveness of the “Lights on” condition
was the same across scenarios. Based on these results, we
conclude that while the choice of a correct robot state/actions
hypothesis does depend on the scenario in which humans see
the robot, the tested light animations universally help increase
their accuracy.

Figure 17 shows the average accuracy of the participants
for each scenario and each light condition. The error bars
represent a 95% confidence interval of the mean. We note
that the “Lights on” condition accuracies (shown in blue) are
universally higher than the “Lights off” accuracies (shown
in red). Additionally, the graph clearly shows our result that
the video scenarios have different average accuracy, but the
accuracy change between conditions per video scenario is
not reflective of the scenario.

Participant Trust in Robots On average, participants
reported that their trust in robots had increased after watching
the videos shown in the survey. (To the question: “Do you
agree with the following statement? ’After watching these
videos, I will not trust robots as much as I did before.’ ”,
participants in both conditions answered above 3 over 5 on
average on a 5-point Likert scale, where 1 meant “Strongly
Agree” and 5 meant “Strongly Disagree”.) The reported
increase in their trust in robots was significantly more pro-
nounced for participants in the “Lights on” condition (M =

4.29, SD = 0.90) compared to those in the “Lights off” con-
dition (M = 3.52, SD = 0.87) (t (40) = ±2.02 two-tailed,
p = 0.008).

However, there was no statistically significant difference
between the two conditions in the reported absolute level of
trust in both CoBot and in robots in general (t (40) = ±2.02
two-tailed, p > 0.05), only in the change in trust discussed
above did the results differ across conditions.

Participant Confidence Weanalyzed the average reported
answer confidence over the 9 videos and found that it was
slightly higher in the “Lights on” condition as compared to
the “Ligths off” condition (2.9 vs. 3.17 respectively on a
5-point Likert scale). However, this difference was not sta-
tistically significant (t (40) = ±2.02 two-tailed, p > 0.05).
Similarly, no statistical significance was found when com-
paring reported confidence on a per video basis.

6.2.6 Discussion

The significant effect of scenario on response accuracy shows
that some questions were harder than others. This was not
unexpected, since some scenariosweremore ambiguous than
others. The four answer choices presented for each question
were designed by us and it was inevitable that some choices
were more obvious to choose or to eliminate depending on
the scenario and the question asked.

Furthermore, it is to be noted that all of our videos inten-
tionally lacked obvious contextual clues. Lack of such clues
is a usual situation when encountering a mobile robot like
CoBot. Visitors often encounter the robot for the first time
and interact with it with no knowledge at all about its capa-
bilities, current state, or expectations from humans. Another
example iswhenCoBot is stoppedwaiting for help (e.g., at an
elevator). In such cases, looking at the robot from afar does
not give much insight about what the robot’s state, unless
other visual cues are present.

Moreover, our three animations, originally designed for
a specific scenario, are shown to generalize well to other
similar scenarios. Some scenarios (like P3 and W3) even
outperform the scenario used for the design of the light ani-
mations. We attribute the success of such generalizability to
the abstraction used in these animations.
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Fig. 17 Comparison of the
accuracies on each scenario
across the two study conditions
(error bars constructed using a
95% confidence interval;
statistical significance shown
used t-test). (Color figure
online)

Furthermore, the fact that no significant changes in partic-
ipants confidence was observed between the two conditions
might be due to the fact that participants in one condition
were unaware of the other condition which might have made
all confidence reports average out around the mean score. It
might be interesting to see if these results change in a within-
subject study of the same type. The confidence people have
on hypothesizing about a robot’s state and actions is in fact
an important factor to have in mind when designing robotic
systems, especially safety-critical ones (such as for example
self-driving cars).

Finally, it is important to note that the design of our study
places the participants as a third person observing an interac-
tion and not being part of it. Even though this design choice
was made to isolate our measure of legibility, which could
have otherwise been compromised by aspects such asmotion,
proximity, field of view, and so on, we could expect different
results in a real world interaction, especially when it comes
to trust. It would be interesting to investigate a more care-
ful study of trust in a specifically designed task that would
involve different animations, in the context of human–robot
collaboration.

6.3 Experiment: Impact on Human Behavior

In order to evaluate the impact of the robot body lights on
people’s behavior with respect to the robot, we conducted
a small observational study to evaluate whether the pres-
ence of lights influenced people to help CoBot at an elevator
by pressing the elevator button. The experiment was run
in the Computer Science (CS) building of our university,
which is mainly populated by CS students and faculty, but
also non-CS students, staff and visitors (exact participant
background information was not gathered for this experi-
ment).

6.3.1 Experimental Procedure

CoBot was placed in front of the elevator with the following
text on its screen: “Can you please press the elevator button
for me to go up?”. We had two experimental conditions:

– Condition “Lights on”: in this condition, the lights were
on and displaying our designed animation for the ‘eleva-
tor waiting’ scenario.

– Condition “Lights off”: in this condition, the lights were
off and the only indication that the robot needed help
pressing the elevator button was the on-screen text.

The experimenter was sitting in the elevator area at a dis-
tance permitting accurate observation while not making the
participants feel that they were being observed. The only
information recordedwaswhether or not the person provided
help to the robot. It was coded as a binary variable ‘help’,
where ‘1’ means help was provided and ‘0’ means no help
was provided.

The experiment was run over three different floors of
our building (labeled GHC6, GHC7, and GHC8), which
had slightly different elevator area architectures and differ-
ent people. Both conditions were run over each floor, with
the order of the conditions randomized and counterbalanced
across floors.

6.3.2 Data Filtering

Because the human dynamics around elevator areas can be
complex, we had to filter our data according to some criteria,
listed below:

– We filtered out people who passed across the robot from
the back, since it would be hard for them to see what the
screen said.
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– If therewas at least one personwaiting at the elevator, any
behavior from the passing people was discarded since the
presence of people at the elevator might have interfered
with people’swillingness to help the robot (e.g., diffusion
of responsibility effects).

– People who were not only passing across the elevator but
planned to get on it were filtered out, unless they pur-
posefully pressed the button in the reverse direction they
were going to help the robot (i.e., pressing the ‘up’ button
for the robot and the ‘down’ button for themselves).

– If the ‘up’ elevator buttonwas already pressed and people
showed a clear intent of pressing it again without actually
pressing it, they were included.

According to our filtering criteria, we gathered a total of
10 data points for each floor/condition, resulting in a total of
60 participants.

6.3.3 Results and Discussion

Table 6 shows the results for the three floors.We observe that
the presence of lights has a statistically significant impact
on humans helping CoBot (t (58) = ±2.00 two-tailed,
p = 0.007). We attribute this difference to two factors:
first, the fact that the animation for this scenario is legible
as shown in our legibility study; second, the fact that the
animation was effective at grabbing people’s visual atten-
tion in addition to the other contextual clues that the robot
is in need of help such as the on-screen text and the posi-
tion and orientation of the robot close to the elevator. While
only 23.3% of people provided help to CoBot with lights
off, 56.7% provided help when the lights were on. The effect
was more or less pronounced according to the floor, which
we may attribute to different factors such as familiarity with
the robot, architectural differences between the floors that
might affect visibility, and time of the day.

This study demonstrated in a single scenario that expres-
sive lights, beyond legibility of expression (evaluated in
user study 2), can have an actual impact on the behavior of
humans around robots. In the elevator help scenario, expres-
sive lights enabled better collaboration between the robot
and the human, even when the humans who provided help
were not the ones who requested the service from the robot
(and hence, they are not getting anything in return from the
robot by providing help to it). It would be interesting to see
what behaviors are observed with/without expressive lights
in a scenario where the human may get some benefit from
not helping the robot (such as not wanting to move away
from the path of the robot in order to play with it). Those
results may or may not generalize, especially depending on
the background of the person interacting, but a more careful
investigation is definitely needed to hypothesize about those
less simplistic scenarios.

Table 6 Proportion of people who helped the robot in the two experi-
mental conditions across the three floors

Floor Lights on Lights off

GHC7 7/10 1/10

GHC6 4/10 3/10

GHC8 6/10 3/10

Total (%) 56.7% 23.3%

6.4 Section Summary

In this section, we have presented three user studies which
evaluate the behavior of CoBot’s body light strip.

The first study informed our design of light animations for
three different scenarios (waiting at an elevator, blocked by
a human obstacle, and escorting a person). We asked experts
to provide their top choice from a ‘catalog’ of available light
animations, speeds, and colors.

The second study validated the legibility of the designed
animations, as well as their generalizability to scenarios sim-
ilar to the ones used in the design process. It mainly showed
that the presence of lights has a significant impact on naive
people’s understanding of the robot in diverse situations.

The third study was a small real-world experiment which
proved that these lights can have a real impact on people’s
behavior with regard to the robot. It showed that people
were significantly more likely to provide help to a robot with
expressive lights in a simple scenario.

7 Conclusion

This paper has focused on enabling robots to effectively com-
municate information about their state through the use of
expressive lights. We focused on three main aspects of such
communication modality in relation to robot state, summa-
rized below.

First, we came up with informative expressive behaviors
of the robot’s state by: (1) selecting from it user-relevant
elements as a function of situation and context, and (2) map-
ping them to the elements of our expression channel, namely
expressive lights.

Second, we designed these expressive behaviors, namely,
light animations, ensuring they are legible, such that they
require minimal or no training to be understood by first-time
users. We informed our design choices by both design and
evaluation user studies.

Our technical contributions can be summarized as follows:

– An efficient representation for robot state information
which builds upon robot variables and state features to
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form structures suited for expression which we call ani-
mation tuples,

– A formal framework for light animation control which
divides the animation space into a finite set of signal
shapes with associated parameters related to dynamics,
color, intensity, and spatial indexing. An episodic ani-
mation control algorithm is used to render animatable
structures (complete animation tuple sets) into anima-
tion frames on a digital LED strip. Although the analysis
is focused on addressable light strips, it easily generalizes
to other forms of light arrays,

– A design study to investigate the design (parameter selec-
tion) of animating robot state through expressive lights,
and

– Two evaluation studieswhich show that expressive lights
on a robot can increase understanding of robot states and
actions, but also have an influence on the behavior of
humans interacting with the robot.

The formalismof both state representation andmapping as
well as light animation control was made general enough to
be easily utilized in different robots or technological devices,
as well as different types of animated light sources. In this
work, it was used to map the state of the mobile service robot
CoBot to two light strips expressing different types of infor-
mation about the robot’s state. Our design and evaluation
studies focused on a single light strip, with three light ani-
mations that were applied to three classes of scenarios. We
are confident that other similar scenarios on mobile robots
with different tasks and services, or even different types of
robots, could benefit from using legible expressive lights in a
way similar to what was done in this work, to enable a better
understanding of the robot’s operation, goals, and knowl-
edge. Beyond legibility, even though we only touched on the
effect of those lights on the idea of trust, it is of pressing
importance to understand in the future how such a communi-
cationmodality is able to positively or negatively affect more
sophisticated measures of trust, but also collaboration, rap-
port, attachment, and more, in both short-term and long-term
interactions.

Finally, the natural extension of this work is its appli-
cation to truly multimodal robot expression. With multiple
modalities, there is a problem of distributing expressive
behaviors across different heterogeneousmodalitieswith dif-
ferent capabilities and limitations.Also, investigating aspects
of redundancy and complementarity will be important since
modalities, relating to the same system, cannot be treated
as completely independent. Along these lines, there is also
the problem of synchronization between different modali-
ties, especially when two modalities use the same physical
resource (e.g., sound and speech, functional and expressive
motion).
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