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Abstract 

Decision-tree algorithms are known to be unstable: small variations in the training 

set can result in different trees and different predictions for the same validation examples.  

Both accuracy and stability can be improved by learning multiple models from bootstrap 

samples of training data, but the “meta-learner” approach makes the extracted knowledge 

hardly interpretable. In the following paper, we present the Info-Fuzzy Network (IFN), a 

novel information-theoretic method for building stable and comprehensible decision-tree 

models.  The stability of the IFN algorithm is ensured by restricting the tree structure to 

using the same feature for all nodes of the same tree level and by the built-in statistical 

significance tests.    The IFN method is shown empirically to produce more compact and 

stable models than the “meta-learner” techniques, while preserving a reasonable level of 

predictive accuracy.   

Keywords. Decision trees, info-fuzzy network, stability, similarity, classification 

accuracy, output complexity, multiple models. 
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1. Introduction 

As indicated by Breiman et al. (1984), decision-tree models have two goals: 

producing an accurate classifier and understanding the predictive structure of the 

problem. Though the classification accuracy of decision trees has been a subject of 

numerous studies, the second goal is also important for the knowledge discovery process, 

which focuses on “finding understandable patterns that can be interpreted as useful or 

interesting knowledge” (Fayyad et al., 1996).  Consequently, several methods (like 

C4.5RULES by Quinlan, 1993) have been developed for converting a decision tree into a 

set of interpretable rules. 

The patterns induced from the training data by a data mining algorithm are 

expected to be valid on a new sample extracted from the same population with some 

degree of certainty (Fayyad et al., 1996).  The assumption of algorithm stability in terms 

of overall misclassification rates is the basis for the very common method of cross-

validation, where multiple classifiers are constructed by using partially overlapping 

subsets of the training set (see Breiman et al., 1984).  However, as pointed out by the 

authors of the leading books on decision tree learning (Breiman et al., 1984 and Quinlan, 

1993), existing methods of constructing decision trees from data suffer from a major 

problem of instability.  The symptoms of instability include variations in the predictive 

accuracy of the model and in the model topology.  Instability can be revealed not only by 

using disjoint sets of data, but even by replacing a small portion of training cases, like in 

the cross-validation procedure.   If an algorithm is unstable, the cross-validation results 

become estimators with high variance (Liu and Motoda, 1998), which means that an 



Last, Maimon, Minkov: Improving Stability of Decision Trees 

 3

algorithm fails to make a clear distinction between persistent and random patterns in the 

data, a phenomenon known as overfitting (see Mitchell, 1997).  

Formally, semantic stability of a classification algorithm is defined by Turney 

(1995) as the degree to which an algorithm generates repeatable results, given different 

batches of data from the same process. In mathematical terms, stability is the expected 

agreement between two models on a random sample of the original data, where 

agreement on a specific example means that both models assign it to the same class.  The 

instability problem raises questions about validity of a particular tree, provided as an 

output of a decision-tree algorithm.  The users view the learning algorithm as an oracle.  

Obviously, it is difficult to trust an oracle that says something radically different each 

time you make a slight change in the data. 

There are different ways of dealing with the issue of instability.  Thus, Breiman et 

al. (1984) suggest that the sequence of alternative trees be inspected by experts, who can 

use their domain knowledge to select the best tree.  This option is readily available with 

the CART method, which builds an “efficiency frontier” of decision trees.  The C4.5 

algorithm (Quinlan 1993) produces only one tree in each run.  Consequently, Quinlan 

recommends the “windowing” approach, which generates a single classifier from 

alternative trees based on several samples.  Obviously, both approaches require an extra 

computational and human effort. 

Decision-tree methods are not the only unstable classifiers.  According to 

Breiman (1996), neural nets and regression trees are also unstable while k-nearest 

neighbors algorithms are stable.  Several methods have been developed for combining 

multiple models to make more stable and accurate predictions.  One of the methods, 
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bagging (see Breiman, 1996 and Domingos, 1997b), builds each model by producing a 

new training set, where the original examples may appear more than once or not appear at 

all.  Another approach, boosting (Freund & Shapire, 1996), generates multiple classifiers 

by maintaining a weight for each instance.   As indicated by Domingos (1997a and 1998), 

the main drawback of the “multiple models” approach is making the extracted knowledge 

hardly comprehensible: combined models tend to be much more complex than each 

single model.  

One attempt to recover the lost comprehensibility of the multiple models is done 

by (Domingos, 1997a).  According to Domingos’ approach (called Combined Multiple 

Models, or CMM), a classifier is applied to a set of randomly generated examples, whose 

classes are predicted by the combined models.  The resulting model may be more 

complex than those produced by each single model, but, as shown by Domingos, it is 

much smaller than the meta-learned models.  Still, a significant computational effort is 

required for constructing a combined model.  Domingos evaluates the CMM method by 

using the semantic measure of stability (Turney 1995).   

Though semantic measures of stability are important for comparing performance 

of different types of classifiers (e.g., decision trees vs. Naïve Bayes), the user of a given 

learning algorithm may be interested in the syntactic stability as well.  As indicated 

above, algorithms are expected to produce similar sets of patterns from training samples 

based on the same distribution.  Since a concept is a function from the attribute space to a 

set of classes, syntactic stability is a sufficient condition for semantic stability (an 

identical concept will provide the same prediction for the same instance).  However, the 
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opposite is not true.  An algorithm may be semantically stable and still base its 

predictions upon different concepts. 

Syntactic similarity of decision trees is related to a well-known graph-theoretic 

problem of tree matching (e.g., see Kilpeläinen, 1992 and Pelillo, 1999).  Tree matching 

is concerned with finding the instances of a given pattern tree in a given target tree 

(Kilpeläinen, 1992).  Subtrees detected by graph matching may be much smaller than the 

size of the target tree and even their labels may be completely different.  Decision tree 

performance depends mainly on the total number of nodes, the labeling of each internal 

node in terms of tested attributes and their values, and the labeling of terminal nodes in 

terms of predicted classes. If labeling is ignored, two trees of identical structure may 

produce completely different predictions for the same instances.  Moreover, having one 

decision tree as a subtree of another decision tree may have a negligible effect on the 

overall tree performance.  Consequently, the problems of tree matching, tree inclusion, 

and sub-tree isomorphism are different from the problem of decision-tree similarity. 

In this paper, we evaluate syntactic complexity and semantic stability of a new 

classification algorithm, termed IFN for Info-Fuzzy Network, initially introduced by us in 

(Maimon and Last, 2000).  The IFN method produces decision-tree models, which are 

based on a minimal number of predicting features.  The induction procedure combines 

statistical significance testing (essential for the model stability) and dimensionality 

reduction, which keeps the model as simple as possible.  The second letter in the method 

name (“F”) stands for a post-processing module, based on fuzzy logic, which calculates 

reliability of target values (see details in Maimon and Last, 2000).  Post-processing 
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operations are beyond the scope of this paper, since they have no impact on the structure 

of the network and its stability. 

An outline of the IFN method is presented in the next section (2), where it is also 

compared to similar techniques for constructing trees and networks. Afterward, we use 

benchmark data from (Domingos, 1998) to compare the performance of the IFN 

algorithm to meta-learning methods, which are known for their stability and accuracy.  

The paper concludes with summarizing the obtained results and discussing some 

directions for future research. 

2. Info-Fuzzy Network 

2.1 Connectionist Network Structure 

We model the association between the input (predicting) attributes and the target 

(dependent) attribute by the Information-Theoretic Fuzzy Network (IFN).  The 

components of the network include the following: 

1) I - a subset of input (predicting) attributes used by the model.  The network 

construction algorithm selects input attributes from a set C of candidate input 

attributes (available features). 

2) |I|  - total number of hidden layers (levels) in the network.  Each hidden layer is 

uniquely associated with a single input attribute by representing the interaction of 

that attribute and the input attributes of the previous layers.  The first layer (Layer 

0) includes only the root node and is not associated with any input attribute.  

Unlike the decision-tree topology implemented by Breiman et al. (1984) and 
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Quinlan (1986 and 1993), the hypothesis space of the IFN method is limited to 

testing the same feature at all nodes of a given layer.  A similar idea was 

previously used in Kohavi and Li (1995) for constructing “oblivious decision 

graphs.”  The unique features of our method are discussed in sub-section  2.5 

below. 

3) Ll - a subset of nodes z in a hidden layer l.  Each node represents a conjunction of 

values of the first l input attributes in the network. 

4) K - a subset of distinct target nodes in the network.  If the target (dependent) 

attribute is nominal, each target node is associated with a distinct category or a 

class. For continuous target attributes, the target nodes represent disjoint intervals 

of the attribute domain.   A target layer is missing in the standard decision trees, 

but it is included in decision graphs (Kohavi and Li, 1995) and artificial neural 

networks (see Mitchell, 1997).  

5) (z, j)- a connection between a terminal (unsplit) node z and a target node  j. Each 

connection represents a probabilistic rule of the form “if node is z then the value 

of the target attribute is j with probability P (Vj /z),” and it has an information-

theoretic weight associated with it (see Maimon and Last, 2000).  The output of 

standard decision-tree methods (like CART and C4.5) contains deterministic 

classification rules only (one rule per each terminal node). 

Figure 1 below shows an Info-Fuzzy Network induced from the Credit 

(“Australian”) Dataset. The connectionist nature of the IFN model (each terminal node is 

connected to every target node) resembles the structure of multi-layer neural networks, 

which also have connections between input, hidden, and output nodes.  Consequently, we 
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define our system as a network and not as a tree.  However, info-fuzzy networks differ 

from neural networks in that weights are defined only for the connections to the target 

layer (see Figure 1), while internal connections are associated with values or intervals of 

input attributes and do not have any weights at all.  A neural network has, in contrast, a 

weight associated with every inter-layer connection. 

A standard decision tree can easily be extracted from the IFN structure by 

removing the target layer and associating a single classification rule with each terminal 

node in the network (see sub-section  2.4 below).  The induction algorithm for 

constructing an Info-Fuzzy Network from data is described in the next sub-section. 
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Figure 1 IFN Example 1: Credit Dataset 

2.2 Network Construction Procedure 

The network construction algorithm starts with defining the target layer, where 

each node stands for a distinct target value (class), and the “root” node representing an 
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empty set of input attributes. The connections between the root node and the target nodes 

represent unconditional  (prior) probabilities of the target values.   Unlike CART (see 

Breiman et al. 1984) and C4.5 (Quinlan, 1993), IFN is built only in one direction (top-

down).  After the construction process is stopped, there is no bottom-up post-pruning of 

the network branches.   The process of pre-pruning the network is explained below 

A node is split only if it provides a statistically significant increase in the mutual 

information of the node and the target attribute. Mutual information, or information gain, 

is defined as a decrease in the conditional entropy of the target attribute (see Cover, 

1991). If a tested feature is nominal, the splits correspond to the feature values.  Splits on 

continuous features represent thresholds, which maximize an increase in mutual 

information.  For each layer, the algorithm re-computes the best threshold splits of 

continuous attributes and chooses an input attribute (either discrete, or continuous), 

which provides the maximum overall increase in mutual information across all nodes of 

the final layer. 

If the maximum increase in mutual information is greater than zero, a new hidden 

layer is added to the network. The nodes of a new layer are defined for a Cartesian 

product of split nodes of the previous final layer and the values of a new input attribute.  

According to the chain rule (see Cover, 1991), the mutual information between a set of 

input attributes and the target (defined as the overall decrease in the conditional entropy) 

is equal to the sum of drops in conditional entropy across all the hidden layers.    If there 

is no candidate input attribute significantly decreasing the conditional entropy of the 

target attribute, no more layers are added and the network construction stops. 
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Information-theoretic criteria for choosing the best attribute are used by several 

decision-tree algorithms, like ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993), CART 

(Breiman et al., 1984), and EODG (Kohavi and Li, 1995).  However, the IFN algorithm, 

unlike most other methods, tests the statistical significance of the entropy change. We 

should note here that the significance of the chi-square test has been used as a stopping 

criterion in the original version of the ID3 algorithm (Quinlan, 1986), but later versions 

of Quinlan’s method have abandoned this test by turning to the post-pruning approach 

(see Quinlan, 1993).   

The main steps of the construction procedure are summarized in Table 1. 

Complete details are provided in (Maimon and Last, 2000). 
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Table 1 Network Construction Algorithm 

Input: The set of n training instances; the set C of candidate input attributes (discrete and 
continuous); the target (classification) attribute Ai; the minimum significance level sign 
for splitting a network node (default: sign = 0.1%). 

Output: A set I of selected input attributes and an information-theoretic network.  Each selected 
input attribute has a corresponding hidden layer in the network. 

Step 1 Initialize the information-theoretic network (single root node representing all records, 
no hidden layers, and a target layer for the values of the target attribute). 

Step 2 While the number of layers |I| < |C| (number of candidate input attributes) do 
Step 2.1 For each candidate input attribute Ai’ /Ai’ ∈ C; Ai’∉ I do 
 If Ai’ is continuous then 

Return the best threshold splits of Ai’. 
Return statistically significant conditional mutual information 
cond_MIi’ between Ai’ and the target attribute Ai. 

End Do 
Step 2.2 Find the candidate input attribute Ai’* maximizing cond_MIi’ 
Step 2.3 If cond_MIi’* = 0, then 

End Do.   
Else  

Expand the network by a new hidden layer associated with the attribute 
Ai’, and add Ai’ to the set I of selected input attributes: I = I ∩ Ai’. 

Step 2.4 End Do 
Step 3 Return the set of selected input attributes I and the network structure 

 



Last, Maimon, Minkov: Improving Stability of Decision Trees 

 12

The algorithm calculates the conditional mutual information of a candidate input 

attribute Ai’ and a target attribute Ai, given a node z, by the following formula (based on 

Cover, 1991): 
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where 

Mi / Mi’ - number of distinct values of the target attribute Ai /candidate input 

attribute Ai’ respectively.   

P (Vi’j’/ z)  - an estimated conditional (a posteriori) probability of a value j’ of the 

candidate input attribute Ai’ given the node z  (also called a relative frequency estimator) 

P (Vij/ z) - an estimated conditional (a posteriori) probability of a value j of the 

target attribute Ai given the node z. 

P (Vi’j’
ij/ z) - an estimated conditional (a posteriori) probability of a value j’ of the 

candidate input attribute Ai’ and a value j of the target attribute Ai given the node z. 

P (Vij; Vi’j’; z) - an estimated joint probability of a value j of the target attribute Ai, 

a value j’ of  the candidate input attribute Ai’, and the node z. 

The statistical significance of the estimated conditional mutual information, is 

evaluated by using the likelihood-ratio statistic (based on Attneave, 1959): 

G2 (Ai’ ; Ai / z) = 2•(ln2)• E*(z) • MI (Ai’ ; Ai / z) (2) 

Where E*(z) is the number of records associated with the node z 

The Likelihood-Ratio Test (see Rao and Toutenburg, 1995) is a general-purpose 

method for testing the null hypothesis H0 that two discrete random variables are 
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statistically independent. For example, if the customer credibility is independent of 

his/her other investments in the bank, the proportion of credible customers among those 

having other investments should be equal to their proportion among those who do not.  

The Likelihood-Ratio Test is directly related to the information theory, since 

independence of two attributes implies that their expected mutual information is zero.  If 

H0 holds, then the likelihood-ratio test statistic G2 (Ai’; Ai / z) is distributed as chi-square 

with (NIi’ (z) - 1)•( NTi (z) - 1)  degrees of freedom, where NI i’ (z)  is the number of 

distinct values of a candidate input attribute Ai’ at node z and NT i (z) is the number of 

distinct values of the target attribute Ai at node z.  The default significance level (p-value) 

used by the information-theoretic algorithm is 0.1%.  We have found empirically that in 

most datasets, higher values of the p-value tend to decrease the generalization 

performance of the network. 

2.3 Computational Complexity 

The computational complexity of the network construction procedure is 

calculated by using the following notation: 

n - total number of instances in a training data set 

|C| -  total number of candidate input attributes 

m= |I| -number of hidden layers (input attributes), m ≤ |C| 

p = m/|C| - portion of input attributes selected by the algorithm  

MT - maximum domain size of a target attribute (maximum number of classes) 
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The computational “bottleneck” of the algorithm is calculating the estimated 

conditional mutual information between every binary partition of a candidate input 

attribute and a target attribute, given a hidden node.   Since each node of m-th hidden 

layer represents a conjunction of values of m input attributes, the total number of nodes at 

a layer m is apparently bounded by (Mc) m.  However, we restrict defining a new node by 

the requirement that there is at least one instance associated with it.  Thus, the total 

number of nodes at any hidden layer cannot exceed the total number of instances (n).  In 

most cases, the number of nodes will be much smaller than n, due to instances having 

identical values and the statistical significance requirement of the likelihood-ratio test. 

The calculation of the conditional mutual information is performed at each hidden 

layer of the information-theoretic network for all candidate input attributes at that layer.  

The number of possible partitions of a continuous attribute is bounded by nlog2n (Fayyad 

and Irani, 1993).  For every possible partition, the conditional information is summarized 

over all nodes of the final layer. This implies that the total number of calculations is 

bounded by: 

∑
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The actual number of calculations will be usually much smaller than this bound, 

since the number of tested partitions may be less than the number of distinct values 

(resulting from the likelihood-ratio test).  The number of distinct values, in turn, may be 

much lower than the total number of records (n).  Thus, the run time of the search 

procedure is quadratic-logarithmic in the number of records and quadratic polynomial in 
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the number of initial candidate input attributes.  Moreover, it is reduced by the factor of 

p(2-p).  

2.4 Prediction with IFN 

The predicted value (class) of the target attribute Ai in a new instance can be 

found by traversing an info-fuzzy network in the following way: 

Step 1 - Start with the root node (z = 0) and an empty set of input 

attributes (m = 0). 

Step 2 - If the node is a terminal node, go to Step 5.  Otherwise, go to next 

step. 

Step 3 - Increment the number of input attributes (m = m+1) and calculate 

the next hidden node z by the value of the input attribute m in an instance. 

Step 4 - Go to Step 2. 

Step 5 - Get the predicted value j* of the target attribute Ai at the node z by the 

maximum a posteriori rule:  j* = )}/({max arg
j

zVP ij , where P (Vij/ z) is an estimated 

conditional probability of a value j of the target attribute Ai, given the node z.   

As shown above, IFN can be used to predict values (classes) of target attributes in 

a manner, similar to the approach of other decision-tree methods. 

2.5 Comparison to Related Methods 

Though traditional methods of neural network training, like Back-Propagation, 

are aimed at determining the values of the connection weights in a given network, there 
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are some techniques to dynamically modify the network structure itself.  The Cascade-

Correlation algorithm (Fahlman and Lebiere, 1991) is one such technique.  Cascade-

Correlation starts with a minimal network having only input and output units (nodes) and 

it creates a multi-layer structure by adding single-unit layers to the network one by one.  

The network construction continues until the error is acceptably small or the maximum 

number of iterations is exceeded. Increasing the number of units in each layer can reduce 

the depth of a cascade-correlation network (see Phatak and Koren, 1994). The main 

differences between Cascade-Correlation and IFN include the model architecture (the 

layers of a neural network are not associated with specific features) and the lack of any 

statistical significance tests in the Cascade-Correlation methods.  

Cios and Liu (1992) have proposed an algorithm, called Continuous ID3 (CID3), 

which combines the concepts of neural network architecture and decision-tree learning.  

The CID3 algorithm incrementally generates a multi-layer network, where each hidden 

layer is associated with a decision tree grown by the ID3 algorithm (Quinlan, 1986).  ID3 

is trained on extracted features calculated as linear combinations of the original features 

(hyperplanes).  Each new node in a hidden layer represents an extracted feature. The 

algorithm finds the combination weights that minimize the information entropy at a given 

level of a decision tree. To further reduce the entropy, a new node is added to the same 

layer and or a new layer is added to the network.  The network construction stops, when 

the entropy converges to zero.  Unlike IFN, CID3 is limited to continuous input 

attributes.  Since CID3 is using a linear combination of all input attributes, it does not 

reduce directly the number of original features.  In addition, CID3 does not test the 

statistical significance of the entropy values. 
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The idea of using a restricted set of features in each layer of a decision tree is 

implemented in the conditional cluster tree constructed by the Conditional Rule 

Generation (CRG) algorithm (Bischof and Caelli, 1994).  The algorithm generates rules, 

which satisfy domain-specific compatibility constraints that are completely ignored by 

fully automated learning methods.  The IFN method also restricts the features to be used 

in each layer of the network, but, unlike CRG, IFN does not use any domain knowledge 

and it selects the relevant features automatically. 

The most popular methods for automated construction of decision trees include 

ID3 (Quinlan, 1986), CART (Breiman et al., 1984), and C4.5 (Quinlan, 1993).  All these 

algorithms grow a tree by recursive partitioning of a subset of training instances. 

Consequently, the features used by different generated rules, as well as their ordering, 

may be completely different.  The only exception is the EODG algorithm (Kohavi and Li, 

1995), which requires all the nodes of a given layer to be split on the same feature. Table 

2 compares between the IFN construction procedure, the “classical” decision-tree 

methods (CART and C4.5), and the EODG algorithm.  According to the table, the unique 

features of IFN include the use of conditional mutual information as a feature selection 

criterion in each layer, multi-way splits of continuous attributes, and pre-pruning by the 

likelihood-ratio test. 
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Table 2 Comparison of Decision-Tree Algorithms 

Property CART / C4.5 EODG IFN 

Tree construction 
strategy 

Recursive partitioning 
of a subset of training 
instances at each node 

Repetitive partitioning 
of all training instances 
in every level 

Repetitive partitioning 
of all training instances 
in every layer (except 
for instances at unsplit 
nodes) 

Feature selection The best feature is 
selected for every node 

All nodes in a given 
level are split on the 
same feature 

All nodes in a given 
layer are split on the 
same feature 

Splitting criteria CART: Gini, Twoing, 
Entropy 

C4.5: Gain Ratio 

Adjusted Mutual 
Information 

Conditional Mutual 
Information  

Splits on continuous 
features 

Binary (threshold) splits 
only 

The same feature may 
be tested at different 
levels 

Binary (threshold) splits 
only 

The same feature may 
be tested at different 
levels 

Multi-way splits 

The same feature is not 
tested at more than one 
layer 

Pre-pruning criteria Minimum number of 
cases for each outcome 
at a node 

The instances are split 
on all features 

Likelihood-Ratio Test 

Post-pruning criteria CART: cost-complexity 
pruning 

C4.5: Reduced error 
bottom-up pruning 

Bottom-up error-based 
pruning 

Top-down merging of 
nodes 

No post-pruning 

Target layer No Yes Yes 

 

Turney (1995) proposes three main ways to improve stability of a given learner, 

namely: increasing the number of training examples, increasing the strength of the 

algorithm bias, and memorizing previously learned concepts.  If the size of the training 

set is limited, applying a bias is necessary for maintaining the algorithm’s stability.  The 

IFN methodology is an attempt to implement a stable learning algorithm by introducing 

an exclusive, or restriction bias (see Mitchell, 1997) against decision trees that use 

different attributes at the nodes of the same level.  In the next section, we evaluate the 
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correctness of the IFN algorithm vs. other decision-tree methods in terms of accuracy, 

stability, and complexity.  

3. Empirical Results 

A meta-learning approach, called bagging (see Breiman, 1996) can improve the 

accuracy of unstable methods, like neural networks and decision trees.  However, the 

resulting model is hardly comprehensible and, thus, cannot be used for efficient 

knowledge extraction.  Domingos (1997a and 1998) has developed a method, called 

CMM, for simplifying the output of meta-learners. Domingos is using the output size of 

the extracted rule set as a measure of model description length.  The output size is 

calculated by counting one unit for each antecedent and each consequent of every rule.  

In his paper, Domingos has shown on 26 representative datasets that CMM’s complexity 

is usually a small multiple of C4.5 RULES (2-6), while it produces more stable and 

accurate results. Stability was evaluated by the following semantic measure of agreement 

based on (Turney, 1995): 
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where ne is the number of testing examples randomly generated from the original 

instance space, nr is the number of train-test runs (each producing a classification model 

from a subset of the original dataset), and agreeeij is 1 if models i and j predicted the same 

class for a testing example e, and 0 otherwise.  Intuitively, Stab represents the percentage 

of pairwise agreements between the models over a set of testing examples. 
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Table 3 Empirical Results: Predictive accuracy  

      Attributes      Predictive Accuracy 

Dataset Records Classes Continuous Nominal TotalCMM Bagging C4.5RULES IFN 

Credit 690 2 6 8 14 87.5±1.1 88.3±0.8 86.2±1.1 84.1±1.0 

Diabetes 768 2 8 0 8 75.5±0.9 76.4±0.9 73.6±0.8 72.2±1.0 

Glass 214 6 9 0 9 73.1±1.5 77.4±1.5 71.7±1.7 60.9±1.0 

Heart 270 2 6 7 13 81.8±1.5 80.2±1.7 78.0±1.7 75.8±1.1 

Iris 150 3 4 0 4 94.3±1.1 94.3±1.1 94.7±1.1 95.6±0.3 

Liver 345 2 6 0 6 66.0±1.8 69.6±1.9 63.7±1.4 63.7±1.7 

Lung -cancer 32 3 0 57 57 40.0±7.5 36.7±7.2 31.7±7.0 31.6±3.9 

Wine 178 3 13 0 13 94.2±1.0 95.8±1.0 94.7±1.6 90.4±0.9 

Average 330.9 2.9 6.5 9.0 15.5 76.55 77.34 74.29 71.79 

 

IFN has been applied to eight datasets, chosen randomly from Table 2 in 

(Domingos, 1998).  The left part of Table 3 in this paper shows the dimensionality of 

each dataset.  The datasets included in our experiments vary in the number of cases, the 

number and type of original features, and the number of target classes.  The right part of 

Table 3 compares the predictive accuracy of IFN to the methods covered by Domingos’ 

paper (CMM, Bagging, and C4.5RULES).  To estimate IFN predictive accuracy , we 

have performed 10 runs of 10-fold cross-validation, each based on a different random 

partitioning of the data set.  The confidence intervals of the mean predictive accuracy  

have been calculated for the 0.95 confidence level, using t-distribution with n-1 degrees 

of freedom, where n is the number of 10-fold cross-validation runs (10).  As expected, the 

bias of IFN towards single-feature layers affects its predictive accuracy.  The IFN’s 

average accuracy is lower than CMM’s accuracy by almost 5%.  Only in one dataset out 

of eight (Iris), the IFN predictive accuracy is significantly higher than the average 

accuracy of the three other methods.  As indicated several times in this paper, accuracy is 
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not the only objective of learning from data.  The performance of the algorithms with 

respect to two other measures (complexity and stability) is evaluated below. 

Table 4 Empirical Results: Output Size and Stability (** - 99% significant difference vs. CMM) 

  Output Size Stability         

Dataset CMM Bagging C4.5RULES IFN CMM Bagging C4.5RULES IFN   

Credit 104.9 2181.2 49.4 13 89.7% 90.6% 81.4% 92.5% ** 
Diabetes 82.4 3476.6 38.9 31 83.1% 85.4% 76.3% 87.1% ** 
Glass 214.6 1740.5 61.8 40 67.1% 70.5% 69.3% 78.2% ** 
Heart 177.7 1396.9 48.5 35 80.2% 88.8% 75.1% 87.3% ** 
Iris 17.6 303.5 11 6 96.0% 96.9% 99.2% 97.4% ** 
Liver 116.1 2329.9 53 13 82.1% 85.0% 70.6% 85.6% ** 
Lung-
cancer 

198.8 255.2 9.7 4 
55.0% 58.5% 52.9% 54.4%   

Wine 69.4 399.1 15 21 71.1% 79.4% 74.6% 96.7% ** 
Averag
e 122.69 1510.36 35.91 20.38 78.0% 81.9% 74.9% 84.9%   

 

The left part of Table 4 above shows the output complexity of different methods.  

IFN provides the smallest average output size (20 only vs. 123 for CMM and 36 for 

C4.5Rules), which, as shown above, is accompanied by a small loss of accuracy (about 

5% vs. CMM).  A 12% difference in predictive accuracy  (the Glass dataset) may justify 

a four times increase in the output size, but an improvement of about 3% only (Credit) 

can hardly support an eight times increase in the model complexity.  One should also 

remember that CMM is a time-consuming algorithm, which requires generation of 

multiple models based on original and artificially created data, while IFN is constructing 

a single model from the original data.  Unfortunately, (Domingos, 1998) does not present 

the actual run times of the CMM algorithm. 
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Semantic stability of the algorithms, based on (Turney, 1995), is presented in the 

right part of Table 4.  According to the obtained results, IFN is clearly the most stable 

method out of the four algorithms evaluated.  In seven datasets out of eight, IFN is more 

stable than CMM at the significance level of 99% and higher.  Only in one dataset (Lung-

Cancer) IFN is slightly less stable than the CMM method.  Thus, most IFN models are 

smaller and more stable than the models produced by three alternative methods, while 

maintaining a reasonable level of predictive accuracy. 

The case of the famous Iris dataset is particularly interesting: IFN predictive 

accuracy appears to be slightly higher than the accuracy of the other three methods. At 

the same time, IFN provides a smaller output size (six nodes only) and higher stability 

than the multiple-model methods (bagging and CMM).  Therefore, we present in Figure 2 

the network induced from this data set. The associated set of prediction rules is shown 

below: 

Rule No. 1   If Petal Length is between 1.0 and 3.0 then  Class is 1    

Rule No. 2   If Petal Length is between 3.0 and 4.8 then Class is 2    

Rule No. 3   If Petal Length is more than 4.8 then Class is 3    

As one can see from the network and the list of rules, the IFN method has left 

only one predicting attribute in the model (Petal Length) vs. two attributes (Petal Length 

and Petal Width) used by other methods like C4.5.  
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Figure 2 IFN Example 2: Iris Dataset 

4. Conclusions 

Decision trees are known as highly efficient tools of machine learning and data 

mining, capable to produce accurate and easy-to-understand models.  Poor stability is the 

“Achilles heel” of decision-tree methods.  The existing, computationally intensive 

approaches to the instability problem are based on combining multiple learners, which 

often comes at the cost of losing the model comprehensibility.  This paper describes a 

single-model method, called IFN, for building semantically stable and compact decision 

trees.  The proposed method is based on information-theoretic selection of predicting 

features and statistical significance testing as a method of model pre-pruning.  

Experimental results show IFN to be a promising approach to learning patterns from data.  

Improving the accuracy of the IFN models, while preserving their compact description 

length, is a subject for future research.  Another important issue is defining and 

evaluating syntactic, topology-related measures of decision tree stability. 
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