Computing 21, 273—294 (1979) Computing

© by Springer-Verlag 1979

Program Invariants as Fixedpoints

E. M. Clarke, Durham, North Carolina
Received July 27, 1977; revised May 5, 1978

Abstract — Zusammenfassung

Program Invariants as Fixedpoints. We argue that soundness and relative completeness theorems
for Floyd-Hoare Axiom Systems ([3], [5], [18]) are really fixedpoint theorems. We give a character-
ization of program invariants as fixedpoints of functionals which may be obtained in a natural
manner from the text of a program. We show that within the framework of this fixedpoint theory,
soundness and relative completeness results have a particularly simple interpretation. Completeness
of a Floyd-Hoare Axiom System is equivalent to the existence of a fixedpoint for an appropriate
functional, and soundness follows from the maximality of this fixedpoint. The functionals associated
with regular procedure declarations are similar to the predicate transformers of Dijkstra; for non-
regular recursions it is necessary to use a generalization of the predicate transformer concept
which we call a relational transformer.

Programminvarianten als Fixpunkte. Es wird dargelegt, dal die Sitze fiir Widerspruchsfreiheit
und Vollstindigkeit fir Systeme, die auf Floyd-Hoare-Axiomen basieren ([3], (5], (18]), tatsdch-
lich Fixpunktsitze sind. Die Programminvarianten werden als Fixpunkt-Funktionale charakterisiert,
die man auf natirliche Weise vom Programmtext herleiten kann. Es wird gezeigt, da innerhalb des
Rahmen dieser Fixpunkttheorie dic Ergebnisse beziiglich Widerspruchsfreiheit und Vollstandigkeit
eine besonders einfache Interpretation besitzen. Die Vollstindigkeit eines Floyd-Hoare-Axiomen-
systems ist Aquivalent zur Existenz eines Fixpunktes fir ein geeignetes Funktional. Die Wider-
spruchsfreiheit folgt aus der Maximalitit dieses Fixpunktes. Die Funktionale fir reguldre
Prozedurdeklarationen Ahneln Dijkstras Pridikat-Transformern. Fiir nichtregulire Rekursionen
braucht man eine Verallgemeinerung des Pridikat-Transformer-Konzepts, das hier relationaler
Transformer genannt wird.

1.
1.1 Background

Proof systems for correctness of computer programs may be treated as formal
logical systems. Of particular interest are deductive systems for partial correctness
based on the use of invariant assertions. Examples of such systems are described
by Floyd [10] and Hoare [14]. Formulas in Floyd-Hoare Axiom Systems are
triples {P} 4 {Q} where A4 is a statement of the programming language and P and
O are predicates in the language of first order predicate calculus (the assertion
language). A partial correctness formula {P} 4 {Q} is true iff whenever P is satis-
fied by the initial program state and 4 is executed, then either 4 will fail to terminate
or Q will be satisfied by the final program state. An axiom or rule of inference is
associated with each statement type in the programming language, €. g.

19 Computing 21/4 0010-485 X/79/0021/0273/$ 04.40

274 E. M. Clarke:

IPA b} AP

Proofs of correctness for programs are constructed by using the rules of inference
for the individual statements together with a proof system for the assertion
language.

Once a method of proof has been formalized, it becomes important to determine
which steps in the proof process are most difficult. With Floyd-Hoare Axiom
System experience shows that there are two main sources of difficulty: (1) choosing
the correct program invariants (e.g. P in the WHILE axiom above) and (2)
demonstrating the truth of formulas in the underlying assertion language. This
observation is justified by the work of Cook [3] on relative completeness
theorems for Floyd-Hoare Axiom Systems. Cook gives an axiom system for a
subset of Algol including the WHILE statement and nonrecursive procedures. He
proves that (a) if the assertion language satisfies a natural expressibility condition
which guarantees the existence of program invariants, and (b) if there is a complete
proof system for the assertion language (e.g. the set of true formulas of the
assertion language), then a partial correctness formula is true iff it is provable.
Extension of Cook’s work to other language features are discussed by Gorelick
{[13], recursive procedures), Owicki ([21], concurrent processes), Clarke ([2],
procedure parameters under various restrictions on scope of variables), and
Cherniavsky ([1], loop languages). Incompleteness results for language features,
such as call-by-name parameter passing, are given in Clarke [2] and in Lipton
and Snyder [17].

1.2 New Results of this Paper

Completeness results appear to be an important tool in investigations of program
correctness; however, many basic open questions remain about the derivation
and interpretation of such results. Although proofs of soundness and completeness
are often long and tedious, it seems that the underlying ideas are quite simple. Are
there general theorems from which many different completeness results may be
obtained as special cases? What is the relationship between Cook’s definition of
completeness and the definition of completeness used in the earlier work of
Manua [18] and deBakker and Meertens [5]? Gorelick [13], for example, has
sheswn that a set of three axioms gives completeness for a language with
carameterless recursive procedures. DeBakker and Meertens [5], on the other
hand, prove that an infinite pattern of inductive assertions is necessary to obtain
completeness for the same class of programming languages. Is there a way of
reconeiling these apparently contradictory results?

in tus paper we argue that the soundness and relative completeness theorems of
Caok e al are really fixedpoint theorems. We give a characterization of program
Unvohant, as maximal fixedpoints of functionals which may be obtained in a
vatird manner from the program text. We further show that within the frame-
woirn ol this fnedpoint theory soundness and relative completeness theorems have
4 wory simpie interpretation. Completeness of a Floyd-Hoare Axiom System is
Senvaient w e onistence of a byedpoint for un appropriate functional, and sound-

Program Invariants as Fixedpoints 275

ness follows from the maximality of this fixedpoint. Although fixedpoint techniques
were used in the study of program invariants as early as 1970 by Park [20], we
believe that this is the first discussion of the extremely close relationship that
exists between such fixedpoint results and the soundness and relative completeness
theorems of Cook and others.

The functionals associated with regular recursive procedures (i.e. flowchartable
recursions) are similar to the predicate transformers of Dijkstra ([8], [6], [12]).
In order to treat non-regular recursions we must generalize the notion of a
program invariant from a single predicate to a binary relation on predicates which
is preserved by procedure calls. The appropriate functional in this case is a
generalization of the predicate transformer concept which we call a relational
transformer. The relational transformer maps a programming language statement
into the partial correctness relation determined by that statement. Since this map-
ping is continuous, a fixedpoint theorem characterizing the partial correctness
relations of recursive procedures may be obtained.

1.3 Qutline of Paper

Section 2 describes a simple recursive programming language. Sections 3 and 4
contain the regular fixedpoint theorem and some of its applications. A general
fixedpoint theorem for program invariants applying to nonregular recursions
as well as regular recursions is given in Section 5. Applications of the general
{ixedpoint theorem, including a discussion of the relationship between the comple-
teness results of deBakker [5] and Gorelick [13], are given in Section 6. The paper
concludes with a discussion of the results and some remaining open problems.

2. A Simple Recursive Programming Language (RPL)

Any formal treatment of program correctness must include a discussion of the
underlying logical system in which the predicates describing a program’s behavior
are expressed. In this paper the underlying assertion language is a first order
language with equality which we denote by AL. An interpretation [for AL consists
of a set D {the domain of the interpretation), an assignment of functions on D to
the function symbols of AL, and an assignment of predicates on D to the predicate
symbols of 4L. Once an interpretation I has been specified, meanings may be
assigned to the variable-free terms and closed formulas of AL.

et ID be the set of identifiers (1.e. variables) of AL, and let I be an interpretation
jor AL with domain D. A program state is a mapping {from ID to D giving the
“value” associated with each identifier. We denote the set of all program states
by S0 1 is a term of AL with variables vy, x5, .. . x, and s is a program state, then
we use the notation 7 (s) to mean

SN L osyy)

NooLooo N

i

coothe term obtained from 1 by simultaneously subsututing s (x,) for x,, ..., 8(x,)
jor v Likewase we may define P is) where P is a formula of A L.

276 E. M. Clarke:

Frequently it will be convenient to identify a predicate P with the set
{s| I[P (s)]=true} of program states which make P true. If this identification is
made, then the power set 25 will be the set of all possible predicates, false will
correspond to the empty state set, and true will correspond to the set S of all
program states. Also logical operations on predicates can be interpreted as set
theoretic operations on subsets of S, i.e. “or” becomes “union”, “and” becomes
“intersection”, “not” becomes “complement”, and “implies” becomes “is a subset
of”. In general there will be many sets of states which are not expressible by
formulas of the assertion language AL.

An RPL program is a pair {E, A) where E is a list of procedure declarations and A
is a statement. Procedure declarations have the form: “PROC X =1” where X is
the procedure name and 1 is the body of the procedure (also a statement). A statement
is either a compound statement “(A,; A,)", a conditional statement “(b—A;, A,)",
an assignment statement “x:=e", a procedure call “X" where X is a procedure
name, or a null statement “NULL". To simplify the treatment of recursion we
also allow the undefined statement “Q”. We will require that the boolean expres-
sions of RPL conditionals be quantifier-free formulas of AL, and that the right-
hand sides of RPL assignment statements be terms in AL. Thus, side-effects are
not permitted as a consequence of arithmetic or boolean expression evaluation.

The meaning of an RPL statement 4 can only be described once an interpretation
I has been specified. Since the statement A may contain procedure calls, the mea-
ning of A also depends on the set E of procedure declarations in the program in
which A occurs. Relative to a particular interpretation I and set of procedure
declarations E, the meaning of 4 is a function M, ;[4]:8' =S (§'=Su{l]
where L represents undefined) which gives the effect of the execution of A on
the values of the identifiers occurring in A. There are many ways that M =M, g
can be defined — in terms of computation sequences as in [3] or as the least
fixedpoint of a continuous functional as in [6]. We will simply list a number of the
properties that M can be shown to satisfy regardless of the definition used.

2.1
Proposition:
(@) MQ]6s)=1
(b) M [NULL](s)=s
(i=e](s)=¢ e [y — s{vl, x=#v .
(c) M([x:=¢e](s)=5 where s [1/]_{1 e] 0.

(d) M[A; A)](s)=M [4,](M [4,]1(s)
Ly MLA (), seb
© M(b=A,. 4] “"*{M L1105 o
(fy M[X](s)=M [1](s) where X is a procedurc name and “PROC X=1"1is a
declaration in E.

Let PF be the set of partial functions from S to S. i.e. PF is the set of functions
f:8' =S such that f(L)=L1. Let f, f,e€PF; we write ;L[5 iff for all x,
£ (x)=L or fy (x)=f>(x). A sequence {f;};5, of functions in PF is a chain iff for

Program Invariants as Fixedpoints 277

all i, f;C fi+1. I {fi}iso is a chain of partial functions, then | | f; is the partial

function defined by iz0
,) y if there exists a j >0 such that f; (x)=y for i>}
xu‘/i)(x):{L Ji=yloriz]
50 0.W.

2.2

Proposition: Let X be a procedure name occurring in a program which contains
the procedure declaration “PROC X =1". Let the statement sequence {X'};.o

i

then

; X
be defined inductively by X%=Q, X'"'=1 ¥

i} the sequence {M [X ']}, isa chain in PF

) M[X]= u MI[XT.

[
Pariial correctness formulas will have the form {P} A {Q} where A is a program
statement and P and Q are formulas of the assertion language AL.

2.3
Definition: {P} A {Q} is true with respect to I (=, {P} A {Q}) iff
Vs,seS[seP AM[A](s)=5=5€Q].

If the interpretation I is clear from context we will simply write = {P} A {Q}.
WP [A](Q) will denote the weakest precondition for partial correctness correspon-
ding to the statement A and the post-condition Q. WP [A](Q) is characterized by

(i) = {WP[A](Q)} A {Q} and (i) |= {P} A {Q} == P->WP[A](Q). In terms
()= {WP[A](Q)} A {Q} and (ii) |= {P} 4 {Q}=|= P> WP[A](Q). In terms of the
meaning function M, WP [A1(Q) may be defined by WP[AN(Q) = {seSIM[A](s)=1
or M [4](s)e Q}. The weakest precondition WP [A](Q) may not be expressible by
a formula of the assertion language AL. Cook [3] demonstrates this in the case in
which the assertion language is Presburger arithmetic. Wand [25] gives another
example of the same phenomenon.

24

Definition: The assertion language AL is expressive with respect to the inter-
pretation I iff for all statements 4 and post-conditions Q in AL, there is a formula
of AL which expresses WP [A] (Q).

Subsequently we will see that expressibility insures the existence of invariants for
while loops and recursive procedures. Although some choices of AL and I do not
give expressibility, many realistic choices do give expressibility; if AL is the full
language of number theory and [is an interpretation in which the symbols of
number theory receive their usual meanings, then 4L will be expressive with
respect to I. Also if the domain of I is finite, expressibility is assured.

278 E. M. Clarke:

Likewise, SP[A](P) will denote the strongest post-condition corresponding
to statement A and precondition P. SP[A](P) is characterized by (i)
={P} A {SP[A](P)} and (ii) = {P} A {Q}=|=SP[4](P)—Q. SP[A4](P) may
also be defined in terms of the meaning function M: SP[A] (P)={M [A](s)| s € P}.
It is not difficult to show that weakest preconditions are expressible by formulas
of AL iff strongest post-conditions are also expressible. Thus an equivalent
definition of “expressive” may be given in terms of SP [4] (P).

If H is a Floyd-Hoare Axiom System and 7 is a complete proof system for the lan-
guage AL with respect to I (i.e. for the formulas of AL which are true under
interpretation I), then a proof in the system (H, T) will consist of a sequence of
partial correctness formulas {P} A {Q} and formulas of AL each of which is
either an axiom (of H or T) or follows from previous formulas by a rule of
inference (of H or T). If {P} A {Q} occurs as a line in such a proof, then we
write |— 5 4 {P} A {Q}. In a similar manner, we may define =, |- 4 ; 7, where m,
and 7, are sets of partial correctness assertions. If H and T are clear from

(L}

context, we will write “|—" instead of *|— 4 ;.

5

tn

Definition (Cook): A Floyd-Hoare Axiom System H for a programming language
PL is sound and complete iff for all AL, T, and I such that (a) AL is expressive
relative to I and (b) T is a complete proof system for AL with respect to I,
=1{P} A{Q}= |-y (P} A{Q}

3. The Regular Fixedpoint Theorem

This section contains the first of the two fixedpont theorems which are the main
technical results of the paper. These theorems characterize the invariants of a
recursive procedure as (pre-) fixedpoints of a functional which may be obtained in
a natural manner from the procedure’s declaration. Subsequently, we shall argue
that these fixedpoint theorems are logically equivalent to the soundness and
relative completeness theorems of Cook et al. The first fixedpoint theorem is for
regular recursive procedures. In this case the associated functionals are similar
to the predicate transformers of Dijkstra [8].

3.1
Definition [5]: Let X be a procedure name, 7, and 1, statements. Then
(a) X isregularin X.
(b) If r, does not contain X and 7, is regular in X, then (t,; 7,) is regular in X.
{c) If 7, and 7, are both regular in X, then (b—1,, 7,) is regular in X.
A procedure declaration “PROC X =17 is regular if 7 is regular in X.

Thus. for example, PROC X =(4,;(b—(A4, X), NULL)) is regular in X, but
PROC X =(h—(A; X; A,), A3) is not.

Program Invariants as Fixedpoints 279

Let "PROC X =1" be a regular procedure declaration and let Q €S be a predicate.
The partial correctness functional I 12525 associated with X and Q is defined
as follows: I'(U)=G (U, 1, Q) where

{A) G(U,A,R)=WP[A](R) if A does not contain any calls on procedure X;
G{U,(A; A4,), R)=G (U, A, G (U, Ay, R));

(C) G(U (b—>A,, 4,),R)=(b A G (U, A, R) V{~b A G(U, A4, R);

(D) G(U,X,R)=

Note that G (U, t, Q) will be well-defined as long as 7 is regular in X. Thus, for
example, the partial correctness functional I' associated with

PROC X =(4,;(h—(4,; X), NULL))
and predicate Q is
F(U)=WP[A,]1((b A WP[A,](U)) V(~b A WP[NULL](Q)).

3.2

Theorem (Regular Fixedpoint Theorem): Let “PROC X = 17 be a regular proce-
dure declaration. Q=S be a predicate, and I' be the partial correctness functional
associated with X and Q. Then WP [X](Q) is the unique maximal pre-fixedpoint
of I, i.e. the unique maximal solution of U< I'(U).

Example: If I" is the partial correctness functional associated with "PROC X =
(A,:(b—(A,: X), NULL))", then (i) WP [X](Q)=T' (WP [X](Q))and (i) U< I (V)
implies that U< WP [X](Q).

WP[X](Q)is also the unique maximal fixedpoint® of I'. For our purposes, how-
ever, it will be easier to work with pre-fixedpoints rather then fixedpoints. Before
giving the proof of Theorem 3.2, we must prove a number of lemmas which give
key properties of weakest preconditions and the partial correctness functional /.

3.3

Lemma: Let A be an RPL stutement.

{A) (Monotonicityy: If P and Q are predicates (subsets of S) and P<Q, then
WP [A](PYys WP [AT1(Q).

By (Additivityy: If 1 P;}, i=0is a family of predicates, then
wp[A1(U Py=U WP AP WP [AT(N) P)=(WPLAL(P)

Proof of (4): The proof is a direct application of the definition of WP [A] (Q) in
terms of the meanmg function M. Assume that P=Q. If se WP [A](P), then
cither M [A](s) diverges or M [A] (s)e P. Since P=Q, it follows that elther
M [A](s) diverges or M [A] (s)e Q. Thus se WP [A](Q). Proof of (B) is similar
and will be left to the reader.

" In fact, if the declaration of X does not contain calls on other procedures besides X, we may prove
that the fixedpoints of I” form a complete lattice under the natural partial ordering on 2%
The top element of this lattice is the weakest precondition for partial correctness WP [X](Q)
and the bottom element is the weakest precondition for total correctness WT [X 1(Q).

280 E. M. Clarke:

3.4

Lemma: Let X be a procedure name occurring in a program which contains the pro-
cedure declaration “PROC X =1". Q<=8 be a predicate. Define the statement se-

!

) . X
quence (X'}, o by induction X°=Q, X'”zr—X—then
(A) the sequence {WP[X'}1(Q)};50 is a descending chain in 25 ie for all i>0
WPXT Qe WP [X](Q)

(B) WP[X1(Q)= WPIX'](Q)

i>0
Proof’: (Given in Appendix)

3.5

Lemma: Let I be the partial correctness functional corresponding to the regular
procedure X and predicate Q. Then

(A) If {V;}, i=0 is a family of predicates in S, then T ((Vy)= () I' (V) and
r\J vy=U rw. ‘ :

(B) UglVimplie.;I"(U)EF(V).

(C) Let the statement sequence X' be defined as in Lemma 3.4. Then
IF(WP[XHQ)=WP[XT'](Q).

Proof : (A)follows directly from 3.3 (B). (B) follows immediately from Lemma 3.5(A).
Since Uu(V=U)=V,wegetI' (V)=T (U)ul' (V—U).Itfollowsthat ' (U)< T (V).
To prove (C) we suppose that X has declaration "PROC X =1" and that 7 is regu-

. . : X' .)
lar in X. Since X'*!=1 e e see that G(WP[X](Q),7,Q)=WP [X" '] (Q).
By definition of I', we obtain I' (WP [X'](Q))=WP [X'"'](Q).

We are now ready to complete the proof of the regular fixedpoint theorem
(Theorem 3.2).

(1) WP[X](Q)isa fixedpoint of I'.

I (WP[X1(©@)=I (N WP[X1(Q) by Lemma 3.4
=0 F (WP[X](Q) by Lemma 3.5
= ﬂ WPIX''1(Q) by Lemma 3.5
= V;/P [X1(Q) by Lemma 3.4

(i) V<rI(V)implies V= WP[X](Q). Suppose that V=TI (V) then V< WP[X°](Q),
since WP [X°](Q)=true. Assume that ¥'< WP [X'](Q) then by Lemma 3.5
I (VT (WP[X](Q). Since VST (V), we get 'S WP [X**1](Q). It follows
that ¥'< WP[X](Q) for all i >0. Thus ¥'< () WP[X'](Q) or ¥'< WP[X1(Q).

Program Invariants as Fixedpoints 281

This completes the proof of the regular fixedpoint theorem. We end this section

by stating some additional properties of weakest preconditions which we will

need in later sections. Proofs of these properties may be found in [6] or [19].
3.6

Proposition:

(a) WP[x:=el(@=0%

(b) WP[NULL](Q)=0

(¢) WPQ=true

(d) WP[(A;4)1(Q)=WP[4,1(WP[4,]1(Q)

(e) WPL(b—A,,4)1(Q)=[b A WP[A @V [~bAWP[A,](Q)]

() WP[X](Q)=WP [1](Q) provided X has declaration “PROC X =1".

4. Applications of the Regular Fixedpoint Theorem

To demonstrate the power of the regular fixedpoint theorem, we prove the
soundness and completeness of a Floyd-Hoare Axiom System H, for a subset
RPL, of the programming language RPL. A statement in the language RPL,
will be either: (1) an assignment statement, “x:=e¢”; (2) a conditional statement,
“(b—A,, A,)";(3)aniteration statement, “LOOP A, WHILEb DO 4, REPEAT”; or
(@)a composition statement, (A, ; A,). The iteration statement will be represented with-
in the language RPL bya call on the procedure PROC X =(A4;;(b—(4,; X), NULL)).

For each basic statement type in the language RPL, there is a corresponding
axiom or rule of inference in the deduction system H,. These axioms and rules of
inference are listed below:

(1) {08 x:=e{Q} (assignment)

(PAb} A, {Q}, {PA~b} 4, {0}

7 conditional
) [P} (b—A,, 4,) {Q} ()
PP A fRVIRADL A, 4P}, RA~D . .

3) U A ot Py Az ! R e (iteration)
{P}LOOP 4, WHILE b DO 4, REPEAT {Q}
;P A {R [R A f ..
@ - Ay (R}, {R} A, {0) (composition)
{P}(A; 4,) {0}
P-R,,{R,} A{R,}, R
(5) Lot AL 2}, Ry=Q (consequence)

(P} A{0Q]

We will show that soundness and completeness of the deduction system H, are
direct corollaries of the regular fixedpoint theorem. The question of soundness
will be considered first. Let T be a sound proof system for the true formulas of
the assertion language. We will prove that |-y o {P} A{Q} = [=;{P} 4 {Q}.
Since T is sound, it is sufficient to prove that each instance of an axiom is true; and

282 E. M. Clarke:

that if all of the hypotheses of a rule of inference are true, then the conclusion will
be true also. We will only consider the case of the iteration statement. We assume
that = P-WP[A,]1(R), =R Ab->WP[A,](P), and = RA ~b—Q hold, and
prove that = P— WP [X](Q) must hold also.

From the regular fixedpoint theorem, we know that WP [X] (Q)is the unique maxi-
mal pre-fixedpoint of I' (U))= WP [A,]([b A WP [A4,] (U)] V' [~b A Q]). From
=R 1 b>WP[A,](P) and =R A ~b—Q, we derive =R~[b A WP [4,] (P)]
V{~bAQ] Since |= P> WP[A,](R) holds, we conclude that P—WP [4,]
(b AWP[A,](PY]V~bA Q]) and consequently P—I" (P)are both true. Making
use of the correspondence between “ =™ and “— " and the maximality of WP[X](Q).
we see that P WP[X](Q). Since P< WP [X](Q) is equivalent to {P} X {Q},
the proof of soundness for the iteration statement is completed. We see that the
soundness of the axiom for the iteration construct follows immediately from the
characterization of the weakest precondition as a maximal fixedpoint.

We next show that the proof system H,, is complete. Let T be a complete proof
system for the true formulas of the assertion language. Assume also that the
assertion language AL is expressive with respect to the interpretation /. We prove
that |= [P} A {Q} = |-, (P} A{Q}. The proof uses induction on the structure
of the statement A. We only consider the case of the iteration statement. Assume
that |=1P! X {0} where X has declaration PROC X =(4,; (b—(A,; X), NULL)).
By the regular fixedpoint theorem,

WP[X1(Q)=WP[A]{[b A WP[AJWPIXTQ)NVI~bA 0)).

Lot R=[b.4i WP[A,] (WPIX](Q)]V~b.1Q] R and WP[X](Q) are re-
presentable by formulas of AL because of the expressibility condition. Thus each
of the following three formulas is true:

) WPIXT(Qv=HP[A,(R): (b) R i b>WP[A,1WP[X](Q)); (c) RiA ~b—-0Q.

Converting to precondition-postcondition notation and using the inductive
hypothesis we obtain:

@) UFPXTION A, R} (b) = (R b A IWPXT(QN: (@) = R i ~b—0.

By the rule of inference for the iteration statement, it follows that {WP[X]1(Q);
LOOP 4, WHILE b DO 4, REPEAT (@} is provable. Since P->WP[X](Q) is
true and 7 is a complete proof system for the assertion language, P— WP [X1(Q)
must be provable. By the rule of consequence it follows that {P} LOOP 4, WHILE
h DO A, REPEAT {Q! is provable also. Note thatkey to the completeness argument
is the fact that WP[X](Q) is a fixedpoint of the partial correctness functional
associated with the recursive procedure PROC X =(4,; (h—(4,; X), NULL)).

Conversely, it is possible to prove that the soundness and completeness of the
anxiom system H, imply that WP [X](Q) is the unique maximal pre-fixedpoint
of the partial correctness functional I associated with procedure X and post-
condition Q. Let Hy, T, and I be as previously described. Assume that for all
statements A and predicates P, Q in AL, [=y +{P} A{Q} =I= 1P} A{Q}.

Program Invariants as Fixedpoints 283

(i): WP[X](Q) is a pre-fixedpoint of the partial correctness functional I'. Since
= {WP[X](Q)} X {0}, we may use completeness to deduce the existence of
predicates U, R, and V, in AL with the properties:

(@) —WPLX](Q)-U,; (b) U X V) () iU} Ay {R)
idy —{R, Ab} A, {U,}: () R, A ~b=V; O FV,—0.

By soundness and (f} we obtain:

@) =WPLXIQ)-U,: (b) ={U,}1 X {Q}: (©) =1{U A R
td) ={Ry A b} Ay {U,}; €) =Ry A~b=0.

Using the characterization of weakest preconditions in Section 2, we may rewrite
ih')—(e") as follows:

(b7 =U, > WP[X](Q) (€) =U->WP[A](Ry);
{d) =R, Ab->WP[A,](U,); (") =R, A ~b=0Q.
From (d”) and (e”) we get, =R, —(b A WP [A,](U)) V(~b 1 Q).

From (¢”) and monotonicity, |= U, —»WP[A,J{(b A1 WP[A4,]1(U,)) V(~b1Q))
ori=U,->T(U)).

From (a) and (b") we see that U, and WP [X](Q) correspond to the same set of
program states. Thus WP [X](Q)=T (WP[X](Q)) and WP[X](Q) is a pre-
fixedpoint of I'.

(i): If U is a pre-fixedpoint of I', then U< WP [X](Q). Suppose that U Is a pre-
fixedpoint of I', then |=U— WP [A,]((b A WP [4,](U)) V(~b A Q).

If we choose R=(b A WP [A,](U)) V (~b A Q), then we may show:
(@ =1U} A4, {R} (b) EIRAb} A, (U} (€) =ERA~b-Q.

By soundness of the axiom for the iteration statement, we get |={U} X {Q}.
Using the characteriziation of weakest preconditions, = U— WP [X](Q) which
is cquivalent to U< WP [XT(Q).

5. The General Fixedpoint Theorem

The argument used to establish the regular fixedpoint theorem does not generalize
to arbitrary recursive procedures. In fact, the partial correctness functional I will
not in general be defined for nonregular recursive procedures. In Section 6 we shall
see that the additional complexity of nonregular recursions is also reflected in the
proof rules for recursive procedures; it is impossible to adequately specify the
meaning of a recursive procedure by means of a single predicate which is left
invariant by the execution of a procedure call. In order to treat nonregular
recursions we must generalize the notion of a program invariant from a single
predicate to a binary relation on predicates which expresses the input-output
behavior of the recursive procedure.

284 E. M. Clarke:

To express the invariants of arbitrary recursive procedures we introduce a
generalization of the weakest precondition concept which we call the general
correctness relation. The general correctness relation GR maps a programming
language statement into the partial correctness relation determined by that
statement.

5.1

Definition: Let REL be the universal relation on 25, i.e. REL=25x25 The
general correctness relation GR : S T— 2R may be defined by

GR[A]={(P,Q)| P,Q are expressible in AL and P= WP [A](Q)}.

Since (P, Q)e GR [A] iff |= {P} A {Q}, the general correctness relation may be
regarded as a notational device for emphasizing the functional relationship
between a programming language statement and the partial correctness relation
determined by the statement.

To obtain the general correctness relation for a composite program from the general
correctness relations of its component parts we will need two operations on binary
relations in addition to the standard set theoretic operations (union, intersection,
etc.). The first operation is the standard composition operation for relations:

Ry R,={(U,W)3IV(U, V)eR A (V,W)eR,]}.
The second operation is the “scalar multiplication” of a relation by a predicate:
b R={(PAb,Q)|(P,Q)eR}.

Each of the properties of weakest preconditions listed in Propositions 3.4 and
3.5 of Section 3 has an exact analogue for the general correctness relation GR.

n
ro

Proposition:

(@) GR[NULL]={(P, Q)| P, Q are expressible in AL and |= P—Q}

(b) GR[x:=e]={(P%, P)|Pisexpressible in AL}

(¢) GR[Q]=REL

(d) GR[(4;;A4)]=GR[A,]- GR[A,]

() GR[(b—A,,A,)]=(b=*GR[A,])n(~b*GR[A,])

(f)y GR[X]=GR [7] where X is a procedure with declaration “PROC X = 7.

Proof of (¢): (P, Q) € GR [(b—A,, A,)] implies that PS WP [(b—A,, A;)] (Q).
By Proposition 3.6 P<(b A WP [4,]1(Q) V (~b A WP [4,] (Q)). Thus,
PAb=WP[A,]1(Q) and P A ~b= WP [A,](Q). It follows that

(P,Q)e(b* GR[A;]) n(~b=*GR[A;]).
Since each of the above steps is reversible, we conclude that

GR [(b—A,, A,)]=(b* GR[A,]) N (~b* GR[A4,]).

Program Invariants as Fixedpoints 285

5.3

Proposition: Let X be a procedure name in a program which contains the
procedure declaration “PROC X =1”. Define the statement sequence {X'}, i>0

1

. X
by induction X°=0Q, xi*! =T then
(A) the sequence {GR [X']} i>0 is a descending chain in 2%F%; i.e. for all i>0
GR[X*']=GR[X]
(B) GR[X1=() GR[X]

Proof of (A): Let (P, Q) e GR [X "], then P< WP [X'*1](Q). But
WP[X"'1(Q) s WP[X](Q).

Thus P WP[X](Q) and (P, Q) GR [X']. The proof of (B} is also simple and
will be left to the reader.

To state the general fixedpoint theorem we will need an analogue of the partial
correctness functional I' defined in Section 3. Let “PROC X =1" be an arbitrary
RPL procedure declaration. Since we are now dealing with binary relations on
predicates, the appropriate partial correctness functional 4 is a mapping from
2REL 1o 2REL which may be defined as follows: 4 (R)=H (R, 7) where

{A) H(R,A)=GR[A]if the statement 4 does not contain any calls on procedure X;
(B) H{(R.(A;:A,))=H (R, A,) - H (R, Ay);

(C) H(R.(b—A,, Ay))=(b* H(R, A,)) " (~b * H(R, 4,));

(D) H (R, X)=R.

Note that H (R, A) will be defined for both regular and nonregular statements A. For

example, if X has the nonregular declaration “PROC X =(b—A4,;X; 4, NULL)”
then the associated partial correctness function is

A{R)=(b*GR[A,]+R+GR[A,]) " (~b*GR[NULL]).

54

Theorem (General Fixedpoint Theorem): Let “PROC X =1" be an arbitrary RPL
procedure declaration, and let 4 be the associated partial correctness functional.
Then GRX] is the unique maximal pre-fixedpoint of A, i.e. the unique maximal
solution to R< A (R).

The proof of the general fixedpoint theorem uses essentially the same idea as the
proof of the regular fixedpoint theorem and will not be given in full here. To
illustrate how the prool works we consider the special case in which the procedure
X has declaration “PROC X =(b—(4,; X; A,), NULL)". We prove that GR [X]

is the unique maximal pre-fixedpoint of

A(R)=(b* GR[A,]-R-GR[A4,]) n(~b+GR[NULL]).

286 E. M. Clarke:

To see that GR [X] 1s a fixedpoint of 4 note that:
A(GR[X)=(b*GR[A]-GR[X]:GR[A,])n(~b*GR[NULL])
=GR [(b—(A4,; X: A,), NULL)]=GR [X].
To see that GR [X is maximal, assume that RS 4 (R). Then
(1) REREL=GR[X"].
i2) fREGR[Xthen RSA(R)SA(GR[X'])=GR[X'"].

Thus, by induction R€GR[X] for i>0. It follows that RS) GR[X'] or
RSGR[X]. ‘

0. Applications of the General Fixedpoint Theorem

6.1 Nonrequlur Recursions and the Completeness Theorem of deBakker and
Meertens
suppose that we interpret the RPL, iteration statement of Section 4 as a call on
the nonregular procedure PROC X =(b—(A,; X; A,), NULL) instead of the
regular procedure PROC X =(4,;(b—(4,; X), NULL)). What would be an
appropriate rule of inference for this modified version of the iteration statement?
A first choice might be

E{)i{b} A P}, PA~b-Q, {0} A, {0}

(P} X {0}
It is not difficult to show that (1) is sound; an argument similar to the one in
Scction 4 may be used. Unfortunately, neither (1) nor any similar rule of inference
gives completeness when used in conjunction with the other rules of inference of
H.,. To see that (1) does not give completeness, consider the procedure declaration
“"PROC Y=(h—(A,: Y). 4,)". A good rule of inference for Yis

1P Ab} A, (P, [P A~} A, Q)

[P} Y {0} .

Since Y is regular, the reader may use the techniques of Section 4 to show that (2)

gives both soundness and completeness. Next, let Py, @y, and [be such that
PP, X Q4! s true with respect to [but { Py} Y {Q,} is false. For example, choose

(1)

2)

§ o

b=n>0 Py=n=n,
Ar=ni=n—1 Qo=n=n,
A,=n:=n+1

I5 (1} gave completencss, there would be formulas Uy and V, expressible in the
assertion language AL such that:

v e Pl U thy =1L, ihl A (UL cyl=U, i ~b—>},:

ESEREE I VN S AT i =10y,

Program Invariants as Fixedpoints 287

Combining (¢) and (d), we get |={U, . ibl A, {Uy} and ={Uy i ~b} A, { V.
By axiom (2) it follows that |= {U,} Y {},}. From the rule of consequence,
= {Py} Y {Q,} which is a contradiction.

A general version of the above argument is used by Fokkinga [11] to argue that
an infinite pattern of assertions is necessary in order to obtain completeness for
nonregular recursions. In [5], deBakker and Meertens attach a pair of assertions
to each node in the infinite tree obtained by unwinding the recursive declaration
{* the tree of incarnations™). In the case of the linear recursion

“PROC X =(b—>4,:X:; A, NULL)",
they obtain proof scheme:

P—-P,
(PiADY A Py}
P, A ~b—>Q,; ieN (3)
Q1) A21Q4

WQO"Q
(P} X {0}

Similar proof schemes may be obtained for other nonregular recursions; however,
for many of these recursions, it is necessary to index the predicates by strings in
{0+ 1)* rather than integers.

The general fixedpoint theorem may be used to prove the soundness and complete-
ness of this extended version of the inductive assertion method. To illustrate how
such a proof may be constructed we prove the soundness and completeness of
{3) above.

To prove soundness we assume that {P;,Ab} A, {P,.,}, P;A~b—>Q,, and
Qi 11 A, 10, are true for all i>0 and show that {P,} X {Q,} must be true also.
Let K={(P,0)}i=0} then KS(h* GR[A,]: K-GR[A,])n(~b+ GR[NULL)).
By the general fixedpoint theorem GR [X] is the unique maximal pre-fixedpoint
of 1(R)=(h+GR[A,]-R:-GR[A,]) n(~b*xGR[NULL]). Hence K= GR[X]
and consequently |= {P,} X {0Q,}.

To prove completeness, we assume that = { Py} X [Q,}, i.e. (Py, Qole GR[X].
By the general fixedpoint theorem

GR[X]=(b*GR[A,] GR[X]-GR[A,]) ~(~b+GR[NULL]).

By expressibility, there exists a pair of predicates P,. Q, such that

(Q,.0¢) € GR[A4,] (4)
(PO e GRX] (5)

(P, 1 h PyeGRIA,] (6)
(P, A~b O)e GRINULL (7)

Lo piecondition-posteondition sotation (4, {5). and 7) may be rewritien as
e P AP {44

288 E. M. Clarke:

=101} 4, {Qo} (5
= Py A ~b—Q,)
This process may be continued to obtain P,, Q,, P3, Q3, ...

Note that the general fixedpoint theorem was used in exactly the same way that the
regular fixedpoint theorem was used in Section 4. Completeness of the rule scheme
for procedure X follows from the existence of a fixedpoint to the partial correct-
ness functional 4 associated with X. Soundness is obtained from the maximality
of the fixedpoint.

The argument used by deBakker and Meertens for the necessity of rules of
inference involving infinitively many hypothesis is based on a treatment of
predicates as sets of program states. If predicates are formulas in the first order
predicate calculus, and assertions are allowed to contain variables which are not
changed by the program, then simpler rules of inference may be obtained. Such a
proof system based on the work of Cook and Gorelick is given in the next section.
Alternatively the proof system of Cook and Gorelick may be viewed as a way of
organizing or indexing the predicates in the system of deBakker and Meertens.

6.2 The Completeness Theorem of Cook and Gorelick

The deduction system which we consider in this chapter is based on “induction
on depth of recursion” and is a modification of the deduction system described by
S. Cook [3] and G. Gorelick [13]. Before stating the axioms and rules of inference
of this system, we must introduce some additional terminology.

6.2.1

Definition: Let A be a statement in a RPL program J. A variable u is active in
A iff either:

(i) A is an assignment statement and u occurs in the right or left side of A.
(ii) A is a conditional statement “b— A4, 4,” and u occurs in b, u is active in A4,
or uis active in A4,.
(iii) A isa composite statement “(4,; A,)" and u is active in A, or u is active in A4,.
{iv) Aisa call ona procedure X with declaration “PROC X =" occurring in the
declaration part of J and u is active in t.
If & 1s not active in A, then u is said to be inactive.

Intuitively, a variable u is inactive in the statement A4 if u is not changed by
the execution of 4 and if the value of u does not influence the results of the
execution of A. The definition of inactive may be extended to terms and to
substitutions of terms for variables.

6.2.2
Definition: A term ¢ is inactive if the only variables occurring in ¢ are inactive

variables. A substitution ¢ is an inactive substitution if o is a substitution of
inactive terms for inactive variables.

Program Invariants as Fixedpoints 289

The deduction system CG for arbitrary recursive procedures consists of seven
axioms. The first axioms are called the basic partial correctness axioms; they are
the assignment axiom, the axiom for the null statement, the rule of composition,
the rule of the conditional, and the rule of consequence. We refer the reader to
Section 4 for statements of these axioms. The two remaining axioms are needed
to handle recursive procedures. The first axiom is an induction axiom which allows
proofs to be constructed by induction on depth of recursion.

P X {Q} (P} {Q}
P} X {0}
where X has declaration “PROC X =1".

CG1

(recursion)

The second axiom is used to adapt a general induction hypothesis about what a
recursive procedure does to a specific call on the procedure.

(P} A0}
{3¢[Po AT} A{3c[Qo AT}

provided that

CG2 (adaption)

(a) T does not contain any free variables which are active in A4.
(b) o is an inactive substitution.
(c) the variables ¢ are inactive with respect to 4.

We illustrate the use of these axioms by proving {n=ny} X {n=|ny/2]} where X is
the procedure with declaration PROC X=(n>0—>(n:=n—2;X;n:=n+ 1),NULL).
To simplify notation, let P be the predicate {n=n,}, Q be the predicate {n=|ny/2]},
and T the predicate {n, =n,—2}. We begin by assuming that {P} X {Q} is true.
If ¢ is the inactive substitution a=n‘1, then
no

@ {PAn>0n:=n—2{3n, [Pc AT} and (b) {In,[QoATl}n:=n+1{0Q}
are both provable. By the inductive hypothesis and CG 2,

© 3n [PoAT X {3n, [QoAT]

is also provable. Using the rule of consequence to combine (a), (b), and (c), we
obtain
—{PAn>0n:=n—2;X;n:=n+1{Q}.

Since {P A ~b} NULL {Q} is also provable, the conditional rule may be used
to show
- {P}(n>0—(n:=n—2; X;n:=n+1), NULL) {Q}.

By the rule of recursion CG 1, we obtain |- {P} X {Q}.

The deduction system CG may be shown to be sound and complete for proving
partial correctness of RPL programs provided that such programs do not
involve recursive cycles of procedure calls [13], i.e. provided that procedures are
always declared before they are used. The completeness proof may be extended
to general RPL programs by using a more general version of the rule of recursion

20 Computing 21/4

290 L. M. Clarke:

CG 1. We will outline how soundness and completeness proofs for GR may be
obtained as a by-product of the general fixedpoint theorem. To simplify the
proof, we will only consider the case of a single recursive procedure X.

Recall that SP[A] (P) is the strongest postcondition associated with statement A
and precondition P. Since the meaning of a procedure is usually given by an
assertion about how the procedure transforms its input variables, it is convenient
to use strongest postconditions rather than weakest preconditions in the proof
of soundness and completeness for CG.

6.3
Lemma: Let A be a statement in an RPL program J and let P be a predicate in AL.

(a) If Qis a formula of AL which does not contain any free variables which are
active in A, then SP[A](P A Q)=SP[A](P) A Q.

(hy If the substitution o is inactive with respect to A, then SP{ A} (P o)=SP [A](P)a.

(¢) If the variables ¢ are inactive with respect to A, then SP[A] 3c[P]=
3¢[SP[A](P)].

Proofs of (a), (b), and (c) follow directly from the definition of SP and will be left
to the reader.

6.4

Definition: Let P, Q be formulas of the assertion language AL and let X be a pro-
cedure. The partial correctness relation determined by P and Q is the set R [P, Q]
of all ordered pairs of formulas (U, V) such that for some choice of variable list c,
substitution o, and predicate T the following three conditions are satisfied: (1) ¢,
o.and Tare all inactive with respect to X: (2)U—~3¢[Po A T];(3Y3c[Qo AT]-V.

Intuitively, R [P, Q] is the set of precondition/postcondition pairs which may be
deduced from {P} X {Q} by means of the rule of consequence and the rule of
adaptation. By choosing 7 to be the predicate true, o to be the identity substi-
tution, and ¢ to be a list of variables not appearing in P or Q, we see that the pair
(P. Q) is itself an element of R [P, Q].
6.5
Lemma: Let P={w=1,} and Q={SP [A] (Ww=1v,)} where w is the list of variables
which are active in A and W, is a list of new inactive variables having the same
length as w, then GR [A]J= R [P, Q1.

Proof: Let (P', Q') € GR [A] then |= SP [4] (P)—('". Note that

P=3w,

w
w=w, 1 P’%}zawl [Po AT

w
where W, is a list of new variables which are inactive in X, o is the inactive

N W W

substitution ——, and 7T is the inactive predicate P —1 Thus,

Wo W

=SP{A]1(3w,[Pc A T])-Q.

By Lemma 6.3 we see that |=3w, [SP[A](P)o A T]—Q". Since SP[A](P)=Q,
it follows that |=3w, [Qo A T]—=0Q".

Program Invariants as Fixedpoints 291

6.6

Lemma: Assume that AL is expressive with respect to I and that T is a complete
proof system for the true formulas of AL. Let X be an RPL procedure declaration
“PROC X =1", and let A be the partial correctness functional associated with X.
Then {P} X {Q} |- {P'} t{Q'} holds iff (P',Q))e A (R [P, Q)).

Proof: Proof of Lemma 6.6 involves an induction on the structure of 7. A full
proof of this lemma is given in the Appendix.

Soundness of the System CG: To prove the soundness of CG, we must show that
each instance of an axiom is true and that if all of the hypothesis of a rule of
inference are true, then the conclusion will be true also. The soundness of the five
basic partial correctness axioms and the rule of adaptation CG2 may be proved in
a straightforward manner, and will be left as exercises to the reader. To prove the
soundness of the rule of recursion CG 1 we assume that

(P} X {Q} - {P} 7 {Q} (1)

where X is a procedure with declaration “PROC X =1". Let 4 be the partial
correctness functional associated with X. By the general fixedpoint theorem, we
know that GR [X] is the unique maximal pre-fixedpoint of 4.

The partial correctness relation R [P, Q] is also a pre-fixedpoint of 4; to see this,
let (U, V)e R[P,Q] with |= U—»3¢[PocAT]and =3¢[Qo A T]-V. From (1)
and the rule of adaptation we see that {P} X {Q}|—{3¢[Po A T]}t{3c[QoAT]}.
By the rule of consequence {P} X {Q} |~ {U}7{V}. By Lemma 6.6 it follows
that (U, Ve 4 (R [P, Q]).

Since GR [X] is the unique maximal pre-fixedpoint of 4, R [P, Q]=GR [X]. Since
(P,Q)e R [P, Q]. we see that (P, Q) e GR[X] or equivalently that = {P} X {Q}.

Completeness of the System CG: To prove the completeness of CG, we must show
that if AL is expressive with respect to I and T is a complete proof system for the
true formulas of AL, then |= {U} A {V} implies |~ r {U} A {V}. The proof
is by induction on the structure of 4. We will only consider the case where 4 is a
call on the procedure X ; other cases are simpler and will be left to the reader. Let
P={w=w,} and Q=SP [X] (Ww=w,) where w and w, are defined in Lemma 6.5.
By Lemma 6.5, GR[X]<R[P,Q]. Let 4 be the partial correctness functional
associated with X. By the general fixedpoint theorem GR [X] is a pre-fixedpoint
of 4, i.e. GR[X]<4(GR[X]). Since 4 is monotonic, GR[X]<A(R[P, Q]).
Since |= {P} X {Q}, (P,Q)e GR[X]<= 4 (R[P,Q]). Thus {P} X {Q}|-{P}7{Q}
by Lemma 6.6. By the rule of recursion, we obtain |- {P} X {Q}. If = {U} X {V}
then (U, V)e GR[X]<R[P,Q]. By Lemma 6.6 it follows that { P} X {Q} |- {U} X {V}.
Since |- {P} X {0}, we conclude that — {U} X {V'} as required.

7. Conclusion

In this paper we have demonstrated how soundness and relative completeness
theorems may be viewed as fixedpoint theorems for functionals. We believe that
this alternative point of view sheds light on the meaning of soundness and relative

20%

292 E. M. Clarke:

completeness results and promises to simplify the derivation of such results. We
are currently attempting to extend this fixedpoint theory to additional pro-
gramming language features such as parallelism [21]. We believe that the approach
outlined in this paper may also be helpful in understanding recent incompleteness
theorems for Floyd-Hoare Axiom Systems ([2], [17]). These theorems use classi-
cal undecidability techniques to show that for certain programming language
constructs it is impossible to obtain axiom systems which give soundness and
relative completeness. We conjecture that for many programming language con-
structs it may be easier to prove the nonexistence of a fixedpoint than to prove an
undecidability results. Finally, we are exploring the question of whether the expli-
cit formulas for program invariants given in Section 3 may be used to automatically
generate invariants of loops and recursive procedures. The work of Suzuki [24]
and Cousot [4] suggests that invariants can indeed be generated in this manner.

Appendix

Proof of Lemma 3.4 (A): Let se WP [X'*1](Q) then M [X'""'](s)=L or there is
an s such that M [X*'](s)=s and s’ € Q. If M [X'* 1] (s)= L, then M [X*](s)=L
also. If M [Xi*1](s)=s then either M [X*](s)=L or M [X'](s)=5 and s'€ Q.
Thus in either case se WP [X'](Q).

Proof of Lemma 3.4 (B): Let se WP [X](Q) then either M [X] (s)= L or there is
an s such that M [X](s)=s and s € Q. Thus either for all i=0, M [X Aqs)=1
or there is a j such that i>j implies M [X ‘] (s)=s". But this implies that for each i
cither M[X'](s)=L or there is an s such that M[X'](s)=s and s'e Q. It
follows that s e WP [X'](Q) for all i. Hence se (| WP [X'](Q) and thus

iz0
WP[X](Q)=) WPIX'T(Q)

iz0

Conversely, let se () WP [X](Q), then for all i>0, se WP [X'](Q). So for all
i20
i>0, M[X"](s)=L or there exists an s’ €S such that M [X](s)=+5 and s € Q.
Since the sequence M [X'] (s)is a chain, we get that either for all i=0 M [X T)=1
or there exists s’ and j such that i>; implies that M [X*] (s)=5" and s’ € Q. Hence
M [X](s)= L or there is an s’ such that M [X](s)=s" and s'e Q. This means
that se WP [X](Q). We conclude that () WP[X (@)= WP[X](Q).
i20

Proof of Lemma 6.6: Assume that AL is expressive with respect to I and that T
is a complete proof system for the true formulas of AL. We prove that for all
statements A, {P} X {Q} |- {P'} A{Q"} iff (P',Q)e H(R[P,Q], A) where H is
the auxiliary function used in the definition of 4. (<=) Proof is by induction
on the structure of 4. If A does not contain a call on procedure X, then
H (R [P, Q], A)=GR [4]. Since (P, Q') € GR [A] implies that |= {P'} 4 {Q'} and
since the basic partial correctness axioms are complete for RPL programs not
involving recursion, we conclude |- {P'} 4 {Q'}.

If A="(4,;4,)" then H (R [P,Q], A)=H (R [P, @}, A) o H(R [P, Q], A5). If
(P',Q'Ye H(R [P, Q], A) then by the expressibility condition there exists a formula

Program Invariants as Fixedpoints 293

U of AL such that (P, U)e H (R [P, Q], A;) and (U, Qe H (R[P, 0], A,). By the
induction hypothesis, {P} X {Q} |- {P'} 4, {U} and {P} X {Q}|-{U} A, {Q'}.
By the rule of composition it follows that {P} X {Q} |- {P'} (4;; 4,) {Q'}.

The case of the conditional statement i.e. A=“(b—A,, A,)” is similar to the case
of the composite statement and will be left to the reader. If A is a call on the pro-
cedure X, then H (R[P,Q], A)=R [P, Q] and (P, Q') e [P, Q] implies that there
exists ¢, o, and T as described in Definition 6.4 such that |= P—3¢[Po A T] and
|=3¢[Q o A T]1-Q'. By the rule of adaptation and the rule of consequence it
follows that {P} X {Q} - {P'} A{Q’}. (=) Proof is by induction on the length
of the proof of {P'} 4 {Q’} from {P} X {Q}. We will only consider the cases in
which the last line of the proof was obtained by the use of the rule of composition
or the rule of adaptation. If the last line was obtained by the rule of composition,
then {P} X {Q} |- {P'} 4, {U} and {P} X {Q} |- {U} 4, {Q'} where A=(4, ; 4,).
By the inductive assumption (P, U)e H(R[P,Q], 4;) and (U,Q)e H(R[P, Q], 4;).
Since H (R [P, Q], A)=H (R [P, Q], A,) - H (R [P, Q], A,), it follows that
(P, Q)e H(R[P,Q], A). If the last line was obtained by the rule of adaptation,
then A is simply a call on procedure X. Furthermore there exist inactive ¢, 5, and T
such that |= P'-»3¢[PoA T]and |=3¢[Qo A T]— Q' Since H(R[P,Q],4)=R[P,Q]
in this case, it follows that (P, Q") e H (R [P, 0], 4).

References

[1} Cherniavsky, J., Kamin, S.: A complete and consistent Hoare axiomatics for a simple
programming language. Proceedings of the 4th POPL, 1977.

[2] Clarke, E. M.: Programming language constructs for which it is impossible to obtain good
Hoare-like axiom systems. Proceedings of the 4th POPL, 1977.

[3] Cook, S. A.: Axiomatic and interpretative semantics for an algol fragment. Technical Report 79,
Department of Computer Science, University of Toronto, 1975 (to be published in SCICOMP).

[4] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis
of Programs by construction or approximation of Fixpoints. Proceedings of the 4th POPL,
1977.

[5] deBakker, J. W., Meertens, L. G. L. Th.: On the completeness of the induction assertion
method. Mathematical Centre, December 1973.

[6] de Bakker, J. W.: Fixed point semantics and Dijkstra’s fundamental invariance theorem.
Mathematical Centre, January 1975.

[7] deBakker, J. W.: Flow of control in the proof theory of structured programming. Mathematical
Centre, 1975.

[8] Dijkstra, E. E.: A simple axiomatic basis for programming language constructs. Lecture notes
from the International Summer School on Structured Programming and Programmed Struc-
tures, Munich, Germany, 1973.

[9] Donahue, J.: Mathematical semantics as a complementary definition for axiomatically defined
programming language constructs. Technical Report CSRG-45, Computer Systems Research
Group, University of Toronto, December 1974.

{10} Floyd, R. W.: Assigning meaning to programs. In: Mathematical Aspects of Computer Science
Proc. Symposia in Applied Mathematics (Schwartz, J. T., ed.), Vol. 19, pp. 19—32. Amer.
Math. Soc. 1967.

[11] Fokkinga, M. C.: Inductive assertion patterns for recursive procedures. Techn. University
Delft Report, 1973.

[12] Gerhart, S. L.: Proof theory of partial correctness verification systems. STAM J. Comput. 5 (1976).

294 E. M. Clarke: Program I[nvariants as Fixedpoints

[13] Gorelick. G.: A complete axiomatic system for proving assertions about recursive and non-
recursive programs. Technical Report No. 75, Department of Computer Science, University
of Toronto, January 1975.

[14] Hoare, C. A. R.: An axiomatic approach to computer programming. CACM /2, 322—329
(1969).

[15] Hoare, C. A. R.: Procedures and parameters: An axiomatic approach. Symposium on Seman-
tics of Algorithmic Languages (Engeler, £ . ed.). pp. 102—-116. Berlin-Heidelberg-New York:
Springer 1971.

[16] Hoare, C. A. R., Lauer, P. E.: Consistent and complementary formal theories of the seman-
tics of programming languages. Acta Informatica 3, 135—154 (1974).

{17} Lipton, R.: A necessary and sufficient condition for the existence of Hoare Logics. 18 Annual
Symposium on Foundations of Computer Science, 1977.

[18] Manna, Z., Pnueli, A.: Formalization of properties of functional programs. JACM 17, 555—569
(1970).

[19] McGowan, C., Misra, J.: A mathematical basis for Dijkstra-Hoare semantics. Technical Report
No. 73-73, Center for Computer and Information Sciences, Brown University, November
1973.

[20] Park. D.: Fixpoint induction and proofs of program properties. Machine Intelligence 5,
59—78 (1970).

[21] Owicki, S.: A consistent and complete deductive system for the verification of parallel programs.
8th Annual Symposium on Theory of Computing, 1976.

[22] Scott, D.: Outline of a mathematical theory of computation. Proceeding of Fourth Annual
Princeton Conference on Information Science and Systems. Princeton, pp. 169—176, 1970.

[23] Scott, D.: The lattice of flow diagrams. Semantics of Algorithmic Languages (Springer Notes
in Mathematics, Vol. 188). (Engeler, E., ed.), pp. 311—366. Berlin-Heidelberg-New York:
Springer 1971.

[24] Suzuki, N., Ishihata, K.: Implementation of an array bound checker. Proceedings of the 4th
POPL. 1977.

[25] Wand, M.: A new incompletencss result for Hoare’s system. 8th Annual Symposium on
Theory of Computing, 1976.

[26] Yeh, R. T., Reynolds, C.: Induction as the basis for program verification. IEEE Transactions
on Software Engineering, SE-2(4), 244--252 (1976).

Dr. E. M. Clarke

Assistant Professor

Aiken Computation Laboratory
Harvard University

Cambridge, MA 02138, U.S.A.

Printed in Austria

Druck: Paul Gerin, A-1021 Wien

