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Abstract This paper presents an automated and compositional procedure to solve the sub-
stitutability problem in the context of evolving software systems. Our solution contributes
two techniques for checking correctness of software upgrades: (1) a technique based on
simultaneous use of over-and under-approximations obtained via existential and universal
abstractions; (2) a dynamic assume-guarantee reasoning algorithm—previously generated
component assumptions are reused and altered on-the-fly to prove or disprove the global
safety properties on the updated system. When upgrades are found to be non-substitutable,
our solution generates constructive feedback to developers showing how to improve the
components. The substitutability approach has been implemented and validated in the COM-
FORT reasoning framework, and we report encouraging results on an industrial benchmark.
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1 Introduction

Correctness of computer software is critical in today’s information society, especially for
software that runs on computers embedded in our transportation and communication in-
frastructure. Errors in complex software systems have caused large-scale economic losses
in the past. Software bugs, especially in multi-threaded systems, are notoriously difficult to
detect and fix. Therefore, it is necessary to employ automated formal verification methods
to validate and debug critical software systems.

Programs in imperative languages like C or C++ are executed line-by-line in what is
called a thread of control. It is tempting to hope that a line-by-line inspection of the code,
following this thread of control, will uncover all the flaws in a program. The problem is that
complex systems have many software components running in parallel, so there are many
different threads of control that run simultaneously. While one of these threads may be exe-
cuting some statement in its program, another thread, with exactly the same program, may
be executing an entirely different line of code concurrently. Consequently, in the presence
of multiple threads, any combination of program lines that the threads can execute must be
considered.

The state of the program is the location of the control in each thread and the values of the
program variables. To discover flaws, the possible states of the program must be explored. To
illustrate the large number of states that concurrency can cause, consider the small program
in Fig. 1. It has one variable x, which is initialized with zero. It has two threads (A and B) of
control and only four lines of code in total. The first line in both threads simply idles until x
becomes zero. The second line sets x to 1 or 2, respectively. We assume that each program
step is atomic. Despite its tiny size, the program has 10 reachable states. The explosion in
the number of reachable states is due to the different combinations of program locations in
the two threads A and B. Thus, a manual search for errors in large concurrent programs is
infeasible.

Model checking is an automated technique for the exploration of all the states of a system
[19, 21]. Introduced in 1981, it is now a standard verification technique in the hardware
industry. It has been successfully used to find bugs in circuitry that would have been hard to
find by inspection alone.

The use of model checking has lead to major enhancements in the reliability and robust-
ness of software. The basic idea of software model checking [11, 42] is to explore all the
states of the software system systematically. The states are checked for errors. Such an error
may be division by zero, a race condition or a violated assertion. Once such an erroneous
state is found, it is reported to the programmer together with a counterexample (i.e., an er-
ror trace), which demonstrates the flaw. In practice, counterexamples are very helpful for
understanding the nature of errors and fixing them.

Thread A Thread B
1 while(x!=0) skip; 1 while(x!=0) skip;
2 x=1; 2 x=2;
3 3

Fig. 1 A small program with two threads of control
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However, the effectiveness of the model checking of such systems is severely constrained
by the state space explosion problem (by the sheer number of states a program can be in). If
there are too many states, it becomes impossible to explore all of them, even on a powerful
computer.

Much of the research in this area is therefore targeted at reducing the state space of the
model used for verification. One principal method in state space reduction of software sys-
tems is abstraction. Abstraction techniques reduce the program state space by generating a
smaller set of states in a way that preserves the relevant behaviors of the system. Manual
abstractions of large software systems require considerable expertise and are error prone.
Industrial applications of model checking therefore favor automated ways to compute the
abstract model. One such method, called predicate abstraction [24, 31], has proven to be
particularly successful when applied to large software programs. We have exploited predi-
cate abstraction while developing a solution to the problem of establishing the correctness
of evolving systems. We describe predicate abstraction in Sect. 2 and its application to veri-
fication of evolving software in Sect. 4.

The other principal approach in reducing the state space of the verifiable model is compo-
sitional reasoning. Compositional reasoning partitions verification into checks of individual
modules, while the global correctness of the composed system is established by construct-
ing a proof outline that exploits the modular structure of the system. We used the assume-
guarantee style of compositional reasoning to support verification of evolving systems [39,
45, 47]. We describe the assume-guarantee reasoning paradigm and its application to verifi-
cation of evolving software in Sect. 5.

In this article, we focus on a particular model checking problem, namely verification of
evolving software. Software systems evolve throughout the product life-cycle. For exam-
ple, any software module (or component) is inevitably transformed as designs take shape,
requirements change, and bugs are discovered and fixed. In general such evolution results
in the removal of previous behaviors from the component and addition of new ones. Since
the behavior of the updated software component has no direct correlation to that of its older
counterpart, substituting it directly can lead to two kinds of problems. First, the removal of
behaviors can lead to unavailability of previously provided services. Second, the addition
of new behaviors can lead to violation of global correctness properties that were previously
being respected. Although software evolution may involve both changing the component
decomposition of the system as well as communication structure between components, the
approach presented in this work focuses on assemblies in which both the decomposition and
the communication structure remain the same.

In this context, the substitutability problem can be defined as the verification of the fol-
lowing two criteria: (i) any updated portion of a software system must continue to provide
all services offered by its earlier counterpart, and (ii) previously established system correct-
ness properties must remain valid for the new version of the software system. The above two
criteria correspond to changes due to addition and removal of behaviors or services of soft-
ware components respectively; we believe that they are sufficient to model a large variety of
software upgrades.

Model checking can be used at each stage of a system’s evolution to solve both the above
problems. Conventionally, model checking is applied to the entire system after every update,
irrespective of the degree of modification involved. The amount of time and effort required to
verify an entire system can be prohibitive and repeating the exercise after each (even minor)
system update is therefore impractical. In this article we present an automated framework
that localizes the necessary verification effort to only modified system components, and
thereby reduces dramatically the effort to check substitutability after every system update.
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Note that our framework is general enough to handle changes in the environment if the
environment can also be modeled as a component.

In our framework a component is essentially a C program communicating with other
components via blocking message passing. An assembly is a collection of such concurrently
executing and mutually interacting components. We define the notion of a component’s
behavior precisely later but for now let us denote the set of behaviors of a component C by
Behv(C). Given two components C and C’ we write C < C’ to mean Behv(C) C Behv(C’).

Suppose we are given an assembly of components: C = {Cy, ..., C,}, and a safety prop-
erty ¢ (e.g., the system can enter an error state upon execution). Now suppose that multiple
components in C are upgraded. In other words, consider an index set Z C {1, ..., n} such
that for each i € 7 there is a new component C,f to be used in place of its old version C;.
Our goal is to check the substitutability of C; for C; in C for every i € Z with respect to
the property ¢. This article presents a framework that achieves this goal by performing the
following two tasks:

Containment Verify, for each i € Z, that every behavior of C; is also a behavior of C, l/ ,i.e.,
C = Ci’. IfC; &£ C;, we also construct a set F; of behaviors in Behv(C;) \Behv(Ci’) which
is used subsequently for providing feedback to the assembly designer. Note that the upgrade
may involve the removal of behaviors designated as errant, say B. In this case, we check
Ci \ B < C; since behaviors of B are clearly absent in C;. In general, B should contain the
set of behaviors that have been intentionally removed (buggy or otherwise), so that they do
not occur as spurious counterexamples in the containment check.

Compatibility Let us denote by C’ the assembly obtained from C by replacing the old
component C; with its new version le for each i € Z. In general, it is not the case that for
eachieZ, C : < C;. Therefore, the new assembly C’ may have more behaviors than the old
assembly C. Hence C’ might violate ¢ even though C did not. Thus, our second task is to
verify that C’ satisfies the safety property ¢ (which would imply that the new components
can be safely integrated).

Note that checking compatibility is non-trivial because it requires the verification of a
concurrent system where multiple components might have been modified. Moreover, this
task is complicated by the fact that our goal is to focus on the components that have been
modified.

The component substitutability framework is defined by the following new algorithms:
(1) a technique based on simultaneous use of over- and under- approximations obtained via
existential and universal abstractions for the containment check of the substitutable com-
ponents; (2) a dynamic assume-guarantee algorithm developed for the compatibility check.
The algorithm is based on an automated assume-guarantee reasoning approach for a fixed
system assembly, developed by Cobleigh et al. [22] which is based on a combination of
learning algorithms for regular languages with model checking. This paper, in contrast, pro-
poses a dynamic assume-guarantee reasoning procedure for evolving systems. The proce-
dure is dynamic, in the sense that it learns appropriate environment assumptions for the new
components by reusing the environment assumptions for their older versions.

In summary, the developed component substitutability framework has several advanta-
geous features:

— It allows multiple components to be upgraded simultaneously. This is crucial since mod-
ifications in different components often interact non-trivially to maintain overall system
safety and integrity. Hence such modifications must be analyzed jointly.
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— It identifies features of an old component which are absent in its updated version. It
subsequently generates feedback to localize the modifications required to add the missing
features back.

— It is completely automated and uses dynamic assume-guarantee style reasoning to scale
to large software systems.

— It allows new components to have more behaviors than their old counterparts in order
to be replaceable. The extra behaviors are critical since they provide vendors with the
flexibility to implement new features into the product upgrades. Our framework verifies
if these new behaviors do not violate previously established global specifications of a
component assembly.

We have implemented the substitutability check as part of the COMFORT [38] reasoning
framework. For the compatibility check, we experimented with an industrial benchmark and
report encouraging results in Sect. 6.

The article is organized as follows: Sect. 2 provides some background on model check-
ing, abstraction and compositional reasoning. Section 3 defines the notation used throughout
the article and presents the L* learning algorithm that forms the basis of the compatibility
analysis. Sections 4, 5 describe the problem of verification of evolving systems and present
a detailed description of the containment and compatibility algorithms that we have devel-
oped to overcome difficulties in the verification of evolving programs. Section 7 provides an
overview of related work, and Sect. 8 summarizes the contributions of this article.

2 Overview of the model checking approach

In formal verification, a system is modeled mathematically, and its specification (also called
a claim or property in model checking) is described in a formal language. Model check-
ing [19] is an automated formal verification technique which checks whether a system sat-
isfies a desired claim through an exhaustive search of all possible executions of the system.
The exhaustive nature of model checking addresses the issue of inadequate coverage that is
typically a drawback of testing.

Model checking is a technique for verifying finite-state concurrent systems. One benefit
of this restriction to finite-state systems is that verification can be performed automatically.
Given sufficient resources, model checking always terminates with a “yes” or “no” answer.
Moreover, it can be implemented by efficient algorithms.

2.1 The process of model checking

Model checking involves the following steps:

1. The system is modeled using the description language of a model checker, producing a
model M.

2. The claim to check is defined using the specification language of the model checker,
producing a temporal logic formula ¢.

3. The model checker automatically checks whether M = ¢ (i.e., whether M satisfies ¢).

The model checker explores all system executions captured by the model and outputs
yes” if the claim holds in the model (M) and “no” otherwise. When the claim is not
satisfied, the model checker produces a counterexample consisting of a system behavior
that causes the failure. A counterexample defines an execution trace that violates the claim.
Counterexamples are one of the most useful features of model checking, as they allow users
to understand why a claim is not satisfied.

13
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2.2 Model checking software

Applying model checking to software, as opposed to hardware, is complicated by several
factors, ranging from the difficulty of modeling computer systems (due to the complex-
ity of programming languages as compared to hardware description languages) to difficul-
ties in specifying meaningful claims for software using the usual temporal logic formalism
of model checking. The most significant limitation, however, is the state space explosion
problem (which applies to both hardware and software), whereby the complexity of model
checking becomes prohibitive.

State space explosion results from the fact that the size of the state transition system is
exponential in the number of variables and concurrent units in the system. When the system
is composed of several concurrent units, its combined description may lead to an exponential
explosion as well. The state space explosion problem is the subject of most model checking
research.

The following state space reduction techniques are commonly used during verification of
software:

— Abstraction: A smaller abstract system is constructed such that the claim holds for the
original system if it holds for the abstract system.

— Counterexample-guided abstraction refinement. Abstracted systems are refined itera-
tively using information extracted from counterexamples until an error is found or it
is proven that the system satisfies the verification claim.

— Compositional reasoning: Verification is partitioned into checks of individual modules,
while the global correctness of the composed system is established by constructing a
correctness proof that exploits the modular structure of the system.

2.2.1 Abstraction

Abstraction is one of the principal techniques for reducing the complexity of a verification
problem [7, 17, 18, 40]. Abstraction techniques reduce the state space by mapping the set
of actual system states to an abstract set of states that preserve the behavior of the actual
system. Abstractions are usually performed in an informal, manual manner and require con-
siderable expertise. Predicate abstraction [24, 31] is one of the most popular and widely
applied methods for the systematic abstraction of systems. It maps concrete data types to
abstract data types through predicates over the concrete data. However, the computational
cost of the predicate abstraction procedure may be too high, making generation of a full set
of predicates for a large system infeasible. In practice, the number of computed predicates
is bounded [7, 11], and model checking is guaranteed to deliver sound results within this
bound. The bound limit is increased when errors (if any) are found within the bound and
fixed. Moreover, in many cases, software systems are first rendered finite by restricting vari-
ables to finite domains and then abstraction techniques are used to obtain smaller models.
The abstract program is created using existential abstraction [18]. This method defines
the transition relation of the abstract program so it is guaranteed to be a conservative over-
approximation of the original program, with respect to the set of given predicates. This
ensures that if a claim holds for the abstract over-approximate system, it must also hold for
the original system. The use of a conservative abstraction, as opposed to an exact abstrac-
tion, produces considerable reductions in the state space. The drawback of the conservative
abstraction is that when model checking of the abstract program fails, it may produce a coun-
terexample that does not correspond to a concrete counterexample. Such a counterexample
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Fig.2 The CEGAR framework
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is usually called spurious [17]. When a spurious counterexample is encountered, the ab-
stract model is refined (e.g., by adjusting the set of predicates) such that the counterexample
is eliminated.

2.2.2 Counterexample-guided abstraction refinement (CEGAR)

The abstraction refinement process has been automated by the CEGAR paradigm [8, 17, 25,
40]. The CEGAR framework is shown in Fig. 2: one starts by computing a coarse abstraction
(for example, an abstraction of a C program) and model checking it. If an error trace reported
by the model checker is spurious, the error trace is used to refine the abstract program,
and the process repeated until no spurious error traces can be found. In short, the CEGAR
framework consists of the abstract-verify-refine steps and the actual details vary based on
the abstraction and refinement techniques used.

The steps of the CEGAR procedure are described below in the context of predicate ab-
straction.

1. Program abstraction: Given a set of predicates, a finite-state model is extracted from the
code of a software system, and the abstract transition system is constructed.

2. Verification: A model checking algorithm is run to check whether the model created
by applying predicate abstraction satisfies the desired behavioral claim ¢. If the claim
holds, the model checker reports success (¢ is true), and the CEGAR loop terminates.
Otherwise, the model checker extracts a counterexample, and the computation proceeds
to the next step.

3. Counterexample validation: The counterexample is examined to determine whether it
is spurious. This examination is done by simulating the (concrete) program using the
abstract counterexample as a guide, to find out if the counterexample represents an actual
program behavior. If this is the case, the bug is reported (¢ is false), and the CEGAR loop
terminates. Otherwise, the CEGAR loop proceeds to the next step.

4. Predicate refinement: The set of predicates is changed to eliminate the detected spurious
counterexample and possibly other spurious behaviors introduced by predicate abstrac-
tion. Given the updated set of predicates, the CEGAR loop proceeds to Step 1.

The efficiency of this process depends on the efficiency of the program abstraction, ver-
ification and predicate refinement procedures. While program abstraction focuses on con-
structing the transition relation of the abstract program, the focus of predicate refinement
is to define efficient techniques for choosing the set of predicates in a way that eliminates
spurious counterexamples.

2.2.3 Compositional reasoning

Compositional reasoning [4, 20, 27, 40, 44] allows model checking to scale to large systems
by using a “divide and conquer” approach that exploits the modular structure of hardware
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and software systems. More specifically, the verification claim for a system is first decom-
posed into a set of local claims, one for each system module. These local claims are then
verified separately. The compositional approach establishes whether for given systems M,
and M, and a claim T, the composed system satisfies 7' (written M; || M, = T). A naive
compositional approach proceeds by executing the following steps: (1) M; = T and (2)
M, =T and concludes by proving that M, || M, = T. Although this rule is sound in theory,
it is often not useful in practice. Usually, both M, and M, behave like T only under a suit-
able environment. To solve this problem, the compositional principle can be strengthened
to an assume-guarantee principle [1, 39, 45, 47]: in order to check M =T, it suffices to
check that both M, || A =T and M, = A hold. This technique uses a local specification
A as the constraining environment (also called an assumption) for M;. In general, for a
system composed of multiple modules, assume-guarantee reasoning tries to prove that each
system component M; satisfies a corresponding specification component 7; under a suitable
constraining environment A; and that the environment indeed satisfies the constraint A;.
Recently, an approach was proposed by Cobleigh et al. [22] to automate assume-guarantee
reasoning with the help of using learning algorithms for regular languages to compute these
environment assumptions. The proposed compatibility check is based on this automated
assume-guarantee reasoning procedure.

3 Notation and background

In this section we present some basic definitions. Let X be a sequence. Let e denote the
concatenation operator over sequences, and let X* denote zero or more applications of e
over X as usual. As a special case, the empty sequence A denotes zero applications of e over
X. For any two sets X and Y, we denote the set {x ey |[x e X Ay e Y} by X e Y. In the
following, we use the terms sequence and trace interchangeably.

Definition 1 (Finite Automaton) A finite automaton (FA) is a 5-tuple (Q, Init, X, T, F)
where (i) Q is a finite set of states, (ii) Init C Q is the set of initial states, (iii) X is a finite
alphabet of actions, (iv) T € Q x ¥ x Q is the transition relation, and (v) F € Q is a set of
accepting states.

For any FA M = (Q, Init, ¥, T, F), we write s —> s’ to mean (s, , s') € T. We define
the function 8 as follows: Vo € X . Vs € Q. 8(a, s) = {s'|s —> s"}. We extend § to operate
on strings and sets of states in the natural manner: for any o € X* and Q' C Q, §(o, Q')
denotes the set of states of M reached by simulating o on M starting from any s € Q’.

The language accepted by a FA M, denoted by L(M), is defined as follows: L(M) =
{o € X*| §(o,Init) N F # (J}. An element of L(M) is said to be a trace of M.

Definition 2 (Deterministic and Complete Finite Automaton) AFA M = (Q, Init, ¥, T, F)
is said to be a deterministic FA, or DFA, if |Init| =1 and Vo € X .Vs € Q . [6(«, 5)| < 1.
Also, M is said to be complete if Yo € X' . Vs € Q. |5(c, 5)| > 1.

Thus, for a complete DFA, we have the following: Yo € X'.Vs € Q.|5(, s)| = 1. Unless
otherwise mentioned, all DFA we consider in the rest of this paper are also complete. It is
well-known that a language is regular if and only if it is accepted by some FA (or DFA, since
FA and DFA have the same accepting power). Also, every regular language is accepted by a
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unique (up to isomorphism) minimum DFA. Given any FA M, its complement M is defined
to be M’ where M’ is the DFA obtained from M by the subset construction [37].

We now define a notion of asynchronous parallel composition between FAs which is
based on the notion of composition defined for CSP [49].

Definition 3 (Parallel Composition) Given two FA M, = (Q,, Init;, ¥, T, F\) and M, =
(Q9, Inity, ¥, T, F;), their parallel composition M; || M, is the FA (Q; x Q»,Init; X
Inity, X} U X,, T, Fy x F,) such that Vs, 5] € Q. Vs2, 55 € Oo, (51,52) BN (s1,s5) if and
only if:

(@) e €D Aag Ty As| —> 5| A(sy=s5}) or,
(b) ae Ao g Z|Asy—> sy A(s1=s]) or,
(©) @€ (TN AVie{l,2) s —> s/

Given a string 7, we write M || ¢ to denote the composition of M with the automaton
representation of ¢.

Definition 4 (Language Containment) For any FA M, and M, (with alphabets X; and X,
respectively, where X, C X), we write M| < M, to mean L(M, || M,) = (. A counterex-
ample to My < M, is astring o € L(M, || M>).

If M| < M,, then we sometimes also say that M, is an abstraction of M;. We now define
the notion of weakest assumptions. We assume that a safety property can be represented as
a FA in the usual way [30].

Definition 5 (Weakest Assumption [30]) For any FA M and any safety property expressed
as a FA ¢, the weakest (i.e., maximal w.r.t. the language-containment preorder <) assump-
tion FA, denoted by WA, is defined as follows: (i) M || WA < ¢ and (ii) for any FA E,
M| E < giff Ex WA.

Lemma 1 (Existence and Uniqueness of Weakest Assumption) Given a FA M and a prop-
erty FA @, the weakest assumption WA exists and can be represented by a FA accepting the
language L(M || @).

Proof The proof follows from the construction given in [30]. O

The following lemma shows that we can check if a given trace ¢ is in L(WA) without
constructing WA directly by checking if M | ¢ < ¢ holds.

Lemma 2 Let WA be the weakest assumption automata for component automaton M and
specification automaton ¢. Given a trace t,if M || t < ¢, then t € L(WA).

Proof 1t follows from the definition of weakest assumptions (cf. Definition 5) that for all
assumptions such that M || A < ¢, L(A) € L(WA) holds. Let M, be the automaton repre-
sentation of 7. Since M || M, < ¢ holds, it follows that L(M;) € L(WA). Since L(M,) = {t},
t € L(WA). O
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3.1 L* algorithm

The L* algorithm for learning DFAs was developed by Angluin [6] and later improved by
Rivest and Schapire [48]. In this paper, we use the improved version of L* due to Rivest
and Schapire. The algorithm learns an unknown regular language U, over an alphabet X,
by generating the minimum DFA that accepts U.

3.1.1 Preliminaries
Let U be an unknown regular language over some alphabet X.

Definition 6 (Prefix Closed) A set X C X* is said to prefix-closed if for each x € X, all the
prefixes of x are also in X.

In the rest of this section, we present the core L* algorithm. We begin with the notion of
a minimally adequate teacher.

3.1.2 Minimally adequate teacher

In order to learn an unknown language U, L* interacts with an oracle, also known as a
minimally adequate teacher, MAT, for U. The teacher can provide answers to the following
two kinds of queries:

1. Membership. Given a trace o € X*, MAT returns TRUE iff o € L(U).
2. Candidate. Given a DFA D, MAT returns TRUE iff L(D) = U. If MAT returns FALSE, it
also returns a counterexample trace w which either lies in L(D) \ U or U \ L(D).

3.1.3 Observation table

The L* algorithm constructs iteratively a minimal DFA D such that L(D) = U. To this goal,
it maintains an observation table data structure 7 = (S, E, T'), where:

— § C X*is a prefix-closed set of traces,
— E C X* is a set of experiment traces, used to distinguish states in D, and,
— T:(SU(SeX)) x E— {0,1}is afunction such that:

Vse(SU(SeX)).Vee E.T(s,e)=1=s0ecU

Intuitively, one can think of 7 as a two-dimensional table. The rows of 7 are labeled
with the elements of S U (S e X') while the columns are labeled with elements of E. Finally
T denotes the table entries. In other words, the entry corresponding to row s and column e
is simply 7 (s, e). The value of T (s, e) is 1 if s @ e € U, otherwise T (s, e) is 0. Figure 5(left)
shows an example of an observation table.

Table Congruence We define an equivalence relation = as follows: for s, s’ € (SU S e X),

s=s'iffVee E,T(s,e) =T(s',e). Also, forall s € (SU S e X'), we denote the set of traces
equivalent to s by [s], where

[s1={se(SUSeX)|s=s'}
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Fig. 3 Pseudo-code for

algorithm CloseTable Algorithm CloseTable

1: forever do

2: if(VteSeX.dseS.s=t)return;
3: findteSeXsuchthatVse S.s #t;
4: S:=8SU{t}h

5:  Update T using membership queries;

Well-formed Table An observation table 7 is said to be well-formed if for all s, s" € S,
s £ s’. The L* algorithm always keeps T well-formed.'

Table Closure The observation table 7 is said to be closed if foreach t € S @ X, there is a
s" € S, sothatt =s’. Given any observation table 7, we assume that a procedure CloseTable
makes it closed. Figure 3 shows the pseudo-code for the procedure. In words, the procedure
iteratively selects some ¢ € S @ X' so that forall s € S, s # ¢. Then, it adds ¢ to S and updates
the function T by asking membership queries for extensions of ¢ on each alphabet symbol.
The procedure CloseTable terminates with a closed table when no such ¢ can be found. In
each iteration the size of S increases by one. Lemma 5 (described below) shows that the
procedure CloseTable cannot increase the size of S indefinitely and must terminate in finite
number of steps.

DFA Construction Given a closed table 7, L* obtains a DFA D = (Q, qo, X, A, F), as
follows:

— Q ={[s]|s €S}, where a state ¢ € Q corresponds to the equivalence class [s] of a trace
seSs,

— qo=[A],

— A={(sl.a,[seal)|s€S,ac X},

— F={s]|seSAT(s, 1) =1}

Suppose that a procedure called MkDFA implements this construction. Note that D is
both deterministic and complete.

3.1.4 The L* algorithm

Figure 4 shows the pseudo-code for the L* algorithm. Recall that A denotes any empty
sequence. L* starts with a table 7 = (S, E, T) such that S = E = {1} and in each iteration
proceeds as follows.

1. It first updates 7 using the CloseTable procedure until 7 is closed.

2. Next L* builds a candidate DFA D from the closed table (using MkDFA procedure) and
makes a candidate query with D.

3. If the MAT returns TRUE to the candidate query, L* returns D as the result and stops.

4. Otherwise, a counterexample CE is obtained. Now L* constructs a new experiment e
from CE using the algorithm proposed by Rivest and Schapire [48] and adds e to E. The
new experiment e (also known as a distinguishing suffix) has the property that it causes
the observation table 7 to be no longer closed, and thereby forces the number of rows of
7 to increase strictly in the next iteration of L*.

TWe omit the notion of consistency usually used while presenting of L* [6] since a well-formed table is
consistent by definition.
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Fig. 4 Pseudo-code for

: *
algorithm L* Algorithm L

1. S:=E:={};

2: forever do

3 CloseTable();

4: M := MKDFA(7);

5: if (IsCandidate(M)) return M ;

6 let CE be the counterexample returned by IsCandidate;
7 Obtain a distinguishing suffix e from CE;

8 E:=EUl{e};

Fig. 5 An observation table and
the corresponding candidate DFA E
A
A 0 | (s0)
S
a 1| (s1)
B 0
SelX
ao 1
af || 0

Example 1 Consider Fig. 5. On the left is an observation table (S, E, T) where S and E
correspond to rows and columns respectively and 7' corresponds to the table entries. Here,
Y ={a, B}. From this table we see that {o, « e o} € U. On the right is the corresponding
candidate DFA. The states 5o and s, of the DFA correspond to the elements A and « of S
respectively. The state s is marked initial since it corresponds to word A. The state s; is
marked final since the table entry 7 («, A) = 1. Finally, the transitions are determined as
described in the procedure MkDFA.

3.1.5 Results on L*

In order to make our presentation more self-contained, we now prove some results about the
L* algorithm and the procedures CloseTable and MkDFA. We use these results to prove the
correctness of a new dynamic version of the L* algorithm that we propose later in this paper
(cf. Sect. 5.1.1).

Lemma 3 The L* algorithm always maintains a well-formed table.

Proof Consider the pseudo-code of L* in Fig. 4. Given an observation table 7 = (S, E, T),
the set S is updated only in line 3 by the CloseTable procedure. Hence, we need to show that
CloseTable always maintains a well-formed table at each iteration.

We proceed by induction. Note that at the first iteration of the L* loop (first call to
CloseTable), S only has a single element and hence the table is well-formed. Assume that
the input observation table 7 to CloseTable is well-formed at kth iteration (k > 1). The pro-
cedure CloseTable (cf. Fig. 3) only adds a new element 7 to S (line 4) if forall s € S, s #¢
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(line 3). Therefore, all the elements in S U {t} are non-equivalent and the resultant table is
also well-formed. O

The following lemma is crucial for proving termination of L*. It essentially provides an
upper bound on the size of S.

Lemma 4 Let T = (S, E, T) be a well-formed observation table. Let U be an unknown
regular language and n be the number of states in the minimum DFA M such that LIM) = U.
Then the size of the trace set S cannot exceed n.

Proof Let § denote the transition relation of M (A extended to words) (cf. procedure
MkDFA) and ¢, denote the initial state for M.

The proof is by contradiction. Suppose that the size of S exceeds n. Then by the pigeon-
hole principle, there exist two elements s, and s, of S such that §(sy, {go}) = 8(s2, {q0}) = ¢
(say), i.e., s; and s, must reach the same state g in M. Since M is the minimum DFA for
U, we know that the states of M correspond to equivalence classes of the Nerode congru-
ence [37] for U. Since s; and s, reach the same state in M (same Nerode equivalence class),
it follows that

Vec X", sieeclU iff s,eeclU (1)

But, 7 is well-formed and hence s; # s,. Therefore there exists some e € E, such that
T(siee)#T(s,ee),ie., s eecU ands; ee & U or vice versa. Together with (1), we
reach a contradiction. O

The following lemma shows that the procedure CloseTable cannot increase the size of S
indefinitely and must terminate in finite number of steps.

Lemma 5 The procedure CloseTable always terminates with a closed table. Moreover, the
procedure maintains a well-formed observation table T = (S, E, T) at each iteration.

Proof It follows from the pseudo-code (Fig. 3) that the procedure CloseTable keeps adding
new elements to S until 7 is closed. Since the size of S is bounded by the number of states
in the minimum DFA for the unknown language U (Lemma 4), CloseTable terminates with
a closed table in finite number of steps. It follows from Lemma 3 that the procedure always
maintains a well-formed table. ]

The following lemma shows that the MkDFA procedure always constructs a candidate
DFA starting from a well-formed and closed observation table.

Lemma 6 Given a well-formed and closed observation table as an input, the procedure
MKDFA always terminates with a candidate DFA D as a result.

Proof Since the input table 7 is well-formed, the states of D are uniquely defined by the
elements of S. Moreover, the initial state is unique by definition and the final states are well-
defined. Since the table is closed, the transition relation of D is also well-defined. Hence,
the candidate DFA is well-defined. ]

Theorem 1 Given an unknown regular language U, the algorithm L* always terminates
with a DFA M such that L(M) =U.
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Proof The fact that L* algorithm terminates with the correct result M (L(M) = U) is ob-
vious since it stops only after a candidate query has passed. To prove that it terminates,
it suffices to show that there can only be a finite number of failed candidate queries and
therefore only a finite number of iterations of the top-level loop (Fig. 4, line 2). It has been
shown [48] that for each failed candidate query, the procedure CloseTable must add at least
one element to S in the next iteration of the top-level loop. However, the size of S is bounded
(cf. Lemma 4) and hence the loop executes only a finite number of times. U

4 Containment analysis

Recall that the containment step verifies for each i € Z, that C; < C;, i.e., every behavior
of C; is also a behavior of C;. If C; £ C;, we also generate a counterexample behavior in
Behv(C;) \Behv(C; ) which is subsequently provided as user feedback. This containment
check is performed as depicted in Fig. 6 for each modified component. (CE refers to the
counterexample generated during the verification phase.) For each i € Z, the containment
check proceeds as follows:

1. Abstraction. Construct finite models M and M’ such that the following conditions C1
and C2 hold:

Cl) CxM, (C2) M<C @)

Here M is an over-approximation of C; and can be constructed by standard predicate
abstraction [32]. M’ is constructed from C l/ via a modified predicate abstraction which pro-
duces an under-approximation of its input C component. We now describe the details of the
abstraction steps.

Suppose that C; consists of a set of C statements Stmt = {sty, ..., st;}. Let V be the set
of variables in the C;. A valuation of all the variables in a program corresponds to a concrete
state of the given program. We denote it by v.

C; Cl
Over—approximate l ABSTRACTION l Under—approximate
M, M,
Refine VERIFICATION Check: M; C M/ Enlarge
False + CE J/ True
No Check: CE € G, All behaviors are preserved
VALIDATION1
Yes
, No
VALIDATION2 | Check: CE & C]

Yes = CE € C;\C

Fig. 6 The containment phase of the substitutability framework
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Predicates are functions that map a concrete state v € S into a Boolean value. Let
P = {m,..., 7} be the set of predicates over the given program. On evaluating the set
of predicates in P in a particular concrete state v, we obtain a vector of Boolean values b,
where b[i] = m;(9). The Boolean vector b represents an abstract state. We represent this
predicate evaluation using an abstraction function «: b = a(v). Also, the concretization
function y is defined as follows:

y(b) = {0 b =a(®)

“May” Predicate Abstraction: Over-approximation This step corresponds to the standard
predicate abstraction [11]. Each statement (or basic block) St in C; is associated with a tran-
sition relation 7' (v, v"). Here, v and v’ represent a concrete state before and after execution
of Sz, respectively. Given the set of predicates 7 and associated vector of Boolean variables
b as before, we compute an abstract transition relation T(b b') [18] as follows:

T(b,b)=30,0 .T@, V) Ab=a@®) AD =a(@) 3)

T is the existential abstraction [18] of T (with respect to the abstraction function «) and
is also referred to as its may abstraction f"may [50]. In practice, we compute this abstraction
using the weakest precondition (WP) transformer [28] on predicates in P along with an
automated theorem prover [32] as follows:

T(b,b") =y () A WP(St,y(B)) is satisfiable 4)

where WP(St, ¢) denotes the weakest precondition expression for formula ¢ with respect
to statement St and y is the concretization function as defined above. By the definition of
weakest preconditions, we have

veWPSt,y(®d) = .T@, V)NV €y®d)
Note that (3) is equivalent to (4) since:

Th,b)=30.30.T@, V) Ab=a@) AD =a@)
=W.0ey@) AW .T@,T)AV €y@))
=35.(Deyd) ADe WP(St, yd)))
= y(b) AWP(St,y (b)) is satisfiable
Note that even though we are checking software consisting of several communicating

program components, it is sufficient to use standard weakest preconditions for sequential
programs, since the abstraction is performed component-wise.

“Must” Predicate Abstraction: Under-approximation The modified predicate abstraction
constructs an under-approximation of the concrete system via universal or must [50] ab-
straction. Given a statement St in the modified component C l/ and its associated transition
relation 7' (v, v') as before, we compute its must abstraction with respect to predicates P as
follows:

Th,b)=Vi.b=a@®) = I .T@GI)AD=a@) 5)
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We use f",,ms, to denote the above relation. Note that f’mm, contains a transition from an ab-
stract state b to b’ iff for every concrete state ¥ corresponding to b, there exists a concrete
transition to a state v’ corresponding to b’ [50]. Further, it has been spown [50] tha} the con-
crete transition relation 7" simulates the abstract transition re}ation Tousi- Hence, T, 1S an
under-approximation of 7. Again, in practice, we compute 7, using the WP transformer
on the predicates together with a theorem prover [34] in the following way:

T(b,b) = (y(b) = WP(St,y(B))) (6)
Note that (5) is equivalent to (6) since:

T(h,b)=Vo.b=a@®) = I .T@, V)AL =a@))
=Wi.tey() = W.TGI)AV ey )
=NMo.vey(b) = veWPSty®d)))
= (y(b) = WP(St,y (D))

At the end of the abstraction phase, we obtain M as an over-approximation of C; and M’
as an under-approximation of C;, as defined in (2). The containment check now proceeds to
the next stage involving verification.

1. Verification. Verify if M < M’ (or alternatively M \ B < M’ if the upgrade involved some
bug fix and the bug was defined as a finite automaton B). If so then from (C1) and (C2)
(cf. Abstraction) above we know that C; < C l/ and we terminate with success. Otherwise
we obtain a counterexample CE.

2. Validation and Refinement 1. Check that CE is a real behavior of C;. This step is done
in a manner similar to the counterexample validation techniques employed in software
model checkers based on CEGAR [7, 11, 36].

If CE is a real behavior of C;, we proceed to Step 4. Otherwise we refine model M
(i.e., remove the spurious CE) by constructing a new set of predicates P’ and repeat from
Step 2. The procedure for refining the model M has been presented elsewhere [11] in
detail, and we do not describe it here further.

3. Validation and Refinement 2. Check that CE is not a real behavior of C;. The operations
involved in this check are the same as those used for the validation check in Step 3. The
only difference is that we complement the final result, since in this step we are interested
in checking whether CE is not a real behavior of C l’ , while in Step 3, we were interested
in checking whether CE is a real behavior of C;.

If CE is not a real behavior of Ci’, we know that CE € Behv(C;) \Behv(le). We add CE
to the user feedback step and stop. Otherwise we enlarge M’ (i.e., add CE) by constructing
a new set of predicates P’ and repeat from Step 2. The procedure for enlarging the model
M’ has been presented elsewhere [34] in detail, and we do not describe it here further.

Figure 6 depicts the individual steps of this containment check. Similar to ordinary
abstraction-refinement procedures for programs, the containment check may not terminate
because a sufficient set of predicates is never found. Otherwise, the check terminates either
with a successful result (all behaviors of C; are verified to be present in C;) or returns an
actual diagnostic behavior CE as feedback to the developers. The following theorem proves
this result.

Theorem 2 (Correctness of Containment Check) Upon termination, if the Containment

Check is successful, then C; X C; holds. Otherwise, a witness counterexample CE € C; \ C;
is returned.
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Proof The containment check terminates either when the verification check (Step 2) suc-
ceeds or both the Validation and Refinement checks (Steps 3 and 4) fail. Note that at each
iteration C; < M; and M; < C;. If the verification step (Step 2) succeeds, then it follows that
M; < M/, and hence C; < M; < M| < C;. Therefore, C; < C; holds. Otherwise, suppose
that both the Validation and Refinement phases (Steps 3 and 4) fail. Then, from Step 3 we
know that CE € C;, and from Step 4 we know that CE ¢ C l/ . Hence, we have a counterex-
ample CE€ C;\ € C l/ which is returned by the containment check. O

4.1 Feedback

Recall that for some i € Z, if our containment check detects that C; £ C ;, it also computes
a set F; of erroneous behaviors. Intuitively, each element of F; represents a behavior of C;
that is not a behavior of C l/ ‘We now present our process of generating feedback from F;. In
the rest of this section, we write C, C/, and F to mean C;, C , and F;, respectively.

Consider any behavior 7 in F. Recall that 7 is a trace of an automaton M obtained
by predicate abstraction of C. By simulating 7 on M, we construct a sequence Rep(w) =
(g, ..., ay) of states and actions of M corresponding to the trace 7.

We also know that 7 represents an actual behavior of C but not an actual behavior of
C'. Thus, there is a prefix Pref(m) of m such that Pref(m) represents a behavior of C "
However, no extension of Pref () is a valid behavior of C ". Note that Pref (;r) can be con-
structed by simulating 7 on C ". Let us denote the suffix of 7 after Pref () by Suff (7). Since
Pref () is an actual behavior of C', we can also construct a representation for Pref () in
terms of the statements and predicate valuations of C’. Let us denote this representation by
Rep' (Pref (1r)).

As our feedback, for each m € F, we compute the following representations:
Rep(Pref (7)), Rep(Suff (;r)), and Rep’(Pref (;r)). Such feedback allows us to identify the
exact divergence point of 7 beyond which it ceases to correspond to any concrete behavior
of C'. Since the feedback refers to a program statement, it allows us to understand at the
source code level why C is able to match 7 completely, but C’ is forced to diverge from
7 beyond Pref(rr). This understanding makes it easier to modify C' so that the missing
behavior 7 can be added back to it.

5 Compatibility analysis

The compatibility check is aimed at ensuring that the upgraded system satisfies global safety
specifications. Our compatibility check procedure involves two key paradigms: dynamic
regular-set learning and assume-guarantee reasoning. We first present these two techniques
and then describe their use in the compatibility algorithm.

5.1 Dynamic regular-set learning

Central to our compatibility check procedure is a new dynamic algorithm to learn regular
languages. Our algorithm is based on the L* algorithm described in Sect. 3. In this section
we first present a dynamic version of the L* learning algorithm and then describe how it can
be applied for checking compatibility.

@ Springer



252 Form Methods Syst Des (2008) 32: 235-266

5.1.1 Dynamic L*

Normally L* initializes with S = E = {A}. This can be a drawback in cases where a pre-
viously learned candidate (and hence a table) exists and we wish to restart learning using
information from the previous table. In the following discussion, we show that if L* begins
with any non-empty valid table, it must terminate with the correct result (Theorem 3). In par-
ticular, this theorem allows us to perform our compatibility check dynamically by restarting
L* with any previously computed table by revalidating it instead of starting from an empty
table.?

Definition 7 (Agreement) An observation table 7 = (S, E, T) is said to agree with a regular
language U iff:

Vis,e)e(SUSe X)X E . T(s,e)=1=se0eclU

Definition 8 (Validity) Recall the notion of a well-formed observation table from Sect. 3.1.3.
An observation table 7 = (S, E, T) is said to be valid for a language U iff 7 is well-formed
and agrees with U. Moreover, we say that a candidate automaton derived from a table 7 is
valid for a language U if 7 is valid for U.

Theorem 3 L* terminates with a correct result for any unknown language U starting from
any valid table for U.

Proof It was shown earlier (cf. Theorem 1) that for a given unknown language U, the L*
algorithm terminates if it is able to perform a finite number of candidate queries. Therefore,
it remains to show that starting from a valid observation table, the algorithm must be able
to perform a candidate query in a finite number of steps. Note that each iteration of the
L* algorithm involves executing the CloseTable and MkDFA procedures before making a
candidate query (cf. Fig. 4). Therefore, we need to show that the procedures CloseTable and
MKDFA terminate in a finite number of steps starting from a valid table.

Let the valid observation table be 7. Since 7; agrees with U, the CloseTable procedure
terminates in a finite number of steps with a closed table 7, (cf. Lemma 5). Moreover, 7, is
well-formed since the initial table 7; is well-formed (cf. Lemma 5). Since 75 is well-formed
and closed, the MKDFA algorithm is able to compute a DFA candidate D (cf. Lemma 6)
from 7, and terminates. Therefore, after the execution of MkDFA finishes, L* must perform
a candidate query. O

Suppose we have a table 7 that is valid for an unknown language U, and we have a new
unknown language U’ different from U. Suppose we want to learn U’ by starting L* with
table 7. Note that since U and U’ differ in general, 7 may not agree with U’ and hence
may not be valid with respect to U’; hence, L* may not terminate starting from 7. Thus,
we first revalidate T against U’ and then start L* from the valid 7. Theorem 3 provides
the key insight behind the correctness of this procedure. As we shall see, this idea forms the
backbone of our dynamic compatibility-check procedure (see Sect. 5.3).

In the context of assume-guarantee reasoning, U represents a weakest assumption lan-
guage. When an upgrade occurs, U may change to a different language U’. However, since

2 A similar idea was also proposed in the context of adaptive model checking [32].
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Procedure Reval
Input: An observation table 7 = (S, E, T) and a teacher for a language U’.
Output: An observation table 7" that is valid for U’.

1. (Step 1) For all s € S and e € E, ask membership query for s e e with respect to U’
and update T'.
Let the table obtained as a result be 7”.

2. (Step 2) Make 7’ well-formed (cf. Sect. 3.1.3) by using the procedure MkWellFormed.

Fig. 7 The table revalidation procedure Reval

the change was caused by an upgrade, we expect that the language U’ will differ from U
only slightly. We will see that the efficiency of our revalidation procedure depends crucially
on this hypothesis.

Revalidation Procedure Suppose we have a table 7 which is valid for an unknown lan-
guage U. Given a Teacher for a different unknown language U’, the table revalidation pro-
cedure Reval (shown in Fig. 7) makes 7 valid with respect to U’ by executing the following
two steps. In Step 1, Reval updates all the table entries in 7 by asking membership queries.
The table 7’ obtained as a result may not be well-formed since the function T is updated.
More precisely, for some s, s, € S where s; # 5, in 7, it may happen that s; = s, in 7.
However, the construction of a candidate DFA requires that the observation table be well-
formed (cf. Lemma 6). Therefore, in Step 2, Reval uses the procedure MkWellFormed to
make 7 well-formed. In order to describe MkWellFormed, we need the concepts of the
well-formed cover and the experiment cover for an observation table 7.

Definition 9 (Well-formed Cover) Given a prefix-closed set S, a well-formed subset of S
is a set §" C S such that (i) S’ is prefix-closed, and (ii) for all s, s, € S’, 51 # 5, holds.
A well-formed cover S’ of S is a maximal well-formed subset of S.

Given a prefix-closed set S, a well-formed cover S’ of S can be obtained by performing
a depth-first tree search on the tree representation of S in the following way: for each newly
visited node in the tree, the corresponding string in S is added to S’. However, a node (with
the corresponding string ) is visited only if for all s” in the current cover §’, s and s’ are
non-equivalent, i.e., s # s’. The search terminates when for every s € S there exists some
s" € §' so that s = s’. Note that the final S” obtained in this way is prefix-closed and no two
elements of S” are equivalent. For example, let S = {a,a e b,a e c,d} where a =a e ¢ and
d =a e b. A well-formed cover of S is §' = {a, a e b}. Note that S’ is prefix-closed and
a#£aeb.

Definition 10 (Column Function) Given an observation table 7 = (S, E, T'), and some ¢ €
E, Col(e) is defined to be a function from (SU S e X) to {0, 1} such that Col(e)(s) = T (s, )
foralls € (SUSeX).Forey,e; € E, wesay that Col(e;) = Col(e;) if foralls € (SUSe X)),
T(s,e;)=T(s,er).

Intuitively, for an experiment e € E, Col(e) denotes the vector of Boolean values in the
column corresponding to e in an observation table 7. Two elements e; and e, are equivalent
under the Col function if the vector of Boolean values in the corresponding columns of the
observation table are same.
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Fig. 8 Illustration of the revalidation procedure described in Example 2; (a) Observation table for original
language U = (B | (o o (@|B)))*; (b) New observation table after recomputing the entries with respect to the
new language U’ = (B |a o B)*) | (B | ¢ @ B)* e); e.g., o« € U’ implies T (a, A) = 1; (¢) Observation table
after revalidating with respect to U’ and (d) after an L* learning iteration with respect to U’; (e) DFA for
language U (corresponding to observation table in (a)); and (f) DFA for language U’ (corresponding to table
in (d))

Definition 11 (Experiment Cover) An experiment cover of E is a set E' C E, such that
(i) forall ey, e; € E’, Col(ey) # Col(ey), and (ii) for each e € E, there exists an ¢’ € E’, such
that Col(e) = Col(¢’).

An experiment cover for E can be obtained by finding the set of elements equivalent un-
der Col function and picking a representative element from each set. For example, consider
the observation table in Fig. 8d. Here, E = {A, «}. Note that Col(X) # Col(«). Hence, the
experiment cover E’ for E is the same as E.

The MkWellFormed procedure is described by the pseudo-code in Fig. 9. Intuitively, the
procedure removes duplicate elements from S (which are equivalent under the = relation)
and E (having the same value under the Col function).

Example 2 (Revalidation Example) Figure 8 shows an illustration of the revalidation proce-
dure in the dynamic L* algorithm. Let the initial unknown language (the weakest assumption
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Procedure MkWellFormed
Input: Observation table 7 = (S, E, T).
Output: Well-formed observation table 7/ = (S, E’, T").

1. Set S’ to a well-formed cover (cf. Definition 9) of S.
2. Set E’ to an experiment cover (cf. Definition 11) of E with respect to (S’ U S’ e X).
3. Obtain 7" by restricting T to (S'U S’ & X) x E’.

Fig. 9 Pseudo-code for the MkWellFormed procedure

language) be U = (B | (« @ (@|B)))*. The observation table 7; and the DFA for U are shown
in Figs. 8a and 8e respectively. Suppose that an upgrade happens and the new weakest as-
sumption language is U' = ((B |« @ 8)*) | (B | « ® B)* @ @). In particular, note that « € U’
but not in U and @ e & € U but not in U’. Our goal is to start learning with respect to U’
from the observation table 7; computed for U previously. So, the Reval procedure is applied
to 7;. Figure 8b shows the table obtained after applying the Step 1 of the revalidation proce-
dure with respect to the new language U’. Note that the entries for T'(a, 1) and T (« e «, 1)
are updated with respect to U’. This, in turn, results in & = A (cf. Fig. 8b). Now, the Step 2 of
the Reval procedure is applied: since « = A and S = {X, o}, the well-formed cover S’ = {A}.
The experiment cover E’ remains the same as E. Hence, « is removed from S during com-
putation of the well-formed cover in this step (Note that the extensions « e o and « e § are
also in turn removed from S e X'). The resultant observation table (after making it closed)
is shown in Fig. 8c. Since this table is closed, learning proceeds in the normal fashion from
here by computing the next candidate and making a candidate query. Figure 8d shows the
final observation table and Fig. 8f shows the DFA obtained after learning completes with
respect to U'.

Note that our example is small, and therefore the revalidation step gives rise to a trivial
intermediate observation table (Fig. 8b). However, as noted earlier, in the case when an up-
grade causes the change from U to U’, the languages U and U’ may differ only slightly.
Therefore, in this case, the Reval procedure may modify the observation table only slightly.
In particular, during revalidation, the well-formed cover of S may remain very similar to §
(i.e., a large number of elements of S may continue to remain non-equivalent after revali-
dation), leading to reuse of information about many traces (S e E) in the observation table.
In the experimental evaluation of our approach, we observed that the above expectation was
true in most of the cases.

We now show that the output of MkWellFormed procedure is a well-formed table.

Lemma 7 The MkWellFormed procedure returns a well-formed observation table.

Proof Given an observation table 7 = (S, E, T'), the MkWellFormed procedure restricts
S to a well-formed cover (say S’) and E to an experiment cover (say E’). Let the table
obtained as a result be 7. It follows from Definition 9 that for all s;,s, € §’, s1 % 5. Using
the definition of = (cf. Sect. 3.1.3), we know that for some e € E, T(s; @ ¢e) # T (s @ €).
Now, consider the following two cases:

Case 1. If e € E’, 51 % s, still holds in the result table since 7' (s; @ €) = T (s @ €).

Case 2. Otherwise, e € E’. However, by Definition 11, there exist some ¢’ € E’, so that
Col(e') = Col(e). By using the definition of Col (Definition 10), it follows that for all s € S,
T(see)=T(see'). Hence, T (si0¢') =T (s,0e) # T (s,0e) =T (s,e¢). Therefore, 5| £ s,
holds and so the output table 7' is well-formed. (|
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Lemma 8 The Reval procedure always computes a valid observation table for the unknown
language U’ as an output.

Proof Refer to Fig. 7 describing the Reval procedure. By construction, the table obtained at
the end of Step 1 must agree with U’. In Step 2, the procedure MkWellFormed is applied.
Therefore, it follows from Lemma 7 that the resultant table is well-formed. As a result, the
final table both agrees with U’ and is well-formed; hence, by Definition 8, it is valid. O

It follows from Lemma 8 and Theorem 3 that starting from an observation table computed
by the Reval procedure, the L* algorithm must terminate with the correct minimum DFA
for an unknown language U’.

5.2 Assume-guarantee reasoning

Along with dynamic L*, we also use assume-guarantee style compositional reasoning to
check compatibility. Given a set of component finite automata M, ..., M, and a spec-
ification automaton ¢, the following non-circular rule AG [47] can be used to verify
M- 1| M, < g

M |A g
M| --- || M, < Ay
My||--- M, <9

In the above equation, A; is a finite automaton representing the assumption about the
environment under which M| is expected to operate correctly. As also observed by Cobleigh
et al. [22], the second premise is itself an instance of the top-level proof obligation with n — 1
component finite automata. Hence, AG can be applied to decompose it further. It has been
shown that the AG rule is both sound and complete [22]. The proof of completeness relies on
the existence of an unique weakest assumption (cf. Lemma 1) for a component automaton
M and property ¢.

As mentioned above, the rule AG can be instantiated recursively for n components [22]
as follows.

M |Ai<Aior (I<i<n—1A=9¢)
M)1<An—l
Myl I M, <9

Our algorithm for checking compatibility uses this instantiation of rule AG for n compo-
nents. We can show that this rule is complete using the notion of weakest assumptions. Re-
call (cf. Definition 5) that for any finite automaton M and a specification automaton ¢, there
must exist a weakest finite automaton assumption WA such that M || A < ¢ iff A < WA and
M || WA < ¢. For the above instantiation of AG rule, we can define a set of weakest assump-
tions WA; (1 <i <n — 1) as follows. It is clear that a weakest assumption WA, exists such
that M, || WA; < ¢. Given WA/, it follows that WA, must exist so that M, || WA, < WA,.
Therefore, by induction on i, there must exist weakest assumptions WA; for 1 <i <n —1,
such that M; || WA; x WA, (1 <i<n—1,WAp=¢)and M,, < A,_;.

5.3 Compeatibility check for C components

The procedure for checking compatibility of new components in the context of the orig-
inal component assembly is presented in Fig. 10. Given an old component assembly
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Old Components New Components

{Glig 1} {Gliel}

Predicate Abstraction

L* Check: M E ¢ Refine

True False + CE

i i Yes
New Component is Substitutable CE spurious

No

New Component is not Substitutable
CE provided

Fig. 10 The compatibility phase of the substitutability framework

C={Cy,...,C,} and a set of new components C’' = {C; | i € I} (where Z C {1,...,n}),
the compatibility-check procedure checks if a safety property ¢ holds in the new assembly.
We first present an overview of the compatibility procedure and then discuss its implemen-
tation in detail. The procedure uses a DynamicCheck algorithm (cf. Sect. 5.3.2) and is done
in an iterative abstraction-refinement style as follows:

1. Use predicate abstraction to obtain finite automaton models M;, where M; is constructed
from C; if i ¢ 7 and from C; if i € Z. The abstraction is carried out component-wise. Let
M={M,,...,M,}.

2. Apply DynamicCheck on M. If the result is TRUE, the compatibility check terminates
successfully. Otherwise, we obtain a counterexample CE.

3. Check if CE is a valid counterexample. Once again this is done component-wise. If CE
is valid, the compatibility check terminates unsuccessfully with CE as a counterexample.
Otherwise we go to the next step.

4. Refine a specific model, say M;, such that the spurious CE is eliminated. Repeat the
process from Step 2.

5.3.1 Overview of DynamicCheck

We first present an overview of the algorithm for two finite automata and then generalize it
to an arbitrary collection of finite automata. Suppose we have two old finite automata, M,
and M,, and a property finite automaton ¢. We assume that we previously tried to verify
M, || M» < ¢ using DynamicCheck. The algorithm DynamicCheck uses dynamic L* to
learn appropriate assumptions that can discharge the premises of AG. In particular, suppose
that while trying to verify M; | M, < ¢, DynamicCheck had constructed an observation
table 7.

Now suppose that we have new versions M| and M) for M, and M,. Note that, in general,
either M| or M} could be identical to its old version. DynamicCheck now reuses 7 and
invokes the dynamic L* algorithm to automatically learn an assumption A’ such that (i) M| ||
A’ < ¢ and (ii) M, < A’. More precisely, DynamicCheck proceeds iteratively as follows:

1. It checks if M; = Mj. If so, it initializes learning from the previous table 7 (i.e., it sets
T’ :=T). Otherwise, it revalidates 7 against M/ to obtain a new table 7”.
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2. It derives a conjecture A" from 7" and checks if M} < A’. If this check passes, it ter-
minates with TRUE and the new assumption A’. Otherwise, it obtains a counterexample
CE.

3. It analyzes CE to see if CE corresponds to a real counterexample to M| || M) < ¢. If so,
it constructs such a counterexample and terminates with FALSE. Otherwise, it adds a new
experiment to 7" using CE. This is done via the algorithm by Rivest and Schapire [48]
as explained in Sect. 3.1.4. Therefore, once the new experiment is added, 7 is no longer
closed.

4. Tt makes 7" closed by making membership queries and repeats the process from Step 2.

We now describe the key ideas that enable us to reuse the previous assumptions and
then present the complete DynamicCheck algorithm for multiple finite automata. Due to its
dynamic nature, the algorithm is able to locally identify the set of assumptions that must be
modified to revalidate the system.

Incremental Changes Between Successive Assumptions Recall that the L* algorithm main-
tains an observation table (S, E, T') corresponding to an assumption A for every component
M . During an initial compatibility check, this table stores the information about membership
of the current set of traces (S e E) in an unknown language U. Upgrading the component
M modifies this unknown language for the corresponding assumption from U to, say, U’.
Therefore, checking compatibility after an upgrade requires that the learner must compute a
new assumption A’ corresponding to U’. As mentioned earlier, in most cases, the languages
L(A) and L(A’) may differ only slightly; hence, the information about the behaviors of A
is reused in computing A’.

Table Revalidation The original L* algorithm computes A’ starting from an empty table.
However, as mentioned before, a more efficient algorithm would try to reuse the previously
inferred set of elements of S and E to learn A’. The result in Sect. 5.1.1 (Theorem 3) pre-
cisely enables the L* algorithm to achieve this goal. In particular, since L* terminates start-
ing from any valid table, the algorithm uses the Reval procedure to obtain a valid table by
reusing traces in S and experiments in E. The valid table thereby obtained is subsequently
made closed, and then learning proceeds in the normal fashion. Doing this allows the com-
patibility check to restart from any previous set of assumptions by revalidating them. The
Revalidate Assumption module implements this feature (see Fig. 12).

5.3.2 Overall DynamicCheck procedure

The DynamicCheck procedure instantiates the AG rule for n components and enables check-
ing multiple upgrades simultaneously by reusing previous assumptions and verification re-
sults. In the description, we denote the previous and new versions of a component finite
automaton by M and M’ and the previous and new versions of component assemblies by
M and M’, respectively. For ease of description, we always use a property, ¢, to denote
the right-hand side of the top-level proof obligation of the AG rule. We denote the modified
property® at each recursion level of the algorithm by ¢’. The old and new assumptions are
denoted by A and A’, respectively.

Figure 12 presents the pseudo-code of the DynamicCheck algorithm to perform the com-
patibility check. Lines 1-4 describe the case when M contains only one component. In Line

3Under the recursive application of the compatibility-check procedure, the updated property ¢’ corresponds
to an assumption from the previous recursion level.
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GenerateAssumption (A, CE)
/I Let (S,E,T) be the L* observation table corresponding to an assumption A;
Obtain a distinguishing suffix e from CE;
E:=EUle};
forever do
CloseTable();
A’ := MKDFA(7);
if (IsCandidate(A’)) returnA’;
let CE' be the counterexample returned by IsCandidate;
Obtain a distinguishing suffix e from CE’;
E:=FEUl{e};

R U o

Fig. 11 Pseudo-code for procedure GenerateAssumption

5-6, if the previous assumption is found to be not valid (using IsValidAssumption proce-
dure) with respect to the weakest assumption corresponding to M’ and ¢’, it is revalidated
using the Revalidate Assumption procedure. Lines 8—10 describe the recursive invocation of
DynamicCheck on M’ \ M’ against property A’. Finally, Lines 11-16 show how the algo-
rithm detects a counterexample CE and uses it to update A’ or terminates with a TRUE result
or a counterexample. The salient features of this algorithm are the following:

— We assume that there exists a set of previously computed assumptions from the earlier
verification check. Suppose we have a component automaton M and a property automa-
ton ¢, such that the corresponding weakest assumption is WA. In order to find out if a
previously computed assumption (say A) is valid against L(WA) (cf. Definition 8), the
IsValidAssumption procedure is used. More precisely, the IsValidAssumption procedure
checks if the observation table (say 7") corresponding to A is valid with respect to L(WA)
by asking a membership query for each element of the table (cf. Lemma 2).

— The procedure GenerateAssumption (cf. Fig. 11) essentially models the L* algorithm.
Given a counterexample CE, the procedure GenerateAssumption computes the next can-
didate assumption in a manner similar to the original L* algorithm (cf. Sect. 3.1.4). The
termination of the GenerateAssumption procedure directly follows from that of the L*
algorithm.

— Verification checks are repeated on a component M’ (or a collection of components
M\ M’) only if it is (or they are) found to be different from the previous version M
(M\ M) or if the corresponding property ¢ has changed (Lines 3, 8). Otherwise, the pre-
viously computed and cached result (returned by the procedure CachedResult) is reused
(Lines 4,9).

Note that for a component automaton M and a counterexample trace CE, we write
M || CE to denote the composition of M with the automaton representation of the trace
CE (where the last state is the only accepting state). In order to prove the correctness of
DynamicCheck, we need the following lemma.

Lemma 9 Suppose M is a set of component automata (with M € M) and ¢ be a spec-
ification automaton. Let M\ M £ ¢ hold and CE be a witness to it. Moreover, suppose
M || CE % ¢ holds, and CE' is a witness to it. Then M % ¢ holds and CE' is a witness to it.
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DynamicCheck (M’, ¢’) returns counterexample or TRUE
1: let M' = first element of M’;
//M and ¢ denote the first element of M and the corresponding property before upgrade
//and A denotes the assumption computed previously for M and ¢
if M ={M'})
3: if (M # M/’ or ¢ # ¢') return (M’ < ¢');
else return CachedResult(M < ¢);
/lcheck if A is a valid assumption for M’ and ¢’
5: if (= IsValidAssumption(A, M’, ¢))
//make assumption A valid for M’ and ¢’
: A’ := RevalidateAssumption(A, M’, ¢');
7: else A’ ;= A;
//Now check the rest of the system M’ \ M’ against A’
if(A£A or M\ M # M\ M)
: res := DynamicCheck(M’ \ M’, A”);
10: else res := CachedResult(M \ M < A);
11: while(res is not TRUE)
//Let CE be the counterexample obtained
12:  if(M'||CEX¢))

13: A’ := GenerateAssumption (A’,CE); // Obtain A’ so that M | A’ < ¢’
14: res = DynamicCheck (M’ \ M’, A); // Check if M\ M’ < A’
15:  else return a witness counterexample CE' to M’ || CE £ ¢';

16: return TRUE;

Fig. 12 Pseudo-code for compatibility checking on an upgrade. The procedure returns TRUE if M’ < ¢’
holds, otherwise returns a counterexample witness CE

Proof Let My = M \ M. Since CE is a witness to M, # ¢, we know that CE € L(M,;).
Also, since M || CE £ ¢ holds and CE’ is a witness to it, there is a CE” € L(M) such
that CE' = (CE" || CE) (using the automaton representation of both CE and CE"). Also,
CE' ¢ L(¢). Since CE" € L(M) and CE € L(M,), it follows that CE' = (CE" || CE) is in
L(M || M) = L(M). Hence, CE' is in L(M) but not in L(¢p). Therefore, CE' is a witness
to M £ ¢. O

Theorem 4 shows the correctness of DynamicCheck. The proof relies on the fact that the
rule AG for a system of n component automata is complete due to the existence of an unique
set of weakest assumptions (cf. Sect. 5.2). Note that we never construct the weakest assump-
tions directly; they are only used to show that the procedure DynamicCheck terminates with
the correct result.

Theorem 4 Given modified M’ and ¢, the DynamicCheck algorithm always terminates

with either true or a counterexample CE to M’ < ¢'.

Proof We assume that for the earlier system M, a set of previously computed assumption

automata Ay, ..., A,_; exist. Suppose one or more components in M are upgraded resulting
in the system M’.
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The proof proceeds by induction over the number of components k in M’. In the base
case M’ consists of a single component automaton M’; hence we need to model check M’
against ¢’ only if either M or ¢ changed. This is done in Lines 3—4. Hence, DynamicCheck
returns the correct result in this case.

Assume for the inductive case that DynamicCheck(M’ \ M’, A’) terminates with either
true or a counterexample CE. If Line 8 holds (i.e., A’ # A or M\ M # M'\ M’), then,
by the inductive hypothesis, execution of Line 9 terminates with the correct result: either
true or a counterexample CE. Otherwise, the previously computed correct result res is used
(Line 10). Based on this result, Lines 11-16 update the current assumption in an iterative
manner. Therefore, it remains to be shown that Lines 11-16 compute the correct return value
based on this result.

If the result in Line 9 or Line 10 is true, it follows from the soundness of the assume-
guarantee rule that M’ < ¢’ and DynamicCheck returns true (Line 16). Otherwise, a coun-
terexample CE is found which is a witness to M \ M # ¢’. This counterexample is used in
Line 12 to check if M’ | CE < ¢'. If this holds, then CE is used to improve the current as-
sumption in Lines 13—14. Otherwise, the procedure returns a suitable witness CE’ (Line 15).
In order to show that Lines 11-16 compute the correct result, we need to show that (i) the
counterexample CE’ is indeed a witness to M’ £ ¢’ and, (ii) the loop in Lines 11-15 can
execute only a finite number of times.

Using the fact that CE is a witness to M\ M’ £ ¢’ (from Lines 9—-10) and M’ || CE % ¢’
(Line 12), it follows from Lemma 9 that M’ £ ¢ and CE' is a suitable witness to M’ £ ¢.

It remains to show that Lines 11-15 can execute only a finite number of times. Note that
in Line 13, A’ is valid since it was computed by RevalidateAssumption (Line 6). Hence,
GenerateAssumption (Line 13) must terminate (cf. Theorem 3) by learning a new assump-
tion, say A”, such that M’ | A” < ¢’. Note that by Lemma 4, the number of states of A" or
A" cannot exceed that of the corresponding weakest assumption WA’. Also, it follows from
the proof of correctness of L* (cf. Theorem 1) that |[A’| < |A”| . Moreover, by the inductive
hypothesis, Line 14 must terminate with the correct result. Hence, each iteration of Lines
11-14 of the while loop will lead to increase in the number of states of the assumption candi-
dates until [A”| = |WA'|. In this case, the loop terminates. If no counterexample is generated
at Line 14, then the loop terminates with a true result at Line 16. Otherwise, if a counterex-
ample CE is generated at Line 14 (with A” = WA"), then it follows that CE € L(M'\ M’)
and CE ¢ L(WA"). Therefore it follows from Lemma 2 that M’ || CE < ¢’ does not hold.
Hence, by Lemma 9, CE is an actual witness to M’ £ ¢'. Therefore, the procedure returns
by generating the correct witness CE’ at Line 15. 0

6 Implementation and experimental evaluation

The procedures for checking, in a dynamic manner, the substitutability of components, were
implemented in the COMFORT reasoning framework [14]. The tool includes a front end
for parsing and constructing control-flow graphs from C programs. Further, it is capable of
model checking properties on programs based on automated may-abstraction (existential ab-
straction), and it allows compositional verification by employing learning-based, automated
assume-guarantee reasoning. Specifically, we implemented the compatibility check in full
while for the containment check, we only implemented the Abstraction and Verification
steps (cf. Sect. 4) since they were sufficient for the examples we considered.

We reused the above features of COMFORT in the implementation of the substitutability
check. The tool interface was modified so a collection of components and corresponding up-
grades could be specified. We extended the learning-based, automated assume-guarantee to
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Fig. 1 f Its f R
ig. 13 Summary of results for Upgrade # (prop.) # Mem. queries Torig (ms)  Tyg (ms)

DynamicCheck
ipc1(Py) 279 2260 13
ipc1(Pp) 308 1694 14
ipcy(Pr) 358 3286 17
ipcr(P2) 232 805 10
ipc3(Py) 363 3624 17
ipc3(Pp) 258 1649 14
ipcg(Pr) 355 1102 24

obtain its dynamic version, as required in the compatibility check. Multiple learner instances
are kept across calls to the verification engine and implementing algorithms to validate mul-
tiple, previous observation tables in an efficient way during learning. For the Abstraction
step in containment checking, we implemented procedures for computing must-abstractions
from C code using a given set of predicates [34, 35].

We performed the compatibility check while verifying upgrades of a benchmark provided
to us by our industrial partner, ABB Inc. [2]. The benchmarks consist of seven components
which together implement an inter-process communication (IPC) protocol. The combined
state space is over 10°.

We used a set of properties describing the functionality of the verified portion of the
IPC protocol. We used upgrades of the write-queue (ipc,) and the ipc-queue (ipc, and ipc;)
components. The upgrades had both missing and extra behaviors compared to their original
versions. We verified two properties (P; and P,) before and after the upgrades. We also
verified the properties on a simultaneous upgrade (ipc,) of both the components. P; spec-
ifies that a process may write data into the ipc-queue only after it obtains a lock for the
corresponding critical section. P, specifies an order in which data may be written into the
ipc-queue. Figure 13 shows the comparison between the time required for initial verifica-
tion of the IPC system, and the time taken by DynamicCheck for verifying the upgrades.
In Fig. 13, #Mem. Queries denotes the total number of membership queries made during
verification of the original assembly, T,,;, denotes the time required for the verification of
the original assembly, and T,,, denotes the time required for the verification of the upgraded
assembly.

We observed that the previously generated assumptions (after revalidation) in all the
cases were also sufficient to prove the properties on the upgraded system. Hence, the com-
patibility check succeeded in a small fraction of time (7,,) as compared to the time for
compositional verification (7,,;,) of the original system.

7 Related work

Related projects on checking software systems across modifications often impose the restric-
tion that every behavior of a new component must also be a behavior of the old component.
In such a case, the new component is said to refine the old component. For instance, de
Alfaro et al. [16, 26] define a notion of interface automaton for modeling component inter-
faces and show compatibility between components via refinement and consistency between
interfaces. However, automated techniques for constructing interface automata from com-
ponent implementations are not presented. In contrast, our approach automatically extracts
conservative finite state automaton models from component implementations. Moreover, we
do not require refinement among the old components and their new versions.
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McCamant and Ernst [43] suggest a technique for checking compatibility of multi-
component upgrades. They derive consistency criteria by focusing on input/output com-
ponent behavior only and abstract away the temporal information. Even though they state
that their abstractions are unsound in general, they report success in detecting important er-
rors. In contrast, our abstractions preserve temporal information about component behavior
and are always sound. They also use a refinement-based notion on the generated consistency
criteria for showing compatibility.

The application of learning is extremely useful from a pragmatic point of view since
it is amenable to complete automation, and it is gaining rapid popularity in formal verifi-
cation [32]. The use of learning for automated assume-guarantee reasoning was proposed
originally by Cobleigh et al. [22]. The initial methodology was followed by a symbolic
approach [5], application to checking component substitutability [12], extensions to differ-
ent notions of conformance [13, 15], combination with automated system decomposition
using hyper-graph partitioning [46], optimized learning and iterative alphabet enlargement
approaches [15, 29], lazy learning approach [51] and a technique for computing minimal
assumptions [33]. The problem of choosing a suitable order of components for assume-
guarantee reasoning has been addressed in Gheorghiu et al. [29]. Cobleigh et al. investigate
the advantages of automated AGR methods over monolithic verification techniques in the
context of LTSA and FLAVERS tools [23] by experimenting with different two-way system
decompositions. The use of learning along with predicate abstraction has also been applied
in the context of interface synthesis [3] and various types of assume-guarantee proof rules
for automated software verification [9].

This paper is related to our earlier project [10] that solves the component-substitutability
problem in the context of verifying individual component upgrades. A major improvement
of the current work is that it is aimed at verifying the component substitutability in the pres-
ence of simultaneous upgrades of multiple components. Another distinction of this work is
that it provides an innovative dynamic assume-guarantee reasoning framework for the com-
patibility check. The dynamic nature of the compatibility check allows reusing previously
computed assumptions to prove or disprove the global properties of the updated system.

Additionally, this paper gives a new solution to the containment-check problem presented
by Chaki et al. [10]. In our earlier work, the containment step is solved using learning tech-
niques for regular sets and handles finite-state systems only. In contrast, the new approach is
extended to handle infinite-state C programs. Moreover, this report defines a new technique
based on the simultaneous use of over-approximations and under-approximations obtained
via existential and universal abstractions.

Another approach to preserve behavioral properties of a component across an upgrade is
based on the principle of behavioral sub-typing [41]: type T" is a subtype of type T if for
every property ¢ (¢) provable about objects ¢ of type T, ¢ (¢') is provable about objects ¢’ of
type T'. The notion of subtypes is extended to system behaviors by augmenting object types
with invariants and constraints and showing that these constraints are maintained for objects
of the subtype. However, this approach focuses only on the given behavior specification
of a single component and does not take into account the way it is used in the component
assembly. In contrast, the assumptions in our approach reflect the behavior of environment
components. Therefore, although the upgraded component may not satisfy a property ¢ in
all possible environments, it may continue to satisfy ¢ in context of the current environment
components. In other words, the new component may not be a behavioral subtype of the
earlier one, but still be compatible with its environment.
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8 Conclusions

We proposed a solution to the critical and vital problem of component substitutability con-
sisting of two phases: containment and compatibility. The compatibility check performs
compositional reasoning with help of a dynamic regular language inference algorithm and
a model checker. Our experiments confirm that the dynamic approach is more effective
than complete re-validation of the system after an upgrade. The containment check detects
behaviors which were present in each component before but not after the upgrade. These be-
haviors are used to construct useful feedback to the developers. We observed that the order
of components used to discharge the assume-guarantee rules has a significant impact on the
algorithm run times and hence needs investigation.
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