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Chapter 1 Introduction

The automation of earthmoving equipment is an endeavor that has the potential for improving the
efficiency of the construction and mining industries, removing workers from hazardous situations
such as in cleaning up toxic waste, and even enabling extraterrestrial exploration [Singh 97]. In a
four year program, we have investigated the automation of truck loading with a hydraulic excava-
tor in a mass excavation scenario. As shown in Figure 1, the excavator sits on top of an elevated
bench, removes material from the bench, and deposits it into an awaiting truck.

There are several reasons for investigating the automation of truck loading with an excavator.
First, it has the possibility of improving productivity. In a mining situation, even a small fraction

of improvement in cycle time can add up over an eight hour shift allowing hundreds of tons of
additional material to be excavated. It also requires several years of experience for an operator to
be able to run the machine at its full potential. Even then, expert operators cannot maintain peak
performance levels due to fatigue. Worker safety is another reason for automation. Every year
people are injured while working in or around earthmoving machines. This can be alleviated by
removing the worker from the machine, and by appropriate placement of sensors for monitoring
the work area.

In this program known as the Autonomous Loading System (ALS), we have demonstrated the
ability to completely automate the task of loading trucks with an excavator. The automated exca-
vator is capable of observing the dig face and deciding where to dig. It can then execute the dig in
an efficient manner, and capture the material into the bucket. It is capable of observing and recog-
nizing the truck, localizing its position, and deciding where to dump the material into the truck



bed. It can move between the dig and the dump locations in a timely manner while ensuring that it
does not hit any obstacles in its path. The system has been demonstrated to accomplish the entire
truck loading task at speeds roughly equivalent to an expert human operator. In addition, it has
been demonstrated that the system is capable of operating for several hours without any human
assistance.

The focus of this thesis is on the development of the system’s ability to dig effectively for
extended periods of time. This can be broken up into three interrelated problems. The first con-
cern ishow to dig.We need a method that fills the bucket rapidly, and is robust to unanticipated
digging forces. Then there is the problemwtiere to digso that constraints are not violated and

the material is removed from the bench in an optimal fashion. Finally there is the iskanofg

up the floor and repositioning the machseethat excavation can continue after most of the mate-

rial has been removed. In this thesis, an approach is presented which addresses all three of these
issues. Experimental results are also presented which demonstrate the effectiveness of the digging
operations with the automated excavator over an extended number of sequences.

Figure 1: Excavator loading a truck in a mass excavation scenario. The excavator sits on top of an elevated
bench, removes the material from the bench, and deposits it into the back of the truck.




System Overview

1.1 System Overview

The Autonomous Loading System is a 25 ton commercial excavator that has been modified for the
purposes of automation. Figure 2 shows a side view of the system. An excavator is comprised of
three planar implements connected through revolute joints known as the boom, stick, and bucket,
and one vertical revolute joint known as the swing joint. In addition the excavator has two inde-
pendently movable tracks. The boom, stick, and bucket are controlled via prismatic hydraulic
actuators (also known as hydraulic cylinders) interconnected across the implements, and the
swing joint and tracks are controlled with hydraulic motors.

The excavator has been outfitted with electrohydraulic controls, a suite of sensors, and on-board
computing. Each implement has a resolver attached to its rotational joint for sensing angular posi-
tion and velocity. Pressure sensors are located in the hydraulic lines attached to each hydraulic
actuator, enabling the measurement of the actuator forces. Two scanning laser range finders are
attached at the top of the machine for sensing the surrounding terrain, the truck, and any potential
obstacles. All of the decision making processes are conducted on-board the machine with an array
of four MIPS processors.

Bucket

Figure 2: A side view of the Autonomous Loading System (ALS). The ALS system is a commercially pvail-
able 25 ton excavator that has been outfitted with a suite of sensors and on-board computing for the purpose of
automation.




The overall software architecture is shown in Figure 3. The center of the architecture is a motion
planning module which is responsible for guiding the machine through all of its motions. This
module receives inputs from several perception modules, selects a path of motion, and then exe-
cutes the motion by sending commands to a machine control interface. The motion planning mod-
ule is also responsible for dictating the motion of the range sensors so that they are positioned
properly during the work cycle. More details about the motion planning module can be found in
[Rowe 99].

The perception modules receive data from the range sensors, and then use this information to
accomplish their various tasks. For instance, the truck recognizer module picks out the truck from
the range sensor data, and localizes the truck’s position. The dump planning module uses the
range sensor information to observe the interior of the truck bed and decides where the next
bucket of material should be placed. The dig planning module (the focus of this thesis) observes
the shape of the terrain, and decides where to dig or where to position the machine so that a suit-
able dig may be achieved. Finally a work space monitor module uses the range information to
look for potential obstacles entering the work area. More information about all of these modules
can be found in [Stentz 98]. The outputs of the perception modules correspond to machine config-
uration goals for the motion planning module, and the motion planning module plans a path for
the excavator based on this information.

Finally, the interface to the hardware is accomplished through three separate modules. A left and
right sensor interface receives positioning commands from the motion planning module, and com-

municates this information to the low level range sensor control hardware. The sensor interface

modules are also responsible for receiving the range data from the sensors and sending this infor-
mation to the perception modules. The machine control interface receives commands from the

motion planning module and communicates these commands to the low level machine control

hardware. The low level hardware can execute closed loop position commands or open loop joint

velocity commands. The machine control interface also receives the state of the machine from the
low level hardware (such as joint positions, cylinder pressures, etc.) and communicates this back
to any of the modules that need the information.



System Overview

Right
Sensor

Sensor Interface -t
Sensor D‘aV / \
Dig Dump Truck Work Space
Planner Planner Recognizer Monitor
Position Goals \ 'Z/
Motion Sensor Commands
Planner

Position Comman%

Control Interface >

Figure 3: Overall software architecture for the ALS system. A motion planning module is responsible ffor dic-
tating the motion of the machine. Perception modules are used to select goal points for the excavator based on

range sensor information. The hardware interfaces are accomplished through the left and right sensor interfaces
and the machine controller interface. The focus of this thesis is on the dig planning module.

A typical working scenario is shown in Figure 4, and this can be used to describe the work cycle.
The excavator is situated on top of an elevated bench and the truck is parked at the base of the
bench known as the ‘floor’, and situated off to one side. The machine removes a bucket of mate-
rial from the dig face and begins swinging to the truck. As it is swinging towards the truck, the left
sensor is positioned so that it can scan the truck, and the right scanner is positioned so that it can
scan the dig face. The truck recognizer module uses the data from the left sensor to localize the
position of the truck, and the dump planning module decides where to dump the material. The dig
planning module uses the data from the right sensor to decide on the next dig location. After the
dump maneuver is executed, the machine begins swinging back to the right to the selected dig
location. Meanwhile the dump planning module is using the left sensor data to observe the depos-
ited material in the truck to select the next dump location. This process of digging and dumping is
continued until the truck is filled, at which point a new truck arrives, and the process starts over.
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Figure 4: Top view of the ALS system in a typical work configuration [Stentz 98]. The excavator is situated on
top of an elevated bench, and the truck is positioned at the base of the bench to the left of the excavator. [The orien-
tation of the sensors are shown by the plane of data that is being scanned. The left sensor information is{used to
decide on the dump location, and the right sensor data is used to select the dig location.

1.2 Summary of Approach

This thesis describes an approach that was implemented for managing the erosion of the bench
over long sequences of operation. The approach addresses the problems of how to dig, where to
dig, floor cleanup, and repositioning the machine so that excavation can continue. The key to this
approach is the ability to sense the shape of the terrain using ranging devices such as laser, radar,
or stereo vision. The range data is stored in a data structure we will refer to as a terrain map,
which maps terrain elevations to a fixed rectangular grid as shown in Figure 5 [Singh 95].

The problem of “how to dig” is in regards to how the implements should be moved so that the
bucket is filled quickly while being robust to extreme variations in digging forces. Excessive load-
ing on any one implement can result in an inefficient and time consuming operation, and a method
is needed which prevents this from occurring. To solve this problem, we have utilized a control
algorithm known as “Autodig” [Rocke 94, Rocke 95]. Autodig generates commands for the
implements based on the pressures that are observed in the hydraulic actuators. The commands
are selected from an apriori mapping of pressures to joint angle commands which were generated
by observing the way a human operator controls the digging process. One problem with the use of



Summary of Approach

Autodig in this application is that it requires a human observer to adjust some selectable parame-
ters based on the shape of the terrain and the hardness of the soil. To solve this, we have aug-
mented Autodig with perception to select these parameters automatically. In addition, we have
added a feature to Autodig that allows it to be used for floor cleanup.

%o"'w

‘

I}/I “
7 ////)o "‘

= S ;;\\
\ \‘ AW
O “““‘\“\\
“‘ ““‘ ““‘ ‘\ “‘\\\\ .

“‘.‘.?‘;_
SO
SO

-3 / O ‘\\\‘ SO \\
if ¢'¢ \\“‘ gRtre NeRuN
- s ¢’o SOCS
2
8 8
Figure 5: A sample terrain map that was generated by range sensors on the excavator.

The next question is to decide where to dig (i.e. the configuration of the machine for initiating
Autodig) so that the bench is eroded as quickly and efficiently as possible while leaving a flat and
level floor. Although Autodig will try to fill the bucket from any given dig location, its timeliness,
efficiency, and ability to fill the bucket depends greatly on the initial bucket pose. The problem of
“where to dig” is distinguished from typical planning problems because of the large state space
needed to describe the potential configurations of the terrain, and because of the complexities of
the interactions between the bucket and soil. To deal with this, we have developed a multi-resolu-
tion planning system. A coarse planning scheme generates a sequence of “dig regions” based on
the current geometry and goal configuration of the terrain. A refined planning scheme then
searches within a given dig region for the best dig. The search is accomplished by examining a
number of candidate digs, and selecting the one that satisfies all constraints and optimizes an
objective function.

In order for this planning process to work, we need to be able to predict the outcome of selecting
a particular dig candidate. To do this, we have implemented a model of the excavation process that
accounts for the behavior of the machine, the soil-tool interaction, and the behavior of Autodig.
To span the space of possible candidate configurations, a large number of digs must be predicted
in a matter of a few seconds. Therefore the model has been designed to be both computationally
fast and reasonably accurate. In addition, since the digging operation is largely dependent on the
characteristics of the soil, methods have been developed to adapt the model based on the forces
that are encountered during the actual digging process.



A separate planner is used to decide how the floor should be cleaned. In general, the floor cleanup
operation is selected based on the distance of the machine to the farthest material. Once floor
cleanup has begun, the system begins monitoring the floor to determine when it is appropriate to

track the machine backwards so that excavation can continue. The distance the machine can track
backwards is based on the ability of the machine to be able to reach all of the material, and to be

able to perceive all of the material with the range sensors. When the floor has been cleaned suffi-

ciently so that the machine can move backwards some threshold distance subject to this criteria,

then the machine is tracked backwards and the whole process starts over.

1.3 Road-Map to Thesis

Chapter 2 discusses related work conducted by other researchers. Chapter 3 discusses the function
of the Autodig algorithm. It also addresses the enhancements for automatically adjusting select-
able parameters with the use of perception, and enhancements for cleaning the floor. Chapter 4
introduces the model of the excavation process, which is utilized by the planning algorithm.
Chapter 5 discusses the planning algorithms for selecting where to dig, cleaning the floor, and
tracking the machine backwards. Chapter 6 discusses the results of our experiments, and how this
system compares to an expert human operator. Chapter 7 summarizes the conclusions of this
research.



Chapter 2 Related Work

A great deal of research has been performed on automating earthmoving operations because of
the potential use in remediation of chemical and nuclear waste sites and extraterrestrial applica-
tions. A consolidated summary of the state of the art in this field can be found in [Singh 97]. This
chapter focuses on previous work related to automating the excavation process in particular. The
work is separated into three categories: automated dig execution, modeling the digging process,
and planning digging operations.

2.1 Automated Dig Execution

[Singh 97] describes several systems that have been developed for automatically controlling the
machine during the digging process. Since the digging process can involve large forces, simple
trajectory control is usually inadequate, and some form of compensation for the forces must be
utilized. The simplest methods are to trigger actions based on preset force thresholds [Bullock 89,
Bullock 92, Huang 93]. Although these methods are simple, they are probably incapable of han-
dling the large variety of situations that may be encountered, and certainly do not ensure that a full
bucket is achieved.

Another control scheme is to use a set of rules to choose between a number of control actions
while digging. One example is an automated excavator (LUCIE) that was developed at the Uni-
versity of Lancaster, England [Seward 88, Seward 92, Bradley 93]. Although the excavator tries to
follow a predetermined path, a set of rules is used to react to the conditions encountered during
excavation. For instance, once the bucket penetrates below a threshold elevation, then the bucket



is rotated. The force compensation is accomplished by monitoring the servo error in the system. It
is assumed that higher servo errors are caused by higher forces. Once the servo error exceeds a
threshold value, the bucket is raised to compensate.

Researchers at the University of Arizona have developed a means to deal with digging in a heter-
ogeneous materials such as blasted rock [Lever 94, Lever 95, Shi 95, Shi 96]. In this system, the
bucket is commanded to follow a specified path, and a fuzzy logic controller is used to guide the
machine around immovable obstacles within the path. The inputs to the fuzzy logic controller are
the force and torque information at the bucket, and the outputs are the horizontal and vertical step
sizes of the bucket, and the bucket speed. Primitive excavation actions are grouped into a hierar-
chy of behaviors such aBg-horizontally or go-over-immobile-objectand neural networks are

used to select which behavior should be executed based on environmental information.

Sameshima and Tozawa have also implemented a fuzzy logic controller that guides the bucket
through the digging process except that the control scheme specifies the actuation of each degree
of freedom versus the motion of the bucket [Sameshima 92]. Three rules are evaluated at every
control cycle as shown in Figure 6. The action taken is the weighted output of the three rules
which correspond to velocity commands for each joint. In this system the forces are assumed to be
reflected in the relative velocities of the stick and bucket. Thus the first rule looks at the relation-
ship between these velocities and adjusts the commands accordingly. For instance, if the velocity
of the stick and bucket are both low, then it is assumed that the force acting on the bucket must be

large. To compensate the boom is given a larger command which will cause digging to occur at a
shallower depth.

Observations Actions
Bucket Vel Stick Vel Bucket Vel Stick Vel Boom Vel
L L B B M
—
1) L H B M S
T H L S M S
H H S B z
N Bucket Angle Bucket Vel Stick Vel Boom Vel
E L B S S
H S B z
2 Depth of Bucket Boom Vel
S L z
@
H S
Figure 6: Fuzzy logic rules used by Sameshima and Tozawa [Singh &YdH correspond to low and high
values for the input observations, af)/d&5 M, B correspond to zero, small, medium, and big values for the oytput
velocity commands.
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Automated Dig Execution

The Autodig algorithm [Rocke 94, Rocke 95] which is used in this research, also generates com-
mands for each individual degree of freedom. However the commands are based on actual forces
from cylinder pressure measurements versus forces inferred from relative velocities. These com-
mands are generated from a lookup table that was created based on the way a human operator
controls the individual joints while digging in various soil conditions. The soil condition must be
specified to the routine so that the appropriate mapping is utilized. More information regarding
this algorithm will be provided in Chapter 3, and we also discuss how we have augmented the
Autodig algorithm with perception.

The Autodig algorithm is a desirable means for controlling the digging process in that it provides
at least a piecewise continuous mapping of forces to actuator commands. Thus the motion of the
implements can be expected to be somewhat smooth in operation. However, the system is
designed to operate in relatively homogenous material. The method probably does not work as
well as a rule based method when dealing with a large number of immovable inclusions because
there is no means for backing up and trying again. Another disadvantage of this algorithm is that
the joint velocity commands are based on the cylinder pressures alone. Therefore the trajectory of
the bucket does not follow any selectable path, which makes it is undesirable for shaped excava-
tion.

In contrast to these heuristic methods, a teleoperated mini-excavator developed by Salcudean et
al. at the University of British Columbia uses a position-based impedance control to assist a
human operator in guiding the bucket during the digging process [Salcudean 97]. The trajectory
follows along a desired path specified by the operator until the path is not achievable due to the
forces, at which point the control follows the path as closely as possible. In trying to apply this to
an automated system, the question is what path should the impedance control try to follow? Ber-
nold also proposed the use of impedance control [Bernold 93], and suggested that the optimal
path for the bucket could be ascertained by characterizing the soil-tool interaction. In essence
what is needed is a trajectory planning algorithm that generates an optimal path based on the char-
acteristics of the soil.

The use of a trajectory planner alludes to a system that was developed by Singh at Carnegie Mel-
lon University. [Singh 95] reports on a system in which pure position control is used during the
digging process. However, he attempts to predict the forces that will be encountered, and rejects
any trajectories that cannot be followed due to the limitations of the actuators. This concept will
be discussed in more detail in the third section on background work related to planning digging
operations. Singh suggested that this system could have been made more robust by the use of stiff-
ness control (a subset of impedance control).

11



2.2 Modeling the Digging Process

Excavation is a difficult process to model because of the complexities of the machine dynamics
and the forceful interactions between the bucket and the soil. Not only are we interested in being
able to predict these effects, but we must also be to do so at speeds much faster than real time for
use in the planning process. Although there has been some research in each of these individual
areas (machine dynamics and soil-tool forces), there has been no work to our knowledge of com-
bining these effects into a single model which is computationally tractable for real time applica-
tions.

There has been a significant amount of research related to modeling the dynamic characteristics of
an excavator in free space for the purposes of trajectory control. These models are analytically
derived from physical principles [Vaha 91, Vaha 93, Lawrence 95]. Although the models charac-
terize the effects of inertial and gravitational forces on the excavator dynamics, they fail to capture
the non-linear hydraulic characteristics of the mechanism. Certainly there exist many commercial
dynamic modeling packages which can make these predictions, however they are far too slow for
real time applications.

Perhaps the most closely related work is a semi-empirical approach taken by Krishna and Bares at
Carnegie Mellon University [Krishna 99]. They describe the use of memory based learning to
capture the dynamics of the overall machine. Through testing, a map is generated between the
space of inputs (cylinder loads and hydraulic valve actuation) to the space of outputs (cylinder
velocities). Once the map is created, the process is then to calculate the valve actuation based on
control commands, the cylinder loads based on acceleration and gravity forces, and then use the
map to predict the cylinder velocities. This method has been shown to predict the motion of the
implements approximately 100 times faster than real-time and with reasonable accuracy.

There is also quite a large body of research related to predicting the resistive forces that act on a
tool as it moves through the ground. One approach is to use finite element methods (FEM). Yong
and Hanna have used this method to predict the forces and the deformation of the terrain due to a
flat blade moving through clay soil [Yong 77]. Since this method requires the simultaneous solu-
tion of multiple partial differential equations, it is computationally expensive.

Another method is to analytically calculate the forces based on first principle mechanics [Reece
64, Siemens 65, Luth 65, Hettiaratchi 67, Gill 68]. This method was developed for the purpose of
estimating tilling forces on agricultural equipment. The idea is that the soil shears away from
itself along a failure surface in front of the bucket, and a static analysis is conducted on this
“wedge” of material to determine the forces. One of the soil-tool models derived in this thesis is
based on a similar static analysis. The equations were modified to account for digging in a sloped
terrain. This will be described in more detail in Chapter 4.

This approach requires that some soil-tool properties be measured or estimated, such as the soil-
soil friction angle, the soil-tool friction angle, the soil density, and the cohesiveness of the mate-
rial. These values may be measured in a laboratory [Mckyes 85], or through the use of scaled
models [Wadhwa 80]. Alternatively the parameters may be estimated using actual forces that are
encountered during the digging process [Luengo 98].
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Planning Digging Operations

Another approach to estimating the soil forces is to find an empirical relationship between a basis

vector and the forces. Singh formed a basis vector that was based on the geometric variables
found in the equation developed by Reece [Singh 95]. He attempted several different methods for
learning the relationship between the basis vector and the forces, including global regression,

memory based learning, and neural networks. A similar approach using global regression is used
in this thesis, and the primary difference is the selection of the basis vector.

2.3 Planning Digging Operations

In a totally autonomous system, it necessary to be able to dig automatically, and to select which
dig to execute automatically. One alternative is to specify a nominal trajectory for the digging
operation. The automated digging routines can then be used to try to follow this trajectory until
they must deviate due to the forces. Several researchers have based the nominal dig trajectory on
the capacity of the bucket. That is, a trajectory is specified in which the bucket sweeps a volume
of material that is equivalent to the bucket capacity [Koivo 92,Bisse 94, Hemami 92, Hemami 94,
Sarata 93]. Hemami and Bisse’s methods are able to satisfy not only the volume requirement, but
also specify the trajectory so that it fills the bucket in some optimal fashion, such as minimizing
the path length of the bucket tip.

Our work in planning optimal dig locations is based largely on research that was conducted by
Singh at Carnegie Mellon University [Singh 95]. Figure 7 shows an excavation testbed used by
Singh in which a bucket is attached to a robot manipulator. A scanning laser range finder is used
to scan the shape of the material, and a force sensor on the bucket was used to refine the predic-
tions of the forces that would be encountered during digging. The system automatically planned a
trajectory for digging which was executed with closed loop position control.

The planning process was posed as a constrained optimization problem. The constraints included
geometric considerations such as kinematic limitations of the machine, shape constraints based on
the desired shape of the trench, and the maximum volume of material to sweep based on the
capacity of the bucket. It also tried to predict the forces that would be encountered for a given tra-

jectory, and eliminated any trajectories that exceeded the force constraints of the actuators. A

search was then conducted over the set of actions that satisfied all of these constraints for the
action that optimized a given performance criteria. In the case of trenching, Singh searched for the

action that gave at least a 95% full bucket, and minimized the predicted torque to accomplish the

motion.

13
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Figure 7: Excavator testbed used by Singh [Singh 95, Singh 97]. A scanning laser range finder is used to map
the shape of the terrain prior to each dig. A force sensor is used to refine the force predictions. The systgm auto-
matically decides on the best dig action.

Singh divided the excavation task into a reduced set of parameters that could describe each dig
trajectory. For the trenching task, the set of parameters is shown in Figure 8. After these three
variables are specified, the rest of the trajectory can be generated by following a set of rules. Plan-
ning therefore takes place in an action space that is spanned by these three variables. Note that
even though the entire trajectory is not specified explicitly, the nominal trajectory is defined by the
action parameters.

14



Planning Digging Operations

terrain

trajectory

Figure 8: Singh used a reduced set of action parametels, k) to specify the entire dig trajectory.

The work reported in this thesis regarding dig location planning is also based on optimizing a
function within a set of constraints. Perhaps the main difference between Singh’s research and the
work reported here is in regards to the specification of the trajectory. By specifying the action
parameters and following a set of rules, Singh generated a nominal trajectory for the bucket,
which a position control tried to follow. In our system, the trajectory cannot be specified since
Autodig is a force based control scheme, and instead the trajectory has to be predicted. Therefore
the action space parameters dictate the initial pose of the bucket, and the rest of the trajectory is
determined by the forces encountered.

The use of Autodig also impacts the utilization of the predicted forces. Autodig automatically
compensates for the forces, therefore a separate force constraint does not apply in our system. The
forces are still predicted for each dig, but this is utilized in the prediction of the trajectory itself.
Since Singh’s work specified the trajectory, a force constraint was needed to ensure that a given
trajectory was achievable.

In a lesser sense, some other differences in the research are in the optimization function that is

used for selecting the dig, and the implementation of the force models. Note that in contrast to
Singh’s work, we found that an analytical model of the soil forces produced good results. Perhaps

15



the reasons for this discrepancy may be due to a reformulation of the equations, better force mea-
surements, and the relative stiffness of the implements compared to the forces.

Finally, this thesis extends the work in planning the excavation task by addressing issues related to
digging for extended periods of time. Thus the system considers floor cleanup and tracking the
machine backwards when a given area has been excavated. It also considers a three dimensional
excavation task such as the removal of a bench, versus a two dimensional task such as trenching.

16



Chapter 3 Automated Dig
Execution

The first question posed in the introduction was how to execute a dig automatically in such a way
that the bucket is filled in a timely manner. If a machine is being used to its full potential, the
interaction forces between the bucket and the ground should be relatively close to the machine’s
maximum capabilities so that the bucket is filled quickly. However these large forces can cause
the hydraulic actuators to saturate, resulting in a time consuming and inefficient process. There-
fore digging effectively requires the use of an algorithm that automatically compensates for the
forces that are encountered. The algorithm should limit the forces so that the actuators do not sat-
urate, and at the same time should maximize the rate at which the bucket fills for the sake of pro-
ductivity.

For this purpose we have used an automatic digging algorithm known as Autodig [Rocke 84,
Rocke 85]. Autodig compensates for the digging forces by monitoring the pressures inside the
hydraulic actuators, and adjusting the command to the actuators accordingly. The operation is
based on a series of apriori maps relating cylinder pressures to actuator commands. These maps
were generated based on observing the digging techniques used by expert human operators. Sec-
tion 3.1 will discuss the operation of the basic Autodig algorithm in more detail.

Autodig was designed to assist a human machine operator by taking over the digging portion of

the work cycle. The human operator is still responsible for monitoring the digging performance,
and making adjustments to account for the shape of the bench and the hardness of the soil being
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excavated. For instance, if the human operator noticed that the bucket was full, Autodig could be
terminated early to avoid unnecessary time and energy spent in the digging process. In a totally
autonomous machine this correction must be made automatically. Section 3.2 discusses how we
have augmented Autodig with perception based enhancements to end the digging process at the
appropriate time. Chapter 5 will discuss the ability to automatically compensate for the hardness
of the soil.

Finally, the human operator is also responsible for leaving a relatively flat and level floor after the
bulk of material has been removed. Autodig itself cannot accomplish this because it is reacting to
the pressures in the cylinders which is caused by the digging forces. Section 3.3 discusses a sim-
ple addition to Autodig for the purpose of floor cleanup.

3.1 Basic Digging Operation

Autodig uses a paradigm that a dig consists of four basic stages as shown in Figure 9. First, the
boom is lowered until contact is made with the ground. ThenRreeDig stage the bucket is
quickly curled to a favorable angle in which to dig. Thig stage is responsible for pushing the
majority of the material into the bucket. Then the last digging phase curls the bucket in order to
Capturethe material, and raises the bucket out of the ground. In general, the implement joint
angles are used to determine the digging stage. The digging stage dictates how the cylinder pres-
sures are used to generate the commands.

During theBoom-Downstage, the boom is lowered until contact is made with the ground. All of
the other implements are not moved. Contact with the ground can be determined by examining the
pressures in the cylinders. When contact is made, generally there will be a drop in the head end of
the boom cylinder and a rise in the rod end. Any shaking of the machine will cause large pressure
oscillations in the boom cylinder, and this can cause a false detection of the ground. For this rea-
son, the boom cylinder pressures have to be at the appropriate levels for a fixed period of time to
eliminate any false detection.

During thePre-Dig andDig stages, the commands that Autodig issues are based on a set of pre-
built maps that relate cylinder pressures to actuator commands as shown in Figures 10 and 11.
These maps were designed by observing the way an expert human operator digs in a variety of
soil conditions. One of the inputs to these maps is a selectable soil hardness index. This value is a
gualitative assessment as to the difficulty of digging in the material. In soft soils it is desirable to
dig with a quick scooping motion while applying lower forces to the ground. In harder more com-
pact soils, higher forces are required so that the bucket will fill. The soil hardness index basically
dictates how much force Autodig applies to the ground. The soil hardness index is a value that is
provided externally to Autodig, and an automatic means for obtaining this value is discussed in
Chapter 5.
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Basic Digging Operation

Figure 9: Autodig breaks the digging process down into four stagBsorh) Down the boom is lowered
until contact is made with the ground.P®-Dig - the bucket is quickly curled to bite into the material Dg) -
the material is force into the bucket.@pture- the implements are positioned for carrying the material to th
dump pointf is the stick angle to eriere-Dig, p; is the bucket angle to eide-Dig, p, is the bucket angle to en

theDig, p3 is the bucket angle to ef@hpture andy is the boom angle to erf@@apture

Z 0D

The commands and pressures as shown in the curves are in terms of percentages. The percent
pressure is based on the maximum pressure achievable in the cylinder as dictated by the hydraulic
relief settings. The percent command is based on the maximum velocity of the cylinder. It is
important to note here that these commands are “open-loop” in that no cylinder velocity feedback

is used to maintain a given velocity. The actual velocity that is attained by the cylinder may be sig-
nificantly different than the command depending on the forces acting on the cylinder and the
available hydraulic pump flow.
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Figure 10:  Autodig curves used during #xe-Dig stage. The bucket is given 100% command while the boom

and stick commands depend on cylinder pressures as shown. As the soil hardness index is increased, a higher force
is required on the bucket cylinder before the boom is raised. The stick command curve is the same for all soil hard-
ness indices.

Again, the purpose of tHere-Dig stage is to bite into the material and quickly curl the bucket to a
favorable position in which to begin digging. Therefore during this stage, the bucket is given
100% command. The boom command as shown in Figure 10 is a function of the bucket cylinder
pressure, and is designed to regulate the amount of resistance that the bucket encounters. As the
pressure in the bucket cylinder increases, the boom command increases to raise the bucket out of
the material and hence reduce the bucket forces. Note that for a higher soil hardness index, a
larger bucket force is required before the boom is raised. The stick command is designed to regu-
late its own pressure. When the load on the stick cylinder is relatively light, the stick is given full
command so that the bucket tip is forced farther into the material. However as the load on the stick
increases, the command is reduced so that the bucket is not forced in too deep. Pherditpe

stage can be thought of as the boom performing force control on the bucket, and the stick per-
forming force control on itself. Thre-Dig stage ends when the bucket reaches a given ppgle

relative to the horizontal as shown in Figure 9.
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Figure 11:  Autodig curves used during fDig Stage. The stick is given 100% command while the boom and
bucket commands depend on cylinder pressures as shown. As the soil hardness index is increased, a higher force is
required on the stick cylinder before the boom is raised, and the bucket command is reduced.

During theDig stage, the cylinders switch roles. In this stage, the idea is to quickly bring the stick

in so that material is forced into the bucket. Therefore the stick command is 100%, and the boom
command is used to regulate the load on the stick. As shown in Figure 11, as the stick forces
increase, the boom command increases in order to raise the bucket and hence reduce the digging
forces. The bucket command is now used to regulate the load on the bucket cylinder. This curve
becomes somewhat more complicated depending on the soil hardness index. In soft soils, unless
the bucket forces are extreme, the bucket is given full command thus providing a quick scooping
motion. In harder soils, the bucket is not curled until an adequate load on the bucket has been
achieved. This slows the bucket so that the stick has more time to push the bucket farther into the
ground, thus increasing the bucket fill. In all cases, when the bucket loads get too high, the com-
mands are reduced so that the hydraulic relief pressure is not reach&idg Btege ends when

the stick angle reaches a given an@levhich is usually near vertical, or if the bucket angle
reaches anglp,, or if the stick or bucket cylinder limits have been reached.

During theCapture stage both the boom and the bucket are given 100% commands, while the
stick command is reduced to zero. The idea behind this is to quickly get the material and the
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bucket into a position so that it can be carried to the dump location. The boony ahglbich
Captureends needs to guarantee that the bucket is above the ground so that the machine is free to
swing to the dump point. The bucket angjeat whichCaptureends is specified so that the mate-

rial will not fall out of the bucket during the swing.

3.2 Perception Enhancements for Ending the Dig

The beginning of this chapter discussed how a human operator could stop the digging process
when he noticed that the bucket was full. Without human oversight, the system must rely on the
anglesp andp, as shown in Figure 9 to be properly set to end digging at the appropriate time. If

these are not set properly, the efficiency can suffer dramatically. For instance, if the bucket is full,
then any additional motion of the bucket through the ground wastes both time and energy. On the
other hand, if the bucket is not full enough, then productivity and efficiency suffers for carrying a
less than full bucket to the dump point.

In our testing we found that it wampossible to fix3 andp, properly for all conditionsProper

adjustment for these angles is highly dependent on both the shape of the terrain and the hardness
of the soil. As an example, suppose in one soil condition it is found that a particular vgdue for
gives a full bucket most of the time. But when encountering a harder material, the bucket will not
penetrate as deeply, and hence the buckets will not be as full. Likewise when digging in softer
materials, the bucket will fill faster, and effort is wasted in trying to enforce this same v@lue of
Similarly, if the terrain is steep, less stick motion is required to fill the bucket than with relatively

flat terrain profiles.

It became apparent from our testing that it was necessary to determine when the bucket is full so
thatCapturecould be initiated. There are several ways in which this might be accomplished. One
might suggest that the weight of the material be calculated using the pressures in the hydraulic
cylinders. This however would not work because the digging forces can be an order of magnitude
higher than the weight of the material, and hence it would be impossible to discern the magnitude
of the weight. An alternative method would be to use perception to continuously monitor the
material in the bucket to calculate volume, which is similar to what a human operator does. This
method could prove difficult however because the material in the front of the bucket could visu-
ally occlude the material in the rear of the bucket causing large inaccuracies. Also the shaking and
pitching of the machine during digging could cause large errors in the readings from the percep-
tion sensor.

The alternative pursued in this system was to store the shape of the terrain prior to digging, and
then as the bucket passes through the soil, continually integrate the volume “swept” over the front
edge of the bucket. This method also has several sources of inaccuracy. For one, we assume that
the soil face does not change from the time that the perceptual image is taken to the time that the
bucket edge passes beneath it. For cohesive soils this is a fairly good assumption, but for granular
material, the assumption could break down. We also assume that the material that passes over the
front edge stays within the bucket. In actuality, some of the material falls off to the side of the
bucket as digging progresses. In our experiments we have found that it is sufficient to account for
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Perception Enhancements for Ending the Dig

this spillage by overestimating the capacity of the bucket. Furthermore, visual occlusions caused
by undulations in the dig face can cause inaccuracies when integrating the volume. We have found
that by careful positioning of the machine, and by interpolation, these inaccuracies can be mini-
mized.

On the other hand, there are several advantages for using this method. First, the perception sensor
only needs to take the image of the terrain once, and then the sensor is free to do other things such
as monitoring the workspace. This also reduces the computation that is necessary by eliminating
the need to continuously update the terrain. Another advantage is that the digging and perception
stages are decoupled. The perception stage can be accomplished during relatively smooth
machine motions, such as when swinging to the dump point, hence reducing error. This decou-
pling may also prove to be useful in other applications where the dig face is not visible during dig-
ging. For instance, in the wheel loader depicted in Figure 12, the bucket faces away from the
machine operator so that the material inside the bucket is not visible during digging. However,
since the perception stage is decoupled from digging, the image of the terrain could be obtained
when driving to the truck.

Figure 12: A wheel loader digging next to a truck. The operator is incapable of seeing the material in th¢ bucket
during the digging process.

One additional enhancement was added to the end of Autodig to speed up the entire loading cycle.
Rather than use a fixed angléor determining the end @apture the depth of the bucket below

the terrain can be calculated directly from the terrain profile. When the bucket is calculated to be
above the terrain, th€aptureis completed. Calculation of the end @&ptureon a dig by dig

basis allows the swinging motion to the dump point to begin sooner, and hence reduces the overall
cycle time.

23



These perception enhancements have proven to be highly valuable in improving the consistency
of digging and in reducing overall cycle time. Table 1 shows a summary of the results for 30 back
to back digs where half of the digs were done with the perception enhancements, and half without.
The data in the table is arranged in the order of an increasing stick angle, which corresponds to
reaching out farther away from the machine. There are two main things to note from the table.
First, when using Autodig with the perception enhancements, the weight of the material in the
bucket and the time required to dig remained very consistent regardless of where the bucket was
initially placed. However without the enhancements the stick angle at which digging ends is fixed.
So when the bucket is farther out, more material is obtained at the cost of longer cycle times.
Likewise when closer in, a much smaller payload results. The other thing to notice is that even
when the payloads were similar, the perception enhancements reduced the cycle time. This is
mainly due to being able to stop the dig as soon as the bucket came out of the ground. This dis-
crepancy might be reduced if the anglerere reduced, except that there is a risk in not raising
high enough to clear the bench in some cases.

Table 1: Autodig Performance with Perception Enhancements. Comparison shows the average weight of mate-
rial captured in the bucket for each dig, and the average time required to execute the dig for five digs at each
stick angle. The data is arranged in the order of an increasing stick angle, which corresponds to reaching far-
ther away from the machine.

Initial Stick Angle Autodig Autodig with Perception
Time(s) Weight (Ibs) Time(s) Weight (Ips)
-87 Degrees 6.58 4145 7.13 5331
-70 Degrees 10.35 5172 7.47 5329
-50 Degrees 13.83 6526 8.77 5338
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Perception Enhancements for Ending the Dig

3.3 Modifications for Leaving a Level Floor

Autodig was designed to generate a relatively efficient digging trajectory by reacting to the pres-
sures in the cylinders. Therefore the shape of the dig trajectory is an outcome of the forces that are
acting on the bucket. The trajectory itself cannot be specified explicitly. However in many digging
applications it is necessary to excavate to a particular shape. Such is the case in mass excavation.
In mass excavation a floor elevation is maintained so that the unearthed ground may be traversed
by other vehicles. Although a secondary operation may be used to level the floor such as with a
wheel loader or bulldozer, the floor should be kept relatively even to reduce this effort.

In our system, two methods are combined to accomplish this goal. At the highest level, the per-
ception based Dig Planner is used to select dig locations with sufficient material coverage so that
Autodig will not penetrate the floor. To obtain the material that is just adjacent to the floor, a posi-
tion based trajectory following routine was added to the beginning of Autodig. We refer to the
combination of this position based routine followed by Autodig as a cleanup operation.

C )

Autodig Trajectory —»\

Floor Elevation \ Way-Points

Figure 13:  Cleanup operations consist of closed loop position following of way-points, followed by exe¢ution
of Autodig.

The beginning of the cleanup operation uses the on-board closed loop position control that was
provided with our excavator testbed. The routine simply specifies way-points along the floor level
that the closed loop control tries to follow. Since the way-points are provided to the closed loop
control at a fixed rate, the distance between the way-points dictates the velocity of the bucket, up
to the maximum velocity that the control can follow. Unfortunately, as the points are separated
farther apart, the machine can take any path from one way-point to the next, and hence the error in
the trajectory can increase. We found that it was necessary to start with the way-points positioned
closely together and then spread out over time. This effectively causes a ramp up in the velocity of
the bucket, and is easier for the closed loop position control to follow than a “step” in the velocity.
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The net effect is that the cleanup operation is relatively slow, and can take as much as two to three
times the duration of a normal dig.

The way-points along the floor are followed until one of two conditions are met. First, a limit is
placed on the stick angle, so that the bucket will not dig under or run into the excavator’s tracks.
Second, if the pressure in any cylinder exceeds some threshold for a brief period of time, then the
trajectory following is ended. The high pressure is a signal that the bucket cannot proceed much
further along the floor due to excessive forces. These are generally good indicators that the clean-
ing is complete, and the bucket is positioned to execute a normal dig. Therefore once one of these
conditions are met, Autodig is initiated in tRe=-Dig stage.

Although this arrangement for cleaning the floor worked fairly well in our test sites, it should be
viewed with some skepticism. The materials that we were working in were relatively soft, and
thus the closed loop control did not have much trouble overcoming the resistive forces of the
material. Imagine a situation in which hard immovable rocks are buried along the floor. The
bucket would run into a rock, not be able to move it, and would therefore cause Autodig to exe-
cute prematurely. A better alternative to this method would be to use an impedance control or
hybrid force control [Salcludean 97]. These methods effectively soften the position control, such
that when high forces are encountered, the bucket can get around the obstruction. This method
was not pursued due to lack of time.
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Chapter 4 Modeling the Digging
Process

The previous chapter described a method for executing a digging action (Autodig) which fills the
bucket quickly and is robust to large variations in digging forces. The next question then is where
should the dig be executed so that the bench is eroded in an optimal fashion? In the perception
based planning algorithm that we have designed, a digging action is selected based on satisfying
geometric constraints and optimization of a cost function. This methodology hinges on the ability
to accurately model the effect of selecting a candidate action. That is, if a particular bucket pose is
specified in which to initiate Autodig, how much material will be swept into the bucket? How
long will it take to dig? How much energy is required?

This chapter describes a model of the digging process that is able to predict the outcome of select-
ing a digging action before it is executed. The model takes into account the function of the Auto-
dig algorithm, machine actuator dynamics, and the soil-tool interaction forces. The soil-tool
interaction forces can vary dramatically depending on the characteristics of the soil. Therefore the
model was designed to be capable of adapting to the soil encountered at the work site. Also since
the planning methodology will examine a number of candidate actions, an emphasis in the design
of the model was placed on the computational speed of the predictions.

Section 4.1 discusses the overall structure of the model. Section 4.2 covers the machine actuator

dynamics. Section 4.3 discusses two models that were implemented for predicting the soil-tool
interaction forces, and methods for adapting the models based on actual digging forces encoun-
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tered. Finally, Section 4.4 compares the predictions of the overall dig model to actual digging
results.

4.1 Overall Dig Model Structure

The purpose of the Dig Model is to predict the outcome of initiating Autodig from a particular
implement configuration. We assume that the trajectory of a dig is influenced by the dynamic
characteristics of the hydraulic actuators, the interaction forces between the soil and the bucket,
and the closed loop behavior demonstrated by Autodig.

The model of the digging process was set up as shown in Figure 14 as three interlinked predic-
tions. First, a model of the machine’s actuators is used to predict the motion of the bucket in
response to the actuator commands and forces. The bucket positions define the intersections
between the bucket and the terrain, which allows a soil-tool model to predict the soil reaction
forces. Using a static analysis of the linkage, these forces are translated into forces at the actuators
(see Appendix). The forces on the actuators and the actuator positions are used by the Autodig
algorithm to generate actuator commands.

The inputs to the model are the terrain profile and a set of soil-tool properties that dictate the
bucket forces. These properties will be described in more detail in Section 4.3. The model is initi-

ated from the candidate start position, and predictions for all three components of the model are
made at discrete time steps until the dig is complete. This results in a series of bucket positions
which corresponds to the resultant dig trajectory. The dig trajectory and actuator forces can be
used to estimate the utility of the candidate dig by estimating the time required to dig, the energy
expended during digging, and the volume of material swept into the bucket.

The actuator model and the soil-tool model will be described in more detail in the following sec-
tions.
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The Actuator Model
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Figure 14:  Composite model of the digging process. The model consists of 3 main components: Actugtor
Model, Soil-Tool Model, and Autodig. Based on the actuator commands and forces, the Actuator model gredicts
the next actuator position which defines the position of the bucket. The Soil Force model intersects the bugket with
the terrain to predict the force acting on the bucket, and converts these into actuator forces. Autodig uses the actu-
ator positions and forces to generate commands.

4.2 The Actuator Model

This section describes the hydraulic actuator model. The model predicts the motion of the hydrau-
lic actuators which in turn defines the motion of the bucket. The motion of the actuators is depen-
dent on the operation of the entire hydraulic system on board the excavator. Therefore Section
4.2.1 discusses the excavator’'s hydraulic system. Then the model itself is described in detail in
Section 4.2.2. Finally the predictions of the actuator model are analyzed in Section 4.2.3.

4.2.1 Hydraulic System Description

The purpose of the actuator model is to predict the motion of the implements given the machine’s
current state, and the command being issued by Autodig. A simplified schematic of the system
that is being modeled is shown in Figure 15. Since this system is not modeled explicitly, it is not
necessary to go into great detail into how each of the sub-systems function. However it is impor-
tant to note the complexity of the system, sources of non-linearity, and nature of the dynamics so
that there is a foundation for approximating the system.
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A hydraulic excavator is comprised of four revolute joints: swing, boom, stick, and bucket. Since
digging is typically a planar motion, we model only the last three degrees of freedom. The boom,
stick, and bucket are controlled by extending or retracting the hydraulic actuators across each
joint. The velocity of the actuator extension is proportional to the hydraulic oil flow into the actu-
ator which is dictated by the main implement valves. These valves are controlled by a low pres-
sure pilot system. A controller sends electrical current to the solenoids in the pilot system for
generating the pressures. The controller is responsible for converting the Autodig commands to
appropriate current level in the solenoids. The source of hydraulic oil flow in the system is two
variable displacement pumps which are directly coupled to the engine. The boom and bucket are
controlled by one pump, while the stick and swing are controlled by the other.

There are several factors which contribute to the difficulty of modeling this system. First, the sys-
tem is complex, and highly non-linear in several regards. To start with, the control valve arrange-
ment in the implement valve stack is known as an “open-center” system. Detailed descriptions of
this type of system can be found in [Merritt 67, Krishna 99]. What this means is that when the
control valves are near their neutral positions, then some of the flow is leaked to tank while the
remainder is used to move the actuator. The control valve can be approximated as two orifices in
parallel with variable flow areas. As the area in the orifice providing flow to the cylinder is
increased, the area of the orifice leading to tank is reduced. The equation governing flow in an ori-
fice is given by:

Q = C,AJAP N
whereQ is the flow rateC, is the discharge coefficierd,is the area of the orifice opening, and

AP is the pressure drop across the opening. The relative flow rates therefore are dependent on the
pressure drops across the valves which in turn are dependent on the forces acting on the actuators.

Unlike many typical robot systems, the digging forces that are exerted by the excavator are
extremely high, and are a significant contributor to system non-linearity. For instance, high pres-
sures and flow rates in the hydraulic system are a significant drain on available engine power. To
ensure that the engine does not die, the pumps are designed to destroke and limit flow when the
available engine power is being approached. Also if the pressure in any one actuator exceeds a
threshold value, then a pressure relief valve opens up which essentially stops any further motion
of that implement.

We also expect there to be some coupling between the actuators due to flow limitations of the

hydraulic pumps. Since the boom and the bucket get their flow from the same pump the velocity

of these two implements are related. When the bucket is moving at a rapid rate, less flow is avail-

able for the boom, and hence the boom velocity is reduced. This effect is mitigated in some degree
by the use of crossover valves. If the boom is given a large enough command, then a crossover
valve opens allowing flow that is unused by the swing-stick pump to be used by the boom.

30



The Actuator Model

jcoémgﬁggy solenoid
currents ) _
| Controller »| Pilot Hydraulic
System
l Pilot Pressures
;é .
= Boom Actuator
:
e 2
3 c
£, % - H— < g
c 9 _ 5
33 Bucket Actuator al
=> g
(@]
D
wn
% — H—
Stick Actuator

~ -
' /—\ Engine
N

Pumps

Figure 15:  Simplified illustration of the hydraulic system of the excavator. A computer controller interprets

commands and sends current to a low pressure pilot hydraulic system. The pressures from this system a
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There are many sources of system delays which also need to be addressed in the model. Some of
these can be considered to be fixed delays such as the communication delays inside the controller,
sensor delays, and perhaps the time required to actuate a valve in the pilot system. Probably the
principle time lags however are due to the main hydraulic system. First, there is the time required
for the pump to stroke in order to match the demand. Then there is the compressibility of the fluid
which limits the rate at which the pressure in the system can rise. In a closed control volume, the
pressure rise rate is given by:

dP _ ,0Q
G BV @)

whereP is the pressurd is the bulk modulugQ is the flow rate, an¥ is the volume of oil. Air
entrainment in the hydraulic system results in a low bulk modulus, thus causing a low pressure
rise rate. Finally, there is the dynamic response of the cylinder itself, which is given by:
2
MQ = P,A,-P,A,—F 3)

dt
wherex is the actuator positioM is the mass of the actuator rétdandA are the pressures and
areas of the two ends of the actuator, Bnslthe external forces. These forces include the forces
due to digging, the gravitational forces caused by the implements, and any damping and inertial
forces due to the motion of the implements.

Based on this understanding of the system, we have developed a model of the vehicle’s actuators.
As shown in Figure 14, we assume that the actuator velocities and hence the bucket motions are
dependent on the command signals from the control and the actuator forces. We expect the system
to be highly non-linear, and for the boom and bucket joints to be coupled. Finally there are both
fixed delays in the system, and larger transient time lags.

4.2.2 Actuator Model Implementation

Due to the complexity and non-linear nature of the system, we decided that an analytically based
model would be insufficient. During the planning cycle we want to be able to analyze perhaps a
hundred different digs in just a few seconds. It was felt that an analytical model sufficient to cap-
ture the complex dynamics would require too much computational time. In lieu of an analytical
model, we chose to investigate the use of neural networks.

A neural network is a method for mapping a non-linear relationship between a set of outputs and a
set of known basis functions. Inspired by the observation of biological learning systems, it con-
sists of a complex web of interconnecting units called perceptrons. A perceptron takes a number
of inputs, combines them linearly through a set of weights, and then thresholds the result so that if
the sum exceeds this threshold, the output is one. Otherwise the output is zero. The thresholding
can be done by a variety of methods, but we used a function called a ‘sigmoid’. A sigmoid pro-
vides a continuous means for closely approximating a unit step at the threshold value. A percep-
tron is shown in Figure 16.
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Figure 16: A perceptron used in neural networks. The perceptron sums the weighted inputs, which is then used
in a thresholding function called a sigmoid.

To characterize a complex function, several perceptrons are combined together to form a neural
network. The inputs to the neural network are a set of basis functions that are assumed to be the
major causes of the system’s outputs. For instance, in modeling the actuators, we expect that the
Autodig commands and the actuator forces would be two major components that dictate the actu-
ator motions, and thus would be included in the inputs. The mapping between the system inputs
and outputs is encompassed within the weights that connect the perceptrons together. A method
called “back-propagation” can be used to adjust the weights, and hence train the network. More
details about back-propagation can be found in [Mitchell 97]. Training a network consists of
repeatedly showing the network sample inputs and the true system outputs. This training process
generally can take a long period of time as it requires numerous samples to span the possible sys-
tem configurations and for distinguishing between true system fluctuations and noise in the train-
ing data. Once the network is trained however, it can generate predictions extremely fast.

There are several motivations for the use of the neural networks in this application. To start with,
the system is highly non-linear and could not be reasonably captured with a globally linear regres-
sion. The neural network is also a compact form for representing the data in contrast to memory
based learning methods. Finally, although the neural network is slow to train, the predictions are
extremely fast, which is desirable for our application. The characteristics of the machine generally
do not change significantly for long periods of time. Therefore the neural network can be trained
off-line, with as many data points and as much time as needed. Fast predictions are used on-line to
estimate the vehicle’s motions during the digging process.

By examining the structure of the system, and through trial and error experimentation, we

designed the actuator model as shown in Figure 17. The core of the model consists of three neural
networks, one for each actuator. The neural networks predict the velocity of the actuators at the
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next time step based on delayed commands from the controller, and actuator forces. The velocity
of the actuator is then integrated in order to obtain position. Using simple trigonometry, the actua-
tor positions are transformed into implement joint angles, which can subsequently be converted
into a bucket tip position using forward kinematics [Singh 95].
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Figure 17:  The vehicle model consists of three neural networks, one for each actuator. The inputs to n
consist of delayed commands, and the actuator forces. The networks predict the velocity of the actuator g
point in time, which is then integrated to find position. The cylinder positions are then used to calculate im
joint angles. To account for coupling, the bucket command is fed to the boom network.

etworks
t the next
blement

There are several reasons for selecting this model structure. First, the predictions are made in
actuator space versus joint angle space to reduce the amount of non-linearity that the neural net-
works have to handle. That is, the actuator velocity is always proportional to the hydraulic flow
into the cylinder, whereas the angular velocity is a highly non-linear function dependent on actua-

tor position.

The fixed delays in the system are taken into account by using a delayed actuator command. The
commands are delayed by accumulating the commands in a buffer, and then sending the com-
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The Actuator Model

mands to the neural network after the delay time has elapsed. The forces are assumed to act imme-
diately upon the actuator.

In order to take into account the large transient lags in the system, a recurrent neural network is
used. This means that the output velocity of the network is used as one of the inputs. The use of
the recurrent network accounts for the dynamic nature of the system. In other words, a change in
velocity cannot happen instantaneously, it is dependent on the previous velocity. In equation form

we can write this as:

v(t+1) = wyv(1) +u(t) @

which can be recognized as the difference form of a second order dynamic equation. The recur-
rent networks for the stick and bucket are shown in Figure 18. Through trial and error testing we
found it sufficient to use five hidden nodes in each network.

Delayed Command

Actuator Velocity

Actuator Force .

Figure 18:  Neural network structure used for the stick and bucket. In a recurrent network the output is jused as
one of the inputs.

As previously mentioned we expected some degree of interdependency between the joints. This
would suggest that a single combined network would be needed to adequately describe the
dynamics of the system. However it turns out that the coupling between the joints during digging

is fairly minimal. Perhaps this is because Autodig ensures that the power limitations of the
machine are not reached, and also because of the crossover valves. As expected we found there
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was minor coupling between the boom and bucket joint due to sharing one flow source. This was
adequately accounted for by feeding the bucket command to the boom neural network as one of
the inputs.

4.2.3 Actuator Model Results

The networks were trained using 30 digs from various terrain profiles. This provided approxi-
mately 1700 data points. The input data for training corresponded to the actual commands, forces,
and velocities observed on the machine. Training required approximately ten minutes on a Sparc
20 workstation. After training, the models were tested on a separate set of ten digs for observing
the accuracy of the predictions. Comparisons showing the predicted versus measured actuator
velocities are shown in Figures 19, 20, and 21. The mean absolute error for these predictions
range between 5% to 8% of the peak velocities observed in the test.
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Figure 19:  Comparison of predicted versus measured boom actuator velocity over 10 dig cycles. The mean
absolute error is 4.3 mm/s. Peak velocity observed in testing was 87 mm/s. The measured velocity has begn filtered
for clarity.
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Figure 20:  Comparison of predicted versus measured stick actuator velocity over 10 dig cycles. The mean
absolute error is 11.8 mm/s. Peak velocity observed in testing was 243 mm/s. Measured velocity has beeén filtered.
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4.3 The Soil-Tool Interaction Model

This section describes two different methods for modeling the resistive force of the soil that acts
against the bucket during digging. The models are based on the well known “Fundamental Earth-
moving Equation” (FEE) in soil mechanics as described by [Reece 64]. This equation was devel-
oped for estimating the cutting forces of tilling implements in agricultural engineering. For our
purpose, we have reformulated the equation to account for digging in a sloped terrain. Both of the
soil-tool models discussed in this section are adaptive, in that the resistive forces that are encoun-
tered during digging may be used to improve future predictions. This is accomplished by estimat-
ing a set of soil-tool properties. Section 4.3.1 gives a basic description of the FEE. Section 4.3.2
discusses modifications that were made to the FEE to account for digging in a sloped terrain. Sec-
tion 4.3.3 describes the two modeling methods that were employed for predicting the resistive
forces. Section 4.3.4 discusses estimation of the soil-tool properties for both methods. Finally sec-
tion 4.3.5 compares the results of the two models to measured data.

4.3.1 Fundamental Earthmoving Equation

The FEE predicts the resistive forces of the soil acting against a flat blade moving horizontally
through the soil as shown in Figure 22. When the blade moves forward, the soil is sheared away
from itself in front of the blade, creating a “wedge” of material that slides along the failure sur-
face. The FEE predicts the static force required to shear the material based on all of the forces that
are acting on the wedge.

eV avs J LSS S S S S S S S S S)SSSS

Applied Force

Failure Surface

direction of travel
—»

Figure 22: A flat blade moving through the soil. The soil shears along a failure surface creating a wedge of
material. By analyzing the forces on the wedge, the force applied by the blade can be predicted.
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The Soil-Tool Interaction Model

Assuming that the failure surface is a plane, the wedge can be represented as shown in Figure 23.
The forces that are acting on the wedge consist of:

» The shear force of the material away from itself which is a function of the cohesiveness of the
material.

» The reaction force of the soil against the sliding wedge.

* The weight of the material in the wedge, and the weight of previously dug material known as
the surcharge.

» The adhesion of the soil to the tool.

* The force of the tool against the wedge.

Figure 23:  Static analysis of wedge mod#lis the weight of the wedgk, is the length of the tooly is the
length of the failure surfac® is the weight of the surcharggis the soil-soil friction angle; is the cohesiveness
of the soil,c, is the adhesion between the soil and blade the soil-tool friction angle is the failure surface

angle,p is the rake anglal is the depth of the tool in the sdi,is the force of the soil resisting the moving of the
wedge, andF is the force exerted by the tool on the wedge. [McKeys85]

Writing the force equilibrium equations for a blade of unit width:

z Fy = Fsin(p +9) + caLtcosp— Rsin(p + @) —cL; cos3 =0
Z FZ =—-Fcog(p+9d)+ caLrsinp + ch sinB—Rcos(B+¢)+W+ Q=0 ®
and then solving the equations far
W+ Q+ cdq 1+ cotBecot( + @)] + cad[l— cotpcot(p + @)]
cos(p + @) + sin(p + @) cot(B + @)

(6)
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The weight of the soil in the wedge is given by:

W = vgd{(cotp + cotP) )
wherey is the density of the material. The weight of the surcharge is given by:

Q = qd(cotp + cotp) ®)
whereq is the surcharge pressure.

Since the force due to adhesion is small compared to the other forces, it will be ignored. Rearrang-
ing the force equation, and accounting for the width of the bugkeé obtain:

F = (ygd2N +Cch+quq)W

Y

cotp + cotf

Y~ 2[cos(p + ) + sin(p + d) cot(B + ¢)]
N = 1+ cotBcot(B + @)

C cog(p+9d)+sin(p+d)cot(+ )
N cotp + cotf3

Q cog(p+9)+sin(p+d)cot(p+ @)

(©)

The three factorsl,, N., andNg, can be calculated based on the geometry of the wedge. The three

factors dictate the force due to the weight of material in the wedge, the force due to cohesion of
the soil, and the force due to the surcharge pressure.

4.3.2 Modifications to the FEE

As previously noted, the FEE was developed for agricultural tools, and thus it was assumed that
the terrain profile would be relatively flat. In mass excavation however, the ground profile is usu-
ally sloped, and the material that passes over the blade is captured and retained by the bucket.

Figure 24 shows a cross section of the wedge model that compensates for accumulating the mate-
rial in the bucket. Note that in this model, the surcharge is assumed to accumulate behind the
bucket tip versus being evenly distributed over the wedge. The material that is shaded in gray
accounts for all of the material that has passed over the bucket tip, and it is assumed that all of this
material stays inside the bucket. We refer to this material as the “swept volWgrarid it is cal-

culated by continuously integrating the volume of material that passes over the tip during digging.

40



The Soil-Tool Interaction Model

Figure 24:  Wedge model that accounts for the material being retained in the bucket. The material in th¢ shaded
region corresponds to the swept voluReQ is the surcharg&y, is the weight of the material above the bucket,
W, is the weight of the rest of the material in the wedlgés the length of the tooly is the length of the failure
surfacepis the soil-soil friction angle; is the cohesiveness of the soj,is the adhesion between the soil and

blade,b is the soil-tool friction angl€d is the failure surface anglge,s the rake anglal is the depth of the tool in
the soil,R is the force of the soil resisting the moving of the wedge Faisdhe force exerted by the tool on the
wedge.

The weight of the material in the shaded region for a unit bucket width can now be calculated by:
W; = Vg (10)
and the weight of the remaining material in the wedge is given by:
_1
W, = zydzcotB 11)
The force equation for a given bucket width now becomes:

F = %dZWQNW+cdeC+Vsyqu

N = cotf
W "~ 2[cog(p + d) + sin(p + &) cot(P + ¢)]
1+ cotPBcot(p + @)

C ~ cos(p +d) + sin(p + d)cot(B + @)
1

Ng = cos(p + 8) + sin(p + d) cot(B + @) 12
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Finally to compensate for the slope of the terrain, the wedge model as shown in Figure 25 is used.

Figure 25:  Wedge model that accounts for the material being retained in the bucket, and for the slope of the ter-
rain.The material in the shaded region corresponds to the swept WAlues the surchargdy, is the weight of

the material above the buck®t, is the weight of the rest of the material in the wedlgis the length of the tool,
L;is the length of the failure surfaggis the soil-soil friction angle; is the cohesiveness of the sojlis the adhe-

sion between the soil and bladds the soil-tool friction angle is the failure surface angle,s the rake angle
relative to the soil surface, d is the depth of the tool perpendicular to the soil surface, R is the force of the| soil
resisting the moving of the wedge, F is the force exerted by the tool on the wedges dinel terrain slope.

Note how the depth is now measured perpendicular to the terrain, and the rake ianglea-

sured between the surface of the terrain and the blade. Again the material that is shaded corre-
sponds to the swept volume. Tkaxis of the coordinate system has been oriented parallel to the
terrain, so that the equilibrium equations become:

|
o

ZFX = F(sin(p + &)) —V gsina —Rsin(p + @) —cL;wcos —W,sina =

ZFZ = F(cog(p +0)) —Vgcosa —Rcos(p + @) —cL;wsinB—W,cosa = 0 13

whereaq is the terrain angle. Removing the soil reaction force R from the equation, we obtain:

ng(cosa + sinacot(B + @)) + chW(cosBcot((B + @) + sinf)) + W(sina cot(p3 + ¢) + cosa)

Sin(p + 8)COI(B + §) + COS(p * 3) @
The weight of the material in the unshaded region is given by:
_ 1.2
W, = §d (cotp — tana)wyg (15)
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The Soil-Tool Interaction Model

and the length of the failure surface:

(16)

Rearranging the equation, we get:

F = d2wygN,, + cwdN, + V. yg N,

_ (cotB —tana)(cosa + sina cot(B + @)
W 2[cog(p + ) + sin(p + d) cot(B + ¢)]
N = 1+ cotfcot(B + @)
C ~ cos(p +d) + sin(p + d) cot(P + ¢)
N = cosa + sina cot(B + @)
a4 cos(p+d)+ sin(p + d)cot(B + ) 17

Note that when the terrain angle is zero, this equation is identical to Equation 12.

The coordinate system in which this model was derived had the x axis parallel to the terrain. How-
ever for the rest of this paper the soil forces will be transformed to a coordinate system attached to
the machine called the base frame. The base frame is shown in Figure 26. Given the new coordi-
nate system, the forces acting on the soil by the bucket are given by:

F(cosdsin(p—a) —sindcos(p—a))

, = F(cosdcos(p—a) + sindsin(p —a))
(18)

Finally, we assume that the soil-tool forces are applied at the cutting edge of the bucket. In general
this appears to be a good assumption. Obviously however the gravitational force of the material
acts closer to the centroid of the bucket. To account for this discrepancy, a moment is applied to
the bucket which compensates for the moment created by offsetting the force. The moment is

given by:
M, = FgXx (19)

whereFy is the force due to the weight of the material in the bucketxaisdthe distance from
the centroid of the bucket to the cutting edge along toas.
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Figure 26:  The forces are represented in the base coordinate frame.

4.3.3 Soil Modeling Methods

The objective of the soil model is to predict the force that the soil is imparting to the bucket given
the geometry of the intersection between the bucket and the ground, and the soil characteristics. In
equation form:

F =fT,¥) (20)

whereF is a vector representing the soil forces and moments acting on thefliadketmodel,

I" is the geometry of the intersection between the bucket and the ground jsaadset of param-
eters that characterize the sdil.can be calculated by knowing the shape of the terrain and the
position and orientation of the bucket. Estimation of the soil-tool prop&ttiedl be discussed in

the next section.

Two methods were pursued for modeling the soil reaction forces. The first method is to use the

modified FEE analytical model as was developed in the previous section. When using the ana-
lytical model, the geometry can be specified’byd, a, p, V), and the soil characteristid=(y,

B, @, 9, c).

The second method was to find an empirical relationship betivesd F . In this method we
assume that we can find a relationship:

f = Zriwi =MW +TW + W+ (21)
]
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The Soil-Tool Interaction Model

In this model it is necessary to find an empirical relationship for all of the force compoRgnts, (
F,, andM,), whereas with the FEE model the magnitudes of the force components are given by

Equation 18. Using the terms in the FEE as inspiration for derying selected =(d?, cosp),
a, Vy). Although it is unnecessary for the termd db be identical for each of the force compo-

nents, we found that it was sufficient to do so. If any one fglisiunnecessary for calculating a
component of the force, then the correspondifighould reflect this by having a smaller magni-
tude compared to the other parameters.

4.3.4 Soil-Tool Property Estimation

Again, the objective of this work is to predict the forces that would be experienced by the bucket
during digging, so that the dig model can estimate the trajectory that the bucket would take
through the soil. At each time step the dig model predicts the state of the machine, and hence the
pose of the bucket is known. By intersecting the bucket with the terrain at each time step, we can
calculate all of the parameterslgfsuch as depth and rake angle, and by integrating the intersec-
tion over time, we can calcula¥g. But to predict the force, we still need to have some estimation

for the soil-tool propertie.

We know that the soil characteristics can vary dramatically from one work site to another depend-
ing on the type of material that is being excavated. Even within one type of material the soil char-
acteristics can be quite different due to compaction or seasonal changes. In our test environment,
the soil was quite hard and difficult to dig in winter months when the ground was frozen. During
rainy months, the soil was soft and sticky. And during the summer the soil was dry and powdery.
Therefore to accommodate the multitude of different soil characteristics that could be encoun-
tered, it is necessary for the soil model to be adaptable. That is, we need to modify the soil-tool
properties¥ based on the forces that are encountered during digging.

Suppose therefore that we have collected some data during several digging operations, and that
this data includes the poses of the bucket during the digs, and the shape of the terrain. Using this

information, we can finf  which is a matrix containing the geometry of the actual intersection of
the bucket with the terrain for all of the digs. Suppose also that our data includes the actual forces

F that are encountered during digging which can be derived by monitoring the pressures in the

hydraulic actuators. Our task then is to find an estimate lodsed o anB . Figure 27 illus-
trates this process.
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Figure 27:  Extraction of the soil-tool properties. The path of the bucket during digging is intersected with the

terrain map to form a matrix containing the intersection geometries. The pressures during digging are converted to
forces at the bucket tip using the Jacobian of the mechanism. (See Appendix for details). The forces and|geome-
tries are then used to extract the soil-tool properties.

Since we have formulated the empirical model as a linear combination of terms, we can use least
squares regression analysis to solvéowe assume:

F=ry 22)
We can then fin& by forming the pseudo-inverse of the geometry matrix:

W= (FF)TTE 23
For the analytical model however, the equation is not invertible. Therefore a search is conducted
for a set of parametet® that minimizes the discrepancy between modeled forces and actual

forces. That is, fin& that minimizes)(F , f(I",W)), wherelJ is some objective function. For this
work we have selectetllto be the root mean square error of the force irx tredz directions. It
would be equally valid to include the moment within the calculation or to use a linear combina-
tion of the errors in each direction.

There are numerous methods that could be used for conducting this search. One alternative is an
exhaustive search. This simply means that the soil parameters are discretized within their possible
ranges, and then each possible combination of discretized parameters is tested to determine if it is
the combination that minimizels This method has two major problems. First, it will probably not
provide an exact solution since the parameters must be discretized, and the accuracy of the result
is limited by the resolution of the discretization. Second, the computational requirements can be
enormous since every possible combination is explored.
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The Soil-Tool Interaction Model

Alternatively we have selected a method that combines a stochastic search method called simu-
lated annealing with an efficient form of gradient descent [Luengo 98]. The simulated annealing
algorithm works by conducting a pseudo-random search for a set of parameters that mihimizes
Each trial of simulated annealing begins by selecting a random set of parameters and then calcu-
lating J. Then a set of parameters is randomly selected that is “near” the first set, and again calcu-
lating J. If the objective function for the second set is better than the first set, then the second set
becomes the base for the next move. Otherwise the second set will become the base set based on
the probability function:

~(35-97)
e K (24)

whereT is the current number of trialk,is the cooling factor, andy andJ, correspond to the

objective functions of the first and second sets. As the number of trials increase, the probability of
moving to a set of parameters with a worse objective function is reduced. The cooling factor can
be adjusted to dictate how quickly the probability decreases. By moving the base set towards the
parameters with better valuesbmost of the time, it is hoped that eventually a reasonable esti-
mate of the global minimum can be found. The purpose of moving towards worse objective func-
tions some of the time is to avoid becoming trapped in local minima.

In gradient descent, the idea is again to move from parameter sets with higher values of
parameter sets with lower values bfExcept instead of moving randomly, the gradient of the
function is followed. There are several different methods for doing gradient descent, however we
have chosen one called Powell's method because it is computationally less taxing [Press 88]. In
Powell's method the gradient is calculated using the conjugate directions starting from the basis
vectors of the search space.

To combine these methods, several trials of simulated annealing are conducted, and the best solu-
tion is stored from all of the trials. This serves as the starting point for conducting gradient
descent. The idea is that the use of simulated annealing will find a set of parameters close to the
global minima, and that gradient descent will find the true minimum within some finer accuracy.
The combined methods work well together because simulated annealing can conduct a broad
search over the workspace quickly, while the gradient descent method provides the needed accu-
racy.

4.3.5 Soil Model Results

We performed a cross validation test using data from 23 separate digs (approximately 1100 data
points) that were taken back to back on the same day. Through trial and error testing, we found

that 300 data points usually provided an adequate amount of data for estimating the soil-tool prop-

erties. Since the duration of each dig is five seconds on average (50 data points), then this corre-
sponds to a window size of approximately six digs.

Figures 28 and 29 show a comparison of predicted versus measured force components for the ana-

lytical model and the empirical models respectively. For each dig, 300 data points adjacent to the
dig were used to estimate the soil-tool properties. In addition, the last digs in the test were used to
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estimate the properties for the first digs. Qualitatively speaking both models appear to fit the data
fairly well for all of the separate force components. Figure 30 overplots the predictions of the
force magnitudes for two of these digs and Figure 31 shows histograms of the error in the pre-
dicted force magnitudes for all twenty three digs. The mean absolute error for both models is
roughly 10% of the peak force observed in the test.

Somewhat surprisingly, there is not a significant difference between the analytical and empirical

model in terms of accuracy. However there are other factors to consider. First, in terms of compu-
tational speed, we must examine the time required to make a prediction and the time required to
extract the soil-tool properties. On an SGI R10000 processor, the difference in prediction times

was negligible (16 ms analytical versus 13 ms empirical on average for each dig). The difference
in computational time required to extract the soil-tool properties however is dramatic. The analyt-

ical model required 3400 ms to extract the soil-tool properties from a set of 300 data points,

whereas the empirical model required only 8 ms.

Another factor to consider is the ability of a model to extrapolate to new soil conditions. The saill
parameters in the empirical model do not correspond to any identifiable soil characteristic. They
are simply coefficients for each geometry term. This can be seen by examining the soil-tool prop-
erties that were extracted for both types of models in Figures 32 and 33. Note that with the analyt-
ical model a relatively constant estimate of the soil properties is maintained, whereas the
empirical model coefficients are more erratic. That is, the analytical model seems to have honed
in on the intrinsic characteristics of the soil. Thus the soil-tool properties in the analytical model
are physically based, and the model may be used with some confidence to extrapolate to new soll
conditions. With the empirical model, it would be unclear as to how the soil-tool properties
should be modified.

Since the extraction of the soil-tool properties for the empirical model was much faster than the
analytical model, we used the empirical model in the perception based dig planning system. The
analytical model however has proven to be useful in our off-line simulator allowing us to extrapo-
late to much harder soil conditions.
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Figure 28:  Comparison of measured force components to predicted force components for the analytic
for a set of 23 separate digs. 300 adjacent data points are used to estimate the soil-tool properties beforg

Al model
» each dig.
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Figure 29:  Comparison of measured force components to predicted force components for the empirical model
for a set of 23 separate digs. 300 adjacent data points are used to estimate the soil-tool properties before each dig.
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Figure 30:  Comparison of the measured force magnitude to the predicted force magnitude for both the analyti-
cal and empirical models for two digs.
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Figure 31:  Histograms of the model errors for 23 digs. The mean absolute error in force magnitude for|the ana-
lytical model is 13,980 N versus 14,790 N for the empirical model. Standard deviations are 10,790 N and 11,880 N
respectively. The peak force observed in the test was approximately 142,000 N.
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Figure 33:  Extracted soil-tool properties for the analytical model for each dig. These parameters are usgd for all
of the force components. The properties are relatively consistent.
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4.4 Combined Dig Model Results

This section examines the results of the overall combined dig model. In general we have found
that the model predicts the trajectory reasonably well most of the time. In the few cases where it
does not, there is usually a good reason. For instance, the soil model assumes that the material is
somewhat homogenous. However in our test site the bucket occasionally strikes inclusions such as
boulders. Another problem we encountered is when the terrain is not entirely visible with the
range sensor due to visual occlusions. To alleviate this problem we limit the distance of the
machine from the dig face with the perception planning software. Probably the worst situations
occurred however when encountering dust. The range sensors would detect the dust and our soft-
ware would interpret this as soil. Not only would this throw off the prediction for the current dig,

it would also corrupt the database of dig data for soil-tool property extraction.

Figures 34 through 37 show detailed results for a typical dig. In this comparison, the model has
been started from the same exact position as the testbed. The model then predicts the trajectory
that the bucket tip takes while executing Autodig given the intersection with the terrain map. Thus
the model has to predict the commands that are executed by Autodig, the velocities that are
achieved by the actuators, the forces that are encountered during digging, and the pressures in the
cylinders that result from the forces. All of these internal predictions result in the overall predic-
tion of the dig trajectory. Figure 34 shows how the predicted trajectory compares to the actual tra-
jectory on the testbed.

Measured Trajectory
Predicted Trajectory — — — —

Tip Elevation (m)

S Terrain Profile

-5 4

Radial Distance (m)

Figure 34:  Bucket tip trajectory predicted by the model versus the actual dig trajectory experienced by|the
excavator testbed. The excavator is shown at the beginning of the dig cycle.
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Combined Dig Model Results

Figure 35 compares the commands generated by Autodig in the model versus the commands gen-
erated by Autodig on the testbed. Note that these commands are dependent on the pressures inside
the actuators and the positions of the implements. Deviations between the commands generated in
the testbed and the commands generated in the model are due to discrepancies in the modeled
pressures and discrepancies in the motion of the implements.

Measured ————
Predicted - — — -

Boom Command
30 T T T

| |
0 10 20 30 40 50 60 70 80 90
Stick Command

deg/s

10 20 30 40 50 60 70 80
Bucket Command

1 1
0 10 20 30 40 50 60 70 80 90
time(.1 secs)

Figure 35:  Autodig commands generated internally in the model versus autodig commands on the actual test-
bed. Autodig commands are based on the pressures in the cylinders and the position of the implements.

Figure 36 shows a comparison of the implement velocities between the model and the testbed, and
Figure 37 shows the resulting implement positions. Recall that the actuator velocities in the model
are predicted by the neural network, and these velocities are dependent on the predicted pressures
and the predicted commands. Additionally, the transformation from actuator velocity to the
implement’s angular velocity and angular position is dependent on the actuator position.
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Figure 36:  Model prediction of the implement angular velocities versus the implement velocities on the
bed. The predicted velocities are generated by the vehicle model, and are dependent on the predicted ay
mands, the predicted pressures in the cylinders, and the predicted position of the cylinders.
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Figure 37:

Model prediction of the implement angular position versus implement angular positions on
bed. The implement positions are a function of the implement velocities.

Combined Dig Model Results

he test-

For a given time step, once the angular positions of the implements are predicted, then the pose of
the bucket can be calculated using forward kinematics. The pose of the bucket will then dictate the
intersection with the terrain map, and hence the soil-tool model is able to estimate the soil forces
acting on the bucket. These forces are then transformed into pressures in the hydraulic actuators,
which are then used to calculate the next Autodig command and the next implement position. Fig-

ure 38 shows the predicted pressures versus actual pressures.
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Figure 38:  Modeled cylinder pressures versus actual cylinder pressures. The pressures are based on the forces
acting on the bucket, which are calculated by knowing the position of the bucket and its intersection with the ter-
rain.

From this discussion, it is clear that the model results depend largely on the ability to predict the
digging forces. To illustrate the importance of the forces on the digging trajectory, the dig model
was executed from the same position with three levels of soil hardness. The soil hardness was
modified by multiplying the output of the analytical soil model by a factor of 2 and 3. Figure 39
shows the trajectories predicted by the model for each force level. Table 2 shows the resulting
change in digging statistics. As would be expected, the time required to dig increased when
changing the factor from 1 to 2. This is due to Autodig slowing down the bucket velocity as the
force increased. This also caused the bucket to penetrate deeper increasing the swept volume.
Increasing the force factor from 2 to 3 however decreased both the volume and the time. This is
because the bucket was not able to penetrate as deeply due to the hardness of the ground, and less
time was required to capture the material.
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Figure 39:  Predicted dig trajectories for three simulated force levels. Each simulated dig uses the sam

conditions and the same terrain map, however the output of the analytical soil model was multiplied by th

factor. This caused the dig model to produce three distinctly different trajectories.
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Table 2: Comparison of simulated digging statistics for three force levels. For each simulated dig, the force
output of the analytical model was multiplied by the force factor. This resulted in the following digging statis-

tics.
Force Factor Time (s) Volume (m°") Energy (kJ)
1.0 5.5 2.2 113
2.0 8.1 2.5 234
3.0 7.8 2.1 253

Figure 40 shows a qualitative comparison between the predicted and measured trajectories for
eight separate digs. As can be seen from the plots, the dig model appears to predict the trajectory
reasonably well for a number of different terrain profiles and starting conditions. It should be
noted here that we were unable to test the dig model in a large variety of soil conditions due to
time constraints. Most of the material in these tests would be considered “easy digging”.

As previously indicated, the purpose of the model is to allow an evaluation of a number of candi-
date trajectories for selecting where to dig. As will be discussed in Chapter 5, the evaluation will
be based on the time required to dig, the energy expended during digging, and the volume of
material swept by the bucket. Figure 41 shows a comparison of these digging statistics compared
to measured data. The model is able to match the measurements to within 12% to 15%. There
appears to be a small systematic bias in that the volume is consistently underestimated. This bias
is probably due to range sensor calibration errors, since the actual volume measurements seem
excessive.
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Figure 40:  Comparison of modeled versus actual dig trajectories for 8 digs. The model predicts the trajectory

reasonably well for an number of different terrain profiles and starting conditions.
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Figure 41:  Comparison of digging statistics produced by the feed forward model to the statistics comp
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Chapter 5 Planning Digging
Operations

The effectiveness of the truck loading process is dictated by many factors, such as the initial site
preparation, the efficiency of the movements between the dig face and the truck, and the effective-
ness of the dumping and the digging portions of the loading cycle. The focus of the work dis-
cussed in this thesis is to ensure that the digging portion of the cycle allows the machine to remain
productive not only over a few cycles, but over an extended sequence of operations. In order to do
this, a dig planning system is required to “manage” the excavation of the bench. That is, it needs
to choose digging actions that fill the bucket quickly and efficiently. It must ensure that there is
always enough material available in front of the machine so that a full bucket is obtainable. Yet it
needs to remove the material completely so that piles of material are not left behind.

These requirements have led to the development of a dig planning system based on the following
strategy:

» Choose dig locations that optimally fill the bucket.

» Clean the floor after the majority of the material has been removed.

» Track backwards when needed so that additional material may be excavated.

Section 5.1 of this chapter discusses the perception based planning system that was designed to
fulfill this strategy.
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In addition, the soil characteristics can have a major impact on how well the system performs.
Chapter 3 discussed how the Autodig algorithm required the use of a soil hardness index that
allowed it to adapt to various soil conditions. Section 5.2 discusses a means for automatically
selecting this index based on the forces encountered during digging.

Finally, Section 5.3 discusses the software implementation of the entire excavation system.

5.1 Perception Based Dig Planning

In keeping with the strategy outlined above, the perception based dig planning algorithm was
divided into three separate planners:

» Dig Location Planner - This planner is responsible for choosing the initial pose of the bucket
prior to executing Autodig. The selected dig is based on being able to fill the bucket with the
least amount of energy and in the smallest amount of time, without violating any boundary
constraints such as digging below a desired floor elevation. This is how the majority of the
material is removed from a given machine location.

» Cleanup Planner - The cleanup planner is responsible for dictating where the cleanup opera-
tion should begin based on the amount of material, and the distance of the material away from
the machine. In Chapter 3 we discussed the use of a cleanup operation that slowly moved the
bucket along a desired floor elevation to leave a relatively even and level floor. This planner
selects where these cleanup actions should be executed.

» Tracking Planner - The tracking planner dictates how far the machine can be moved back dur-
ing each planning cycle. The distance is based on being able to reach all of the material, and
being able to see all of the material with the range sensors. The second condition is generally
more confining because the angle of the repose of the bench can be quite steep. If the machine,
and hence the range sensor is moved back too far, then the front of the bench can be occluded
from view by the top of the bench.

All three plans are generated prior to each loading cycle. Thus a higher level process has the
opportunity to use any one of the plans if it is privy to some information that should override the
preference due to digging alone. For instance, if the truck has just been filled, and another truck is
moving into place, it may be a good opportunity to track the machine backwards, or execute the
more time intensive cleaning operation.

In general however, the dig planner signals its preference for which operation should be executed
by providing two quantities. The first is the quality of the selected digging operation. This quan-
tity will be described in more detail in Section 5.1.1. The second quantity is simply the amount
the machine can be tracked backwards. Figure 42 illustrates a simple algorithm to decide which
action should be taken.
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Perception Based Dig Planning

if dig quality > minimum quality
then execute a dig
else
if tracking distance > minimum tracking distance
then track the machine backwards
else
execute a cleanup

Figure 42:  Simple algorithm used to select which action to execute based on the dig quality and minimum
tracking distance provided by the dig planner.

The above algorithm shows a bias towards removing as much material as possible with the dig-
ging operation, and avoiding the time consuming cleanup operations. The machine attempts to dig
if a good dig is possible. If not, it will try to back up so that more material is available. The motion

of the machine backwards however is limited by the distance of the farthest material away from
the machine. If the machine cannot be moved back some minimum distance, then a cleanup oper-
ation is executed. The cleanup operation removes the farthest material, potentially allowing the
machine to track backwards on the next iteration.

The following sections discuss the three components of the perception based dig planner in more
detail.

5.1.1 Dig Location Planner

The Dig Location Planner is used to decide where the next digging operation should take place,
and give some indication as to the overall utility or quality of this digging operation. Its design is
inspired by what we believe is the decision making process of a human when selecting a dig. A
human operator generally has some overall strategy in mind for removing the material from the
face, and then decides exactly where and how to dig based on the stiffness of the material, and the
performance of the machine during the digging process.
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Likewise, we have designed the Dig Location Planner as a multi-resolution planning system. A
coarse planner is used to tessellate the dig face into smaller regions, and a region is selected based
on some overall material removal strategy. Then the region is provided to a refined planner which
searches within the region’s limits for the locally optimal bucket pose with which to initiate Auto-

dig. It does this by querying a dig evaluation routine for the quality of numerous candidate bucket
poses. The dig evaluator bases the evaluation on the results of the feed forward dig model
described in Chapter 4. Figure 43 illustrates the process for planning dig locations.

_ Dig
Terrain Map Coarse Region > Refined |
Planner Planner Selected Dig
Pose and
Candidate Bucket Dig Dig Quality
Poses Qualit

Dig
Evaluator

Figure 43:  Coarse to refined dig location planning strategy. The coarse planner divides the workspace|into dig
regions. The refined planner searches the dig region for the best dig by evaluating each candidate. The dig evalua-
tion is based on the forward model of the digging process.

5.1.1.1 Coarse Dig Location Planning

The purpose of the coarse planner is to divide the dig face into regions, and then for each loading
cycle, select one of the regions in which to dig. In doing this, the coarse planner is generating an
overall strategy in which to erode the bench, although it is not specifying exactly where the dig
should take place. Figure 44 shows a coarse plan for a hypothetical bench configuration. The strat-
egy shown here, and described below is based on the recommendations of an expert machine
operator.
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Dig Region

Figure 44:  Coarse plan for typical bench configuration. The strategy encoded is based on recommendations
from an expert machine operator.

First, the coarse planner needs to identify the boundaries of the workspace. The far radial bound-
ary is defined by either the edge of the bench or the kinematic limit of the machine’s reach,
depending on which is closest to the machine’s center. The edge of the bench is based on the ter-
rain elevation exceeding some threshold above the desired floor level. If the edge of the bench is
closer to the machine center than the kinematic limit, then the bench edge becomes the far radial
boundary because digging should not penetrate the floor. Otherwise the kinematic limit deter-
mines the boundary because there is no reason to search outside of the machine’s valid work-
space.The angular extents of the boundaries are dictated by the stability of the machine. Typically
the machine should dig within +/-30 degrees from parallel with the tracks in order to ensure that
the machine is stable.

The workspace is now divided into angular regions, where the width of each region is approxi-
mately one bucket width wide, and are adjacent to each other at the far radial boundary while
overlapping at the near radial boundary. The regions are ordered based on the location of the
truck. If the truck is parked on the excavator’s left, the digging is ordered from left to right. This is
so the boom doesn’t have to raise as high to clear the material when swinging to the truck. Dig-
ging the regions in order ensures that the bench is evenly eroded. This minimizes the pockets of
material that are left behind which may not be removed efficiently.

We also experimented with dividing the regions radially into two and even three dig regions along
one angular orientation. The reason behind this was that expert operators typically dig at the top
of the bench first, and then reach towards the bottom. Digging is executed in this manner because
it reduces the visual occlusions, and also reduces the force needed to lift the lower material. How-
ever we found that by forcing the dig to take place at an upper region first, we were artificially
limiting the refined planner from obtaining a better dig that might have been in the lower region.
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Instead, we found that it is best to allow the refined planner to search the entire radial distance for
the best dig. Interestingly enough, the refined planner usually would select digs closer to the
machine first, and then reach out farther as digging progressed.

5.1.1.2 Refined Dig Location Planner

The purpose of the refined planner is to search a selected dig region for the optimal bucket pose
with which to begin digging. Again, only the start pose of the bucket need be specified since
Autodig will guide the bucket through the rest of the digging process. The first task then is to dis-
cretize the region into a number of bucket poses. The initial pose of the bucket can be defined by
two parameters as shown in Figure 45. The dimersoefines the distance that the bucket tip is
located from the region’s near radial boundary. The dimernsidefines the angle of the bucket

tip relative to the normal of the local terrain profile.

floor

Figure 45:  The dig pose is specified with two parametarsda. The resolution ofl that was used in our
experiments was approximately 20 cm, and the resolutianaafs 5 degrees

An entire region is divided into a number of candidate digs, where each dig is specified by the
candidate paifd,a). Each candidate pair then is evaluated to determine the utility of the selected
dig. This is a two part process. First the candidate pair is checked to ensure that it does not violate
any geometric constraints. If not, the pair is evaluated in regards to an objective function. The
refined planner selects the dig that results in the highest value of the objective function.

The first geometric constraint that the pose must satisfy Igriematic reachability constrainif

the candidate pair is outside the machine’s valid workspace, then it is rejected without need for
further evaluation. Otherwise the bucket pose is sent to a dig evaluation routine as shown in Fig-
ure 43. The dig evaluation routine uses the feed forward dig model described in Chapter 4 to sim-
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ulate the effect of selecting the candidate bucket pose. The dig model is initiated at the candidate
bucket pose, and run forward in time until it completes the simulated dig. If the simulated dig ever
penetrates the desired floor elevation, then it has violategettraetric shape constraiand is
rejected without need for further evaluation.

During the simulation, the dig model calculates the digging statistics of time required to dig,
energy expended during digging, and the volume of material swept into the bucket. These quanti-
ties are used to determine the value of the objective function which we tediq tineality

The dig quality is a measure of the desirability of executing a particular dig. The dig quality is cal-
culated by combining the three functiofisy, and{ shown in Figure 46. These functions are
dependent on swept volume, the time, and the energy required for digging respectively. When the
volume is less thaW,;, thené=0. As the volume increasdsincreases linearly until the volume
reachesVy,ax Which corresponds to the capacity of the bucket. This function essentially gives

higher values to increased bucket volumes up to the maximum bucket capacity. Similarly, we
would like to execute digs that use the least amount of time and energy. Therefod€ are
both maximum at zero, and decrease linearly as the time and energy increase.

§
Emax —
| : Volume Swept
Vmin Vmax
g
UJmax —
; Time
Tmiﬂ
¢
Zmax —
| Work
Wmax
Figure 46:  Evaluation functions for selecting a dig,5, Corresponds to the bucket capacity. The values of
Vmin Tmin @NdThaxare based on the range of acceptable criteria for a digging opef@,tig;a, Wmax: and
Zmax are tuned to get a desirable result. The overall dig quality is a linear combination of these functiond.
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The dig quality is then calculated by the equation:

Quality = W& +w P +w(

wherew,, w;, andw,, are weightings based on the relative importance of each of the factors. For
our experiments we specifiag=3, w;=2, andwg=1. Additionally, in order to allow any of the fac-
tors to veto a particular dig, the quality is set to zero if any of the factors are zero.

The refined planner conducts an exhaustive search to determine which candidate pair has the best
overall quality. Figures 47 and 48 illustrate the evaluation process for two separate terrain topolo-
gies. The terrain in Figure 47 is fairly regular, whereas the terrain in Figure 48 is undulating due to
previous digs.

The plots at the top left of the figures show the terrain shape, the floor elevation, the boundaries of
the coarse plan, and the trajectory of the dig that was selected. The plot at the top right shows the
combinations ofl anda with regard to the geometric constraints. Combinations that are colored

in blue correspond to digs that are reachable but would violate the floor boundary. Configurations

that are reachable and that do not penetrate the floor are colored in red. The valid configurations
are evaluated in terms of the dig quality which is illustrated in the remaining plots.

In Figure 47, there are no shape violations for the terrain since the coarse plan prevents the
machine from penetrating the floor. In general, as the value of d increases, the volume, time, and
energy also increase. Clearly the dominant term in the dig quality is the volume. Note that once

the swept volume surpass€gs,= 2.0 nt, the evaluation function levels off. The selected dig
then is dictated mainly by the time required to dig. This is further illustrated by the fact that the
maximum swept volume for all of the candidates is 237 mowever the volume of the selected

dig only has 2.1 m In Figure 48, there are several shape violations for large valubsitso
note how the evaluation function has become more complicated because of the undulating terrain.

1. In [Singh 98] we describe using a quality function which is a multiple of the three factors. We found how-
ever that it was too difficult to adjust the factors to obtain a desired result.
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Figure 47:

Plots showing the evaluation of a relatively even terrain. The plot at the top left shows the terrain,
the floor elevation, boundaries of the coarse plan indicated by *'s, and the selected dig. The plot at the top right
shows the combinations af @) with regard to the geometric constraints. Elements in blue are reachable byt vio-
late the shape constraint. There are no shape violations for this terrain. Elements in red do not violate either con-
straint. The rest of the plots show the energy, volume, time, and the combination of these values into the joverall
evaluation (dig quality).

71



reaganle but )
violates shape constraint

Dig # 15 vol 2.345000

dist

Shape & Reachability

10

X (m)

Work

-20 0
angle

20

Volume (Max 2.90)

for this topology.

24
[32)
£
14
oL
9
0
7 —20
dist 6 angle dist 6 angle
Time Dig Quality .
/ Selected Dig
104
4.
34
g s
& 24
14
0L ol
9 ) 9 )
8 8
0 0
! —20 ! -20
dist 6 angle dist 6 angle
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5.1.2 Cleaning and Tracking Planners

The purpose of the cleanup planner is to decide where it is most desirable to execute a cleanup
operation, and the purpose of the tracking planner is to determine how far the machine can be
moved backwards. Both of these functions are dependent on the distance to the farthest material.
To reduce the amount of time needed to clean the floor, the cleanup planner will extend just

beyond this material. The tracking planner determines how far the machine can be moved back
and still be able to reach the material and see the material with the sensors.

The first step in generating either plan is to examine the terrain to look for piles of material that
need to be cleaned up. To do this, the terrain elevation is examined along a number of swing
angles to look for material that exceeds a threshold in elevation. Starting from the far reach of the
machine and moving radially inward, when the average terrain elevation exceeds the threshold
elevation, then this corresponds to the maximum distance for a given swing angle. These maxi-
mum distances are the only terrain dependent features needed to specify both plans. Increasing
the terrain elevation threshold above the floor causes the machine to spend less time cleaning.
This improves productivity, however it causes the resulting floor to be rougher. This value needs
to be tuned based on the overriding objectives.

The operation of the planners is illustrated in Figure 49. The cleanup plan along each swing angle
extends just beyond the material boundary as dictated by the elevation threshold. Some cleanup
plans are eliminated from consideration. First, if the length of a cleanup plan along a particular
swing angle is too short to be worth executing, then this cleanup plan is eliminated. Second, when
a cleanup has been executed along one swing angle numerous times, and still it's limiting the
machine’s backwards movement, then this region is considered “not-cleanable”, and is elimi-
nated. Finally when excavation creates a wall as shown in Figure 49, the region adjacent to the
wall is not cleaned because the wall must be allowed to settle and form a natural angle of repose.
The cleanup planner then selects the region that has the longest length.
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Figure 49:  Geometry associated with the cleanup and tracking planners. The material boundary is det
by searching for terrain elevations that exceed a threshold. The cleanup plans extend just beyond the m3
boundary. The tracking distance is limited so that all of the cleanup plans can be reached. Some cleanup

ermined
terial
plans are

eliminated and are not used in calculating the tracking distance.

The allowable tracking distance is the shortest horizontal distance between the machine’s reach
and the farthest cleanup plan as illustrated in Figure 49. This is the maximum distance that the
machine can be moved back and still be able to reach all of the material. In addition, a further con-
straint is added that reduces the occlusion of the dig face from the view of the sensor. Figure 50
illustrates how the top of the bench can occlude the rest of the bench from view if the machine is
moved back too far. To reduce this problem, a safe tracking distance is calculated based on the
material laying at some maximum angle of repose. The repose angle is assumed to start at the far
edge of the material, and is extended to the height of the sensor. The maximum tracking distance
is the horizontal distance between the sensor and this projected line. During our experiments we
found that the use of a maximum repose angle of 45 degrees generally ensured that most of the
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material would remain in view. Of the two constraints, machine reach and the material remaining
in view, the material remaining in view generally was the more restrictive and limited the distance
that the machine could be moved back. Figure 51 shows the trigonometry that is used to calculate
the backwards tracking distance for both constraints.

N Allowable distance

=T

Maximum
Repose
Angle

Figure 50:  The maximum tracking distance is further constrained based on being able to view the material with
the sensor assuming a maximum repose angle for the material (45 degrees). Tracking back too far would|cause the
dig face to be occluded by the top of the bench.

75



(x,y)

d

Top View: Machine Reach Constraint

r= Jx2+y2

d = rcos(T—sw) — J/r2co@(m—sw) — (r2 —reacl?)
rS
h
0
"o
Side View: Sensor View Constraint Top View: Sensor View Constraint

h
P tan@

d= [(r,+r)2-y?—x

r. = —

Figure 51:  The trigonometry involved in calculating the maximum travel distance based on machine re
the ability to view all of the material. The circled plus corresponds to the machine’s currentxgitsrthe
position of the material’'s edgejs the height of the sensor from the flaw,is the swing angld is the maximum
repose angleais the radial distance to the sensor center from the machine’s centéiisahd distance the

machine can be moved back.

ach and

76



Modifying the Soil Hardness Index

5.2 Modifying the Soil Hardness Index

Recall that the soil hardness index in Autodig controls how much force is applied to the ground
during the digging process. The soil hardness index is another control parameter effecting perfor-
mance, and the optimal index depends on the characteristics of the material in which the machine
is digging. The soil hardness index could be another search parameter in the planning process,
however adding another degree of freedom would be too costly in terms of computation. Alterna-
tively, we would like to find a relationship between the soil-tool properties that are already being
estimated, and the optimal index. Once a relationship is established, then the soil hardness index
may be selected on-line by estimating the soil-tool properties.

To illustrate the effect of the soil hardness index, the model of the digging process was used to
generate a trajectory of the bucket through the ground for two separate settings. The top plot in
Figure 52 shows the effect of the index in a soft soil, and the bottom plot shows the effect in a
much harder soil. In the soft soil, both digs obtained a full bucket of dirt. However, the higher
index caused the bucket to go too deep, and increased the time required to dig by 60% while
increasing the energy required to dig by 75%. In the harder soil however, the lower index was only
able to fill the bucket by 50%, while the higher index was able to obtain a full bucket.
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Figure 52:  Simulation results showing the effect of Autodig’s soil hardness setting in different soil conditions
with the same terrain profile. The plots show the trajectory of the bucket tip through the ground for two different
soil hardness settings. The top plot illustrates the effect in a soft soil, while the bottom shows the effect in [a harder
soil. The higher index is required in the hard soil to get a full bucket of dirt. However it wastes time and energy in
the soft soil.
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Therefore it is expected that a function that relates the optimal soil hardness index to the soil-tool
properties should increase as the stiffness of the soil increases. The first step in determining this
function is to find a suitable basis vector that relates the soil-tool properties to the optimal index.
One simple alternative is to use the force that would be exerted on the bucket with the soil charac-
teristics given an average intersection geometry. That is:

Average Soil Force= W yica (25)
wherel yica ={depth=1 meter, rake angle=-45 degrees, terrain angle=30 degrees, and swept vol-
ume=.75 m}.

We used simulation to test this idea since a large variety of soils were not available at our test site.
The analytical soil model was used to simulate the forces during digging, and an exhaustive
search was conducted in each simulation for the optimal soil hardness index as defined by the dig
guality function. The soil forces were modified by adjusting the coefficients in the analytical soil
model, and the tests were conducted over a large number of terrain topologies and soil coeffi-
cients. For each test, the soil-tool properties were estimated for the empirical model, and these
properties were used to calculate the average soil forces as given in Equation 25.

Figure 53 shows the results of the simulations. The optimal soil hardness index for each soil con-
dition and terrain topology is plotted versus the average soil force. The dashed line shows the
results of a linear regression between the data points. There does appear to be a fairly strong rela-
tionship between average soil force and the optimal index.

There are numerous alternatives that could be used for the independent variables for this proce-
dure, and many different function approximation methods. For instance, a multi-dimensional
regression for each soil parameter may provide a stronger relationship. Memory based learning or
neural networks could be used for the function approximation.

The results of these simulations show that the use of the soil-tool properties for setting the soil
hardness index appears to be a viable alternative. Due to lack of time, we could not pursue this
subject any further. Additional experimentation would be needed with real test data and a statisti-
cal analysis conducted to determine the validity of this approach.
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Modifying the Soil Hardness Index
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Figure 53:  The optimum Autodig soil hardness index for a variety of simulated soil conditions and terrain
topologies. The dashed line shows a linear regression between the average soil force and the optimum gutodig
index. Note that as the average soil force increases, the optimum autodig index increases.
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5.3 System Implementation

In Chapter 1, the overall software architecture for the system was introduced. This section exam-
ines in more detail the implementation of the excavation system alone. A detailed view of the soft-
ware architecture is shown in Figure 54. The system was designed so that each module could be
developed and tested separately, and so that they could be run as separate tasks or on separate pro-
cessors as needed computationally. The software system consists of a motion planning module, a
dig planning module, a soil estimation module, a control interface, and a sensor interface. The
control and sensor interfaces are responsible for communicating with the actual hardware on the
machine, while the rest of the modules are higher level processes that determine the actions the
machine should take based on the state of the machine and its environment.

Sensor Interface
lrange data A
- . soil _
Soil Estimator | parameters| Dig Planner
P r _— — sensor sensor
_Dig Model states | commands
A
dig plan
terrain map
Y
machine Motion Planner <—
states
_ Autodig
_ machine
machine commands
states
Control Interface
Figure 54:  Software Architecture. The Motion Planner controls all the movements of the machine including the
execution of Autodig. The Soil Estimator monitors the digging process, and estimates the soil characteristics.
These characteristics are used by the Dig Planner to generate the dig plan. The dig plan consists of an optimal dig
location, a cleanup plan, a tracking distance, and the dig quality.
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System Implementation

The Dig Planner module is responsible for generating a plan for excavation based on the shape of
the terrain obtained from the range sensors. The Dig planner receives the range data from the Sen-
sor Interface, and packages it into the terrain map structure that was previously described. The ter-
rain map is then sent on to the Motion Planner and the Soil Estimator. The Dig Planner receives an
indication of the soil characteristics from the Soil Estimator, generates the next plan of action for
eroding the bench, and sends this on to the Motion Planner. The dig plan consists of an optimal
dig location and associated dig quality, a plan for cleaning the floor, and a maximum allowable
distance for tracking the machine backwards.

The Motion Planner controls the movements of the machine and the sensors by communicating
with the hardware interface modules. It receives the terrain map and plan from the Dig Planner,
and then maneuvers the machine to execute the plan. It decides on which plan to execute based on
the algorithm shown in Figure 41. If it decides to execute a digging action or cleanup action, then

it moves the machine to the specified location. It then uses the terrain map and Autodig to execute
the dig. If instead the machine should be tracked backwards, it would execute this action by the
specified amount.

The Soil Estimator module is responsible for monitoring the digging process to determine the soil

characteristics. It does this by monitoring the machine states during the digging process through
the control interface, transforming the machine states to bucket poses, intersecting the bucket
poses with the terrain map, and finally extracting the soil parameters as described in the previous
chapter. This module would also be responsible for setting the Autodig soil hardness index, how-

ever it was never implemented.

Chapter 6 will describe the test results obtained with this system.
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Chapter 6 Dig Planning Results

During the last year of the project we executed over 1700 dig cycles in developing the dig plan-
ning system. This is equivalent to loading over 280 trucks, or moving approximately 4500 tons of
material. The purpose behind this experimentation was to extend the amount of time that the
machine could operate autonomously without any human intervention, and improving the produc-
tivity and efficiency of the excavation process.

Great strides were made in both of these areas during this time. This was due to the culmination of
a significant effort into improving the reliability of the hardware systems, improvements to the
robustness of the software, and finally improvements in the dig planner’s ability to manage the
erosion of the bench.

This chapter describes the achievements that were made in the area of extended operations. It will

also describe several experiments which compared the digging performance of the automated
machine with the performance of an expert human operator.
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6.1 Extended Operation Results

Extended operation experiments were conducted with the excavator testbed described in the first
chapter. The objective of these experiments was to extend the ability of the machine to dig contin-
uously without any assistance external to the testbed itself. Once the computers on board the
machine were initialized, the machine required no further assistance. The computers handled all
of the strategic decision making, and executed all of the machine’s actions such as digging, dump-
ing, and tracking.

Most of the development process was conducted on a bench in a contrived worksite that allowed
repeated experiments in a relatively non-variant environment. Some portion of the tracks always
rested on a concrete foundation to ensure the vehicle’s stability, and the material was homoge-
neous and easy to dig. However during the last two months of the project we moved the excavator
from our development bench to a remote worksite where the environment was much less struc-
tured. The material included boulders, old tires, and other inclusions which increased the level of
difficulty for digging. The purpose of moving to the remote site was to test our algorithms in a
more realistic environment, and to provide us with larger amounts of material so that the machine
could dig for longer periods of time without being interrupted.

Several modifications were required to the remote worksite in order for our system to function
properly. First we had to level the bench to improve the stability of the excavator and to minimize
the amount the machine tilted. Since the excavator was not equipped with a positioning system or
inclinometers, the contour of the floor that it digs is relative to the surface upon which the
machine sits. Large variations in the contour of the surface would cause large variations in the
floor. Additionally all of the vegetation such as tall weeds and bushes had to be removed initially
from the bench. Otherwise the vegetation would show up in the laser scans, and would not be dis-
tinguishable from the soil. This could cause large errors in modeling the digging process and esti-
mation of the soil-tool properties.

We also found that the material in the remote site was much dryer than the development site
resulting in large amounts of dust. This was a major problem because the laser sensors would
image the dust, and the planning system was not able to distinguish the cloud from the soil. Spe-
cial lasers which were better at seeing through the dust were used to help alleviate this problem
although it was not eliminated totally. So when the dust conditions were particularly bad, a pause

was added to the cycle after digging which allowed the dust clouds to settle prior to sensing the

terrain with the lasers. This would not be suitable in a product implementation and would need to

be rectified. Other sensing technologies such as high resolution radar or further advancements in
dust penetrating lasers may be the ultimate solution.

Since the focus of the work was on digging, we did not place any effort on optimizing the motions
between the dig face and the dump location. This technology was being developed concurrently
on the project and was not a consideration in our work. In fact to simplify the logistics of moving
the material, we did not load the material into trucks. The material was cast into spoil piles to the
side of the digging area.
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Extended Operation Results

In order to analyze the performance of the dig planning system during these extended runs, we
measured several quantities that are particularly important in the digging portion of the cycle.
Measured parameters included the amount of time that the bucket was in contact with the ground,
the weight of the material in the bucket after a dig, and the amount of energy that was expended
during digging. Note that these quantities are related to the values used in the dig planner for
determining the overall dig quality.

To measure the time that the bucket was in contact with the ground, we used a terrain map that
was generated prior to each dig. While digging, the position of the bucket tip was calculated using
the sensed resolver joint angles and forward kinematics. If the bucket tip position was below the
terrain elevation, then time was added accordingly. To calculate the energy of the dig, the dis-
placement of each cylinder multiplied by the cylinder pressure force was integrated over time.
The weight of the material was obtained by stopping the machine immediately after the digging
process, waiting for the pressure fluctuations to die down, and finally conducting a static analysis
on the linkage using cylinder pressures to determine weight.

Figure 55 shows the excavator working in the remote worksite during an extended run. The first
graphic shows the bench after 12 dig cycles and the second graphic shows the bench after 96
cycles. It can be observed that the machine has moved backwards several times and eroded a large
tract of material parallel to the tracks. The ground left behind is fairly level but would not be suit-
ably clean for trucks to traverse. A subsequent levelling operation would be necessary.
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Extended Operation Results

Table 3 shows a summary of three of the longest duration runs. Test #1 corresponded to a bench
that was approximately one meter higher than the others. This was the longest run with 114 dig

cycles and 3 backups. The best runs however corresponded to tests #2 and #3. The improved
results were due to reduction in dust levels, and improvements that were made in the planning

software. Tests #1 and #2 were halted due to malfunctioning hardware and software. Test #3 how-
ever had to be halted because the excavator completely eroded all of the removable material along
its path.

Table 3: Summary of the three longest extended runs. The number of digs and the number of times the
machine was tracked backwards is shown along with the average weight, time, and energy per dig cycle. Test 3
was halted because the bench was completely removed.

Test Number | Digs Backups Weight (N Time (s) Energy (kJ)
1 114 3 18917 10.2 225
2 109 5 22654 6.7 213
3 109 6 21300 7.6 252

Figure 56 shows the digging statistics corresponding to test #3. The plots depict the weight, time,
and energy recorded for the digs in the order in which they occurred. The time plot exhibits six
groupings of time larger than 10 seconds. These groupings correspond to the cleanup actions just
prior to tracking backwards. Note that the higher values of energy generally correlate to the
cleanup actions. Given that 25,000 N is approximately a full bucket of material, then 6% of the
buckets were less than half full, and 2% of the buckets were less than one third full.
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Comparison to Expert Human Operator

Another way to examine this data is to compare the statistics for the cleanup actions and the dig
actions. The comparison is shown in Table 4. This illustrates that the cleanup actions are
extremely inefficient in terms of time and energy. Further enhancements in the cleanup execution
algorithm could yield dramatic improvements in the autonomous system.

Table 4. Comparison of statistics for digging and cleanup actions for test #3. The average weight time and
energy is summarized for each action. The cleanup actions are much less effective.

Weight (N) Time (S) Energy (kJ)
Dig Actions 21201 5.8 212
Cleanup Actions 21590 12.8 366

6.2 Comparison to Expert Human Operator

Given that we can successfully run the machine autonomously for extended periods of time, we
must now examine how well the system performed. Our analysis will be based on the digging per-
formance of a human operator who is recognized as an expert in the earth moving industry. Addi-
tionally, it would be quite useful to understand the benefits of using perception based dig planning
in autonomous operation. For comparison purposes, we created a predefined excavation sequence
that could be used instead of planning the digging operations. In this method we predefined where
the machine should dig, always cleaned up the floor with a fixed pattern, and always tracked back
a given distance. In this section we will compare the digging performance of the expert human
operator to the automated system with the perception based dig planner, and to the automated sys-
tem with the predefined excavation sequence.

Again we will use the quantities of weight, time, and energy to make our comparisons. In order to
monitor the performance of the human expert, we took a laser scan before each dig cycle. This
allowed us to determine when the bucket entered and left the ground. We also paused after each
dig so that we could use the pressures in the cylinders to weigh the material in the bucket. During
the actual digging operation, the pressures and displacements of the cylinders were monitored so
that the energy could be calculated.

For autonomous operation without the use of a perception based dig planner, we needed to prede-
termine the excavation process. The dig locations were specified such that one set of implement
joint angles were used for all of the digs, and the swing angle was incremented from left to right
similar to the method used by the coarse dig location planner. After digging once in all of the
regions, a cleanup action was then executed in each region. The cleanup was initiated at the far
reach of the machine because without perception there is no means of knowing the distance to the
material. Finally the cleanup actions were followed by tracking the machine backwards a typical
distance selected by the perception based dig planner (1.3 meters), upon which the process started
over.
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We experimented with two methods for predefining the implement joint angles for initiating the
digs. The first method was to have a human operator specify the joint angles by manually placing
the bucket in a configuration that he thought would be generally favorable for all of the digs. The
results of this were so poor that the test was discontinued. The problem with this method could be
attributed to differences in how the human operator might dig and how Autodig behaves. The
human operator specified the location based on how he would execute the dig, even though per-
haps this was an unfavorable position for Autodig. The second method was to specify a set of joint
angles that was close to the median of the joint angles selected by the perception based dig plan-
ner. This is akin to having a ‘virtual expert’ specifying the predefined start positions. This method
seemed to work better, and will be used in the rest of this discussion.

Surely it would have been possible to modify these predetermined values allowing some improve-
ment in the performance of the machine. However once the terrain situation changed such as
increasing the height of the bench, then a new set of values would need to be found. Rather than
spend a lot of effort looking for the best combination for this particular terrain situation, the test
was intended to illustrate our best guess at reasonable values.

Table 5 shows a comparison of the digging statistics for the expert operator, the autonomous
machine with perception based dig planning, and the autonomous machine with a predefined
excavation sequence. The comparison was made over 41 dig cycles such that it was necessary to
track the machine backwards several times.

Table 5: Digging statistics comparing expert human operator to automated systems. The statistics correspond
to the average per cycle for 41 dig cycles.

Weight (N) Time (S) Energy (kJ)
Expert Operator 27412 7.9 350
Perception Based Planner 23992 7.5 272
Predefined Excavation Sequengce 19397 6.5 147

The first thing to notice is that the performance of the perception based dig planning system
appears to be better than the extended runs given in Table 3. This is due to a minor change in the
floor cleanup operation which was never tested in a longer sequence due to lack of time. The
change was to detect the floor during the first cleanup execution, and then to use this elevation for
all subsequent cleanups. Prior to this, the floor was detected on every cleanup operation. This
change caused the cleanup operations to attempt to dig deeper into the ground in some instances,
resulting in more material in the bucket. This change was not implemented for the predefined
excavation sequence.

From the table it is clear that the expert operator managed to capture more material in the bucket
on average than the autonomous systems. Thus the productivity of the expert is superior. If we
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Comparison to Expert Human Operator

assume that it would take 12 seconds to move between the dig and dump locations, then the pro-
ductivity can be estimated by:

weight

productivity [ 150+ tme

(26)

The productivity of the expert is approximately 12% higher than the perception based dig planner,
and 31% higher than the predefined excavation sequence. Since the perception based dig planner
used a different cleanup method than the predefined excavation sequence, it is only fair to com-
pare these two during the normal digging operations. During digging only, the average payload
for the perception based dig planner was 42% higher than the predefined excavation sequence.

Neglecting the energy required to move between the dig and the dump locations, the energy effi-
ciency can be calculated by:

energy efficiencyl S—\%%—%Bt/ @7)

Thus the perception based dig planner is 12% more efficient than the expert while the predefined
excavation sequence is 32% more efficient than the expert. This is an interesting result. There
appears to be a direct trade-off between productivity and energy efficiency.

Histograms of the measurements are shown in Figures 57 through 59. The distribution of weights
shown in Figure 57 illustrates that the variance of the bucket sizes for the predefined excavation
sequence is significantly larger than for either the expert operator or perception based dig planner.
In fact, when using the predefined sequence, we noted that initially the buckets were adequately
filled, but the bucket fill quickly deteriorated as testing progressed. Figure 60 shows the sequence
of weights obtained for the predefined excavation sequence and the perception based planner. The
bucket fill factor for the perception based dig planner is fairly constant whereas the weights for the
predefined sequence is rapidly decreasing.

One possible reason for this distribution is due to the changing shape of the terrain. Prior to begin-
ning the test, the bench was smoothed with the excavator bucket. Hence a full bucket was easily
obtainable. However as digging progressed the terrain undulations increased, making the choice
of the dig locations more critical. The perception based dig planner is able to consider the undula-
tions in the terrain when deciding where to dig and is thus able to maintain a high bucket fill factor
throughout the test.

The distribution of dig execution times shown in Figure 58 illustrates the impact of using a sepa-
rate cleanup operation. Note that the histograms for the perception based dig planner and the pre-
defined sequence both have basically two distributions. The distributions with the lower execution
times correspond to normal digging operations, whereas the higher execution times are due to the
cleanup operations. With the expert operator, these two functions that we have treated separately
are blended together. It is difficult to tell when the expert is cleaning the floor and when he is dig-
ging normally.
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Figure 59 shows the histograms of energy expended during digging. Again, the higher distribution

of energies for the perception based dig planner coincide with the cleanup operations. This result
is not as dramatic in the predefined excavation sequence because the cleanup operations were not
as effective. Again, the reason for this difference is the method used for cleaning the floor.

From this testing we can conclude that the perception based dig planning methodology has added
significant value in terms of productivity as compared to simply using “canned” data points in a
predefined excavation sequence. We have also shown that the perception based planning method
has enabled the automated system to approach the productivity of an expert human operator dur-
ing digging while exceeding energy efficiency levels. Further improvements could be gained in
the automated system by improving the cleanup operations.
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Figure 57:  Histograms comparing the weight of material captured. The variance of the weights is largef for the
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Chapter 7 Conclusions

There have been several advances made in this research related to improving the efficiency of dig-
ging, development of computationally tractable models for the excavation process, planning
locally optimal dig sequences subject to constraints, and combining planning methods to manage
the erosion of a bench for the sake of extended operations. This chapter summarizes the research
described in this thesis, describes some directions for future work, and lists the major accomplish-
ments.
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7.1 Summary

Chapter 1 introduced the Autonomous Loading System and described the truck loading process in
a mass excavation scenario. The overall operation of the automated system was described, includ-
ing the role of the perception based dig planner. Chapter 2 outlined previous research related to
automated dig execution, excavation modeling, and planning earthmoving operations.

Chapter 3 contained a discussion on the operation of the closed loop control law called Autodig,
which was utilized to control the machine during the excavation process. This control law allowed
the machine to quickly obtain a full bucket of material as long as Autodig was initiated where suf-
ficient material was available, and the control parameters were properly tuned. Prior to this
research, a human operator was required to adjust the control parameters. We identified that one
of the most important parameters that influenced the digging process was the stick angle at which
to end the dig. We implemented a perception augmentation to Autodig which automatically ended
the dig cycle when a desired amount of volume was swept by the bucket. In Chapter 5 we pro-
posed a means by which the hardness of the soil could be estimated, and used to automatically
tune the soil hardness parameters inside Autodig. Finally we added a position based enhancement
to Autodig which caused the bucket to track a level floor for cleaning operations.

Chapter 4 discussed the development of a computationally tractable forward model of the excava-
tion process. The purpose of this model was to provide a means for estimating the utility of a can-
didate machine configuration for initiating Autodig. This model consisted of a hydraulic actuator
model, a model of the soil reaction forces, and the actual Autodig algorithm. Since a large number
of candidate configurations are investigated prior to every dig, it was necessary to find a suitable
trade off between model accuracy and computational complexity. Thus for the hydraulic actuator
model, a combination of neural networks were used to predict the velocities of the cylinders given
the commands issued from Autodig and the forces acting on the machine.

The motion of the hydraulic cylinders dictates the position of the bucket in space, and thus the
bucket can be intersected with the terrain profile in order to estimate the resistive forces of the
soil. We investigated two different means for modeling the resistive forces. The first means was an
analytical model based on the Fundamental Earthmoving Equation in soil mechanics which was
modified to more adequately reflect the bench loading application. The second means was an
empirical model based on a linear combination of terms found in the analytical model. Since the

soil conditions can be quite diverse, we implemented a means for estimating the soil conditions
for both model types. Both models were capable of estimating the resistive forces with good accu-
racy. However extraction of the soil parameters for the empirical model required much less time.

Once the resistive forces on the bucket are predicted, the pressures in the hydraulic cylinders can
be estimated. These pressures are then used both as an input to the vehicle actuator model, and as
an input to Autodig. Autodig uses the pressures and the predicted position of the implements to
calculate the actuator commands. Model operation therefore consisted of initiating the model in
the candidate machine configuration, and then integrating the predictions forward in time to cal-
culate the trajectory. During this prediction several key statistics are compiled: the energy
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Future Work

required to dig, the time expended during digging, and the volume of material swept into the
bucket.

Chapter 5 discussed the implementation of the planning system for selecting where to dig. The
planning system consisted of three separate planning methods. This included an optimal dig loca-
tion planner, a cleanup planner, and a tracking planner.

The purpose of the optimal dig location planner was to find the optimal dig location relative to a
cost function and subject to kinematic and material shape constraints. This method consisted of a
two part planning process: a coarse and refined planner. The coarse planner divided the dig face
into separate regions, and the refined planner then searched for the optimal dig location within a
region. The use of a two part planning strategy reduced the search space for the refined planner,
and caused the material to be removed in an orderly fashion based on some overall material
removal strategy. The refined planner used the forward model of the excavation process to deter-
mine if a candidate dig would violate any material shape constraints (such as a level floor), and for
calculating a cost function based on time, energy, and volume. The refined planner selected the
dig which optimized this function.

A cleanup planner and a tracking planner were also implemented. The cleanup planner deter-
mined where a cleanup action should be initiated based on how far significant amounts of material
were located relative to the machine’s position. The tracking planner determined how far the
machine could be tracked backwards, and still be able to both reach the material and perceive the
material with the range sensors.

The planning and execution system was implemented on a 25 ton commercial excavator testbed in
a relatively unstructured work environment. Chapter 6 discussed how the system’s performance
was comparable to an expert human operator, and significantly better than a simple heuristic
based approach. It was also demonstrated that the machine could be operated for several hours at
a time without human assistance.

7.2 Future Work

Several opportunities exist for extending this work beyond what has been presented in this thesis.
First, the algorithms could be generalized to include other earthmoving machines. In [Singh 98]
we show how the coarse to refined planning process could be extended to a wheel loader. The
algorithm however used a heuristic approach for estimating the quality of a selected dig point
instead of modeling the digging process. Part of the reason for this was due to the lack of a testbed
for assessing the digging forces. Actual implementation on a machine would allow a comparison
between the heuristic and model based approaches. Furthermore it may be interesting to see how
this planning methodology could apply to a dramatically different machine such as a dozer.

It would also be beneficial to experiment with this system in a diverse set of soil conditions. Our

experiments were conducted in material that would be considered fairly easy to dig. Harder and
more heterogeneous materials such as blasted rock may prove to be difficult to model. Experi-
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ments in varied materials would also allow further exploration of automatically setting the Auto-
dig soil hardness index based on estimated soil-tool properties.

Finally, in Chapter 6 we showed that the cleanup operation severely degraded the performance
and efficiency of the automated machine. Further work could be conducted on improving this pro-
cess, or perhaps eliminating the process entirely through the use of an impedance based control.
The use of impedance control would allow the digging process to conform to a desired shape so
that the floor elevation could be maintained while removing the bulk of material. This appears to
be closer to the methodology used by an expert operator since it is difficult to distinguish when he
is digging versus cleaning the floor.

7.3 Major Accomplishments

There are four main accomplishments achieved through this research. First, we have augmented
the Autodig control algorithm with perception based enhancements for improving the consistency
of the digging process. Second, we have developed an excavation model that captures machine
dynamics, soil-tool interaction forces, and control system dynamics. The model has been proven
to be both reasonably accurate and computationally fast, and is capable of adapting to the charac-
teristics of the soil encountered at the work site. Third, we have developed a perception based
planning system which uses the model for managing the excavation of the bench. The planner
consists of a two part planning process for selecting optimal dig locations, and plans the cleanup
and tracking operations. Finally, we have implemented the automated excavation system on a
large commercial hydraulic excavator, and demonstrated that the system approaches the perfor-
mance of an expert human operator.

In a broader sense, we have proven that an automated earth moving machine can maintain high
levels of productivity and efficiency for extended periods of operation. Even though an expert
human operator may be able to exceed the capabilities of the automated machine for a brief period
of time, the automated machine can sustain these levels with limited interruption. Certainly there
exist many challenges ahead in making the system robust for commercial viability. However we
have shown that the automation of extended earthmoving tasks is technically achievable.
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Appendix Actuator Forces and
Bucket Forces

This appendix describes the mathematical relationships between the soil forces acting on the tip
of the bucket and the forces acting on the hydraulic actuators. Section A.1 covers the transforma-
tion of bucket forces to actuator forces. Section A.2 covers the transformation of actuator forces to
bucket forces.

A.1 Bucket Forces to Actuator Forces

Chapter 4 discussed how the soil-tool model predicts the forces acting on the bucket tip. These
forces must subsequently be converted into forces acting on the hydraulic actuators for use in the
actuator model. The following equation represents the force relationships in joint space [Craig
89].

.. N T

M is the inertia matrixy is a matrix containing the centripetal and Coriolis tef@s a vector
containing the torques on the joints due to gra¥itgya vector containing the forces and moments

on the buckety is a vector representing the torque on each jdiistthe Jacobian of the mecha-
nism, andj represents the joint angles. Assuming that the acceleration and velocity terms are neg-
ligible during digging, the equation reduces to:

T
1= (G+J f) .
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This equation shows that the torques on the joints can be calculated by knowing the torques on the
joints due to gravity, the Jacobian which is a function of the joint angles, and the forces. Since we
are only concerned about planar forces during digging, the force vector corresponds to
(FxwFzMy)', and the Jacobian corresponds to:

(=155 =13853=14S534) (=135,3-145p30) (H;4S534)

(=15C5=13Co3=14Co34) (=13Co3-14Co34) (H,4C234)

1 1 1

(A3)

wherel corresponds to joint lengtBandC correspond to the sine and cosine of the summation of
the joint angles indicated by the indices. The indices 2,3,and 4 correspond to the boom, stick, and
bucket respectively. The torques due to gravitation can be calculated by:

4
G =g Z li ;M cos; (%)
n=i

wherel;,, corresponds to the distance from joitd the center of gravity of link, m, corresponds

to the mass of link, andy, is the angle between linkand the center of gravity for link See
[Singh 95] for these derivations.

Given these equations, the torques on the boom, stick, and bucket joints can be calculated. These

torques must be subsequently converted into forces acting on the actuators. Figure A1 shows a
simplified drawing representing the boom and stick links.
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Bucket Forces to Actuator Forces

Figure A1l: Simplified drawing representing the boom and stick linksrresponds to the actuator lendtlis
the distance from the rotational joint to the base of the actaa®the distance from the joint to the end of the
actuatory is the included angle betwearandb, a is the angle between the link and the actuatorfaisdhe
force on the actuator. Note that the forces are oriented to cause a positive torque.

Distancesg; andb; are known from the linkage geometry, and the anglean be calculated by
knowing joint angles. Distancés may be calculated using the law of cosines:

_ 2.,2 O
Li— /\/%I +bi —2aibicosyiD (A5)

Again using the law of cosines and a trigonometric identity:

2
H)i [ i%
S L . 6
i (A6)
0

103



The force due to the torque is the torque divided by the moment arm. Therefore the actuator force
equation for the boom and stick is:

F. = (A7)

The equation for calculating the bucket actuator force is different because the actuator transmits
the force to the bucket through a four bar linkage. Figure A2 shows a simplified drawing of the
linkage.

Figure A2:  Simplified drawing representing the bucket linkage. The valesafespond to the lengths of the
members in the four bar mechanigmis known by the bucket joint angle, afRglis the actuator force.
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Bucket Forces to Actuator Forces

k1, 01, 3, ko, 0, Ly, andB, can be found through successive use of the law of cosines:

ky = A/(e4)2+(e1)2—2e4elcow4 (A8)

[(e3)? + (€)% (ky)?0

6., = acog3 (A9)
1 0 2eq8, 0
fe,)2+ (k)% -(e)%0  e))?+ (k- (ey)D
85 = acos3 [+ acog3 0 (A10)
0 2e2k1 0 0 2e1k1 0
ky = J(e1)2 + (e,)2 - 2e; 0,080, (A11)
_ de?r(kyP-(e)%n
o = acos3 -B (A12)
0 2€4k2 0
Ly = ,/(ky)?+ p? 2k, pcosa (n13)

(L2 +(e5)2-h2g
acos O (Al4)
0 2€3L4 0

5,
Now that the geometry is fixed, we are ready to calculate the forces. Note that there are two mem-
bers attached to the end of the actuator, and these are the members that transmit the force to the
bucket. Summing the forces at the end of the actuator in the directgn of
Fpt _Fe3C0562 + —Fezcos(el +8,) =0 (A15)
Summing the forces on the actuator in the direction perpendicufar to
Fe35in92 + Fezsin(e1 + 92) =0 (A16)
Combining the equations by eliminatifg:
Fy= Fez(cos(e1 +8,) —sin(6, +6,)cotb,) (A17)
Finally recognizing thafe, must resist the torque:

I ;
e, e, sinb,

(A18)

The equation for the torque on the bucket actuator becomes:

_ T4(cos(B, +6,) —sin(6, +6,)cotd,)
4= - (A19)
elslne3
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A.2 Actuator Forces to Bucket Forces

In order to extract the soil-tool properties from actuator pressure data, the actuator pressures must
be converted into soil forces at the bucket tip. This can be accomplished by inverting some of the
equations in A.1. First, the pressures must be converted into an actuator force by multiplying by
the cross sectional areas.

Fi = PitA1—Pi2Ai2 (A20)

wherePy is the pressure acting on ekdh actuatorn, Ay is cross sectional area corresponding to
endk of actuatoi, andF; is the actuator force.

These forces can then be converted to torques by inverting equations A7 and A19. For the boom
and bucket:

2
[Tl [ [ E
1. = F.a, 1_D—-------------E (A21)

where the variables are described in Figure Al. And for the bucket:

F4(e;sin6y)
*4 = (co(8, + 6,,) —sin(8, + B,)cotd,)

(A22)

where these variables are described in Figure A2, and the values calculated by equations A8
through Al4.

Now that the torques are known, the forces can be calculated by inverting equation A2. Note that
the Jacobian matrix is full rank and guaranteed to be invertible because the stick angle limit
ensures that there are no singularities.

f= J_T(T—G) (A23)
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