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Abstract— In this paper, we studytraffic demands in an IP
bacbkone,identify theroutesusedbythesedemands,andeval-
uatetraffic granularity levelsthat are attractive for improving
the poor load balancingthat our studyreveals.The dataused
in this studywas collectedat a major POP in a commercial
Tier-1 IP backbone. In the first part of this paper we asktwo
questions.What is the traffic demand betweena pair of POPs
in the backbone? How stable is this demand? We develop
a methodology that combinespacket-level tracesfrom access
links in the POPand BGP routing information to build com-
ponentsof POP-to-POP traffic matrices. Our analysisshows
that the geographic spreadof traffic acrossegressPOPsis far
from uniform. In addition, we find that the timeof daybehav-
iors for differentPOPsanddifferentaccesslinks alsoexhibit a
high degreeof heterogeneity. In the secondpart of this work,
we examinecommercial routing practicesto assesshow these
demandsareroutedthrough thebackbone.Wefind that traffic
betweena pair of POPsis engineeredto berestrictedto a few
pathsand that this contributesto widely varying link utiliza-
tion levels. The natural questionthat followsfrom thesefind-
ings is whetheror not thereis a betterwayto spreadthetraffic
acrossbackbone paths. We identify traffic aggregatesbased
on destinationaddressprefixesand find that this setof crite-
ria isolatesa few aggregatesthat accountfor an overwhelm-
ingly large portion of inter-POPtraffic. We demonstratethat
theseaggregatesexhibit stability throughout the day on per-
hour time scales,and thus form a natural basisfor splitting
traffic over multiple pathsto improve loadbalancing.

JorjetaJetcheva is currently at Carnegie Mellon University. This
work wasdonewhile shewasatSprintATL.

I . INTRODUCTION

Internetbackbonescontinueto grow at explosive rates,
fueled by thebandwidth demandsof new applications and
by theadventof faster accesstechnologies. To accomodate
suchgrowth while preserving the robustness of the net-
work, most IP backboneoperators have chosen a simple
approachto traffic engineering: overprovisioning. Over-
provisioning is the adopted approachbecause very littl e
informationexists today about the dynamicsof the traffic
in an IP backbone. This is primarily due to the lack of
measurementinfrastructure and techniques for collecting
andprocessingdatafrom backbones. To address this defi-
ciency, we study traffic tracescollectedat a Pointof Pres-
ence(POP)in a commercial Tier 1 IP backbonenetwork.
A passivemonitoring system is usedto collect packet-level
tracesonanumber of accesslinks within thePOP[1]. The
datais then analyzedoffline in orderto understand thedy-
namicsof traffic entering the backbone at this POP. We
describe a methodology for extracting information about
routingandtraffic flow within thebackbone. Thismethod-
ology forms the basisfor building components of POP-
to-POPlevel traffic matrices,which arekey to studying a
variety of traffic engineering androuting issues. Weinves-
tigatehow muchcanbe saidabout the traffix matrix just
from thedatacollectedat a single POP.

It hasbeenobserved([2], [3], [4]) thatobtaining infor-
mationabouttraffic patternsin bothtimeandspaceis criti-
cal for mosttraffic engineeringfunctions.Traffic engineer-
ing typically operateson long time-scalessuchasminutes,
hours, weeksor longer. Examplesof traffic engineering
functions include dimensioning, provisioning, route opti-
mization, whereto bestaddnew customerlinks, loadbal-
ancing policies,designing POParchitectures, andselect-
ing failover strategies. The particular application deter-



mines the level of information needed about traffic pat-
terns. SinceIP networks do not typically generate feed-
backstate information, traffic engineeringhasto rely on
traffic measurements[2]. It hasbeenobservedthatsimula-
tion datacannotprovidesubstitutes[5]. Thereforecollect-
ing traffic measurementsspanningmultiple hours in order
to build network-wide views of the traffic flows is central
to beingableto efficiently engineeranIP backbone.

A network-wide view is typically expressedin theform
of a traffic matrix ([6], [3], [7]). A variety of information
canbe represented in it. For example,the traffic volume
capturedin thematrix canrefer to any level of flow gran-
ularity. A traffic matrix alsohasan associated time gran-
ularity thatspecifiesthemeasurementinterval over which
bandwidth measurementswere averaged. The choice of
exactly whatis representedin thematrixdependsuponthe
traffic engineering taskto be performedwith this matrix.
In a POP-to-POPtraffic matrix the rows representingress
POPsandthe columnsrepresentegressPOPs. Sinceour
datawascollectedatasinglePOPin ournetwork, webuild
onerow of aPOP-to-POPtraffic matrix. Dueto thecostof
suchequipment,theenormousdifficulties involved in de-
ploying the equipment in commercial backbonesand the
scarceavailability of this backbonedata,eventhis compo-
nentof a traffix matrix constitutesa significant amountof
useful information.

We decomposeand study this data along a number
of different dimensions. The work in this paper can be
viewed asa search of answersto the foll owing questions,
eachof which logically follows from thenext. In thefirst
part we ask,what is the traffic demandbetweena pair of
POPs?How stable is thisdemand?Thetraffic matrixcom-
piled in this partonly describesthedemand or how much
traffic wantsto go from onePOPto another; it saysnoth-
ing abouthow thetraffic is routed.Thusin thesecond part
we ask,how arethesedemands routed in our commercial
backbone? Are link utilization levels similar throughout
the backbone?Our observations from thesetwo partsare
thattraffic is highly non-uniform in ageographicsenseyet
the ranking of POPs(in termsof volume) remainsfairly
stable in time;andthatfew routesareusedandlink utiliza-
tion levels vary widely throughout the backbone. These
findings motivatethe third partwhich asks,is therea bet-
ter way to spreadthetraffic acrossthepaths?And at what
level of granularity should this bedone?

For the first part, we proceed to study the partition of

traffic throughout the backbone as foll ows. We exam-
ine incoming traffic at a single POPat different levels of
granularity. First, we analyze the spatial characteristics
of POP-level traffic. We discover a large disparity in the
spatial distribution of the ingressPOP’s traffic acrossthe
egressPOPs.Second, we break up theingressPOP’s traf-
fic according to access link, andexaminethe spatial dis-
tribution of the traffic from specific typesof accesslinks
across the egress POPs. We find that the samedisparity
appears at this level of granularity. We compare the ac-
cesslinks andfind that they behave differently from one
another with respect to three metricsconsidered. For ex-
ample,we find thatonecannot isolate a single probability
distribution to characterizethe geographical fanout of the
traffic from access links. Wealsoexaminetime of daybe-
havior of the traffic at both the POP-level andaccesslink
level. Wefind thategressPOPscanberanked roughly into
threecategories (large, mediumand small) based on the
amountof traffic they receive from the ingress POP, and
that POPsgenerally remainin the samecategory through
the entire day. A stronger statementcan be madeabout
many of the POPs - if they are ranked by the volume of
traffic they receive,they maintaintheir ranking throughout
theday. Wealsofind thatatnight theoverall traffic loadis
reducedby only 15-50%dependingupon theaccess link.

For thesecond part of our work, we begin by checking
whether or not overprovisioning hasled to a disparateuse
of resourceson a network-wide basis. By examining both
SNMPdata,we do indeedfind that theamountsof excess
link capacitiesare inequitably distributed throughout our
backbone.We thenstudyIS-IS routing behaviorto under-
standhow IS-IS is engineered to influencepath selection,
andhow therouting impacts thelink utilizationlevels. We
find that thebackboneis carefully engineered usingIS-IS
weightsto restrict traffic between POPpairsto a few paths
eventhough many alternatepaths exist.

In the third part of our study, we return to our traffic
data to assess at what granularity level it is desirable to
do load balancing. We want to determine a traffic granu-
larity that definesa unit of flow (or stream) that could be
rerouted on an alternatepath. Having examined our data
at both the POP-level and the access-link-level, we now
study thedataatthegranularity level of destinationaddress
prefixes. We find that a small number of theseaggregate
streams,calledelephants, generatea large fraction of the
total traffic, while a large number of these streams,called



mice, generateasmallfraction of thetotal traffic. Theele-
phants and mice phenomenonhasbeenobserved before
in Internet traffic at the inter-AS level [4], at the level of
multipoint demandsfrom onerouter nodeto asetof router
nodes[3] andin theInternetasit wasmany yearsago[8].
Herewe demonstrate this phenomenonat the granularity
level of specific prefixes. We alsodemonstratethe stabil-
ity of theseaggregatesthroughout theday. Thestability of
theseelephantsmakesthemwell-suitedasabasis for rout-
ing traffic on alternatepathsandthus improving the load
balancein thebackbone.

Therestof thepaperis organizedasfollows. Our mea-
surement infrastructure is briefly presentedin SectionII.
SectionIII describesamethodologyfor building aPOP-to-
POPview of traffic flow acrossthebackbone, basedonob-
servationsat an ingressPOP. Our techniquemakesexten-
sive useof BGPandIS-IS routing information.Thespace
andtime characteristics of traffic at thePOP-level andthe
accesslink level areanalysedin SectionIV. In SectionV
we study IS-IS routing in order to understand how rout-
ing practices influencethe partition of traffic across the
backbone. In SectionVI we aggregate the traffic based
on destinationaddressprefixes, anddemonstratetheexis-
tenceof theelephantsandmicephenomenonat thisgranu-
larity level. We analyze propertiesof theseaggregatesand
discuss their application to load balancing. SectionVII
discussesrelated work, andSectionVIII discussessome
of the implications of our results andidentifies directions
for future work.

I I . MEASUREMENT INFRASTRUCTURE

Thedataused for this study wasgatheredfrom anoper-
ational IP backboneusing the passive monitoring infras-
tructure described in [1]. The backbone topology con-
sistsof asetof nodesknownasPoints-of-Presence(POPs)
connected together by high bandwidth backbone links.
EachPOPalsolocally connectscustomersthrough access
links, ranging from large corporatenetworks to regional
ISPsand webservers. Peering at a POPis provided ei-
ther through dedicatedlinks to another backbone(private
peering) or through public Network AccessPoints(NAPs).
EachPOPhasatwo-level hierarchical structure(Figure1).
At the lower level, customerlinks areconnectedto access
routers. Theseaccessrouters arein turn connectedto the
backbonerouters. The backbonerouters provide connec-
tivity to other POPsandto thepeers. Thebackbonelinks
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Fig. 1. MonitoredPOPLinks/Architectureof a POP

Link TraceLength TraceSize # Packets
(hours) (10

�
)

Peer1 16 51GB 853
Peer2 24 47GB 794

WebHost1 19 51GB 853
WebHost2 13 51GB 853
Tier 2 ISP 8 17GB 284

Fig. 2. Summary of Data
connectingthePOPsareoptical fiberswith bandwidthsof�����

Gbps(OC-48).They carry IP traffic usingthePacket-
over-SONET (POS)protocol. The exterior and interior
gateway protocols for the backboneareBorder Gateway
Protocol (BGP)andIS-IS respectively.

The infrastructure developed to monitor this network
consistsof passive monitoring systemsthatcollect packet
traces and routing information on the links located be-
tweenthe accessrouters andthe backbonerouters,or on
thepeering links. Themonitoring systemstapontothese-
lected link using optical splitters, andcollect the first ���
bytes of every packet on theselinks. Every packet record
is timestampedusing a GPSclock signal which provides
accurateandfine-grainedtiming information. The format
of thepacket record is asfollows.� GPStimestamp: 8 bytes� Sizeof record: 4 bytes� Sizeof POSframe: 4 bytes� HDLC header : 4 bytes� IP packet header : 44 bytes

BGP tables were downloaded from one router1 in the
POPonce perhour during thetime thepacket traceswere	

all routersin thePOPhave thesameview of BGProutes
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Fig. 3. Example of destination to egressPOPmapping

collected. In this study, we useddata from five access
links, collected on August 9, 2000, starting at 10:00am
US Pacific Standard Time (UTC-7). The arrows in Fig-
ure 1 indicatethe monitored links usedin this study. The
table in Figure2 providesa summaryof our traces. The
traces are of different lengths because packets were col-
lected until theharddisk in eachmonitoring system filled
up. Therefore heavily loaded links filled up thedisk faster
than lightly loaded links. We have collected many other
traces during AugustandSeptember 2000. Theresults in
this paper have been verified against one other day. We
presentthedatafrom asingledayto avoid overloading the
paper with excessive graphs.

I I I . METHODOLOGY

In this section we explain how we constructthe row of
our POP-to-POPtraffic matrix representing our backbone
traffic. This row in the traffic matrix corresponds to data
thatoriginatesat themonitored POP(i.e.,theingressPOP)
and leaves the network through each of the other egress
POPs(including itself). To do this, we needto mapeach
packet received at the monitored POP, to the egressPOP
throughwhich it leavesthenetwork. All backbonerouters
participate in theBGPprotocol andexchangeinformation
with eachotheraboutroutes learnedfrom routers external
to the network, calledexternal peers. This information is
kept in the BGP tableof eachrouter andcanbe usedto
determinethelastegressrouterfor eachpacket destination.
However, information on mapping an egress router to an
egress POPis not readily available andhasto be derived
from thevaluesof standardBGPattributes.

We startby illustrating with an examplethe methodol-
ogy we useto determine the egressPOPfor a packet en-
tering the backbone(Figure 3). Consider a packet with
a destination addressof 
 � 
 � 
 � 
 . Suppose that the BGP
table at the ingress router (7.7.7.7in the figure) for this

packet, identifies the destination subnet for this packet as

 � 
 � 
 ����
�� � . The BGP table entry at the ingress router,
which correspondsto this subnet containsa Next-Hopen-
try which is typically the address of the external BGP
peer from which a border router in our backbone first
learnedtherouteto thedestinationandinjectedit into the
I-BGP2mesh.This border router is in theegressrouterfor
destination 
 � 
 � 
 � 
 , since it is the router that packets for
subnet 
 � 
 � 
 ����
�� � needto go through in order to reachthe
external peerontheirwayto thedestinationnetwork. Sup-
posetheaddressof theborder router is

�������������
andthatthe

addressof the external peerrecorded in the Next-Hop en-
try in theBGPtable is � � � � � � � 3. TheBGPtable at 7.7.7.7
alsocontainsan entry for � � � � � � � (or the subnet contain-
ing it), whoseNext-Hop field identifies the addressof the
border router, i.e. theegressrouter for this packet. To find
theegressPOPfor thepacketdestination,weusetheBGP
CommunityId attribute which is anidentifier sharedby all
routers at a POP4 . This attribute is recordedin eachBGP
table entry and identifies the egressPOPfor all destina-
tions that mapto that entry. In our example, the Commu-
nity Id allows us to identify the POPto which the egress
router

�������������
belongs.

However, that aremany caseswhenthe CommunityId
attributefor a route is not set to an identifier that speci-
fies the egressPOP(due to internal policies)for the BGP
entry it belongsto. In suchcases, we extract theOrigina-
tor attributefor the route announcementto a given Next-
Hop. The Originator attribute value corresponds to the
addressof arouter in ourbackbone.In theaboveexample,
the router

�������������
would be the Originator for the route

to � � � � � � � . Querying the BGP table returns the Commu-
nity Id attributeassociatedwith theOriginator, andhence
the POPat which the Originator is located. This POPis
the egressPOPassociatedwith the Next-Hop that we are
interestedin ( � � � � � � � in our example).

Note that thereare a few cases, when BGP attributes

�
backboneroutersuseBGPto exchange informationaboutroutesto

externalnetworksandpoliciesinternalto thebackbone�
Typically a BGPtablewill containa numberof alternatepathsfor

a destinationsubnet. However we considerhereonly theroutechosen
asthe”best” or ”preferred” routebasedon BGPpoliciesandattribute
values.�

Thisinformationisnotavailablein responseto “show ip bgp”. How-
ever, knowing all possiblevaluesfor the communityid attribute, it is
possibleto usethe“show ip bgpcommunityx” commandto determine
theattributevaluefor eachroute.



fail to reveal thePOPname.In thesecases, we perform a
Traceroute to theNext-Hoprouter addressassociatedwith
the BGPentry for the packet destination. We canextract
the nameof the last hop routerwithin the backbonefrom
theoutput of Traceroute, andderivetheidentity of thePOP
from thename.Thenameof each routerataPOPcontains
a sub-string that is derived from the nameof the city in
which thePOPcontaining therouter is located (for exam-
ple, a router’s namein a POPin Miami would contain the
string mia).

The complete algorithm for determining the egress
POPsfor destination networks in the BGP table is omit-
teddueto spaceconstraints.

RecallthattheBGPtableswe usedwerecollectedonce
anhour, a time-scale on which they havebeenobservedto
be relatively stable [9]. The numberof unique Next-Hop
entries in eachtablewason theorderof a few thousands.
Of these, about98% wereresolved to egressPOPsusing
BGP attributes, and the rest were resolved using Tracer-
oute. Overall, morethan99%of thedestinationnetworks
in theBGPtableswereresolvedto egress POPsusingour
technique.

Oncewe obtain a mapping of destination networks to
egress POPs,we canapply it to thepacket tracesto deter-
mine the traffic flowing from the monitoredPOPto each
other POP. This task is analogous to the problem of per-
forming lookupson packetsarriving at a router to deter-
mine the egressport. For this purpose,we usedthe IP
lookup technique described in [10]. This technique uses
an LC trie-basedlongestprefix matchanda softwareim-
plementationis publicly available5. Wemodifiedthis soft-
ware to perform a longest prefix matchon packets in a
traceusing our destination-to-POPmap. The output con-
sistsof per-egress-POPpacket traces.Thesecanbefurther
analyzed to understand the dynamics of traffic between
any two POPsin the network. We have developed tools
to subdivide the traffic betweentwo POPsbasedon vari-
ouscriteria suchprotocol number, destinationprefix, etc.
Toolshave alsobeendesignedandimplemented,to study
thevariation of traffic on differenttimescales.Theseanal-
ysistoolswereusedto computeall of theresultspresented
in this paper.

�
http://www.nada.kth.se/snilsson/public/soft.html.

IV. TRAFFIC IN SPACE AND TIME

A. Geographic Spread

We look at the geographical spread of traffic demands
across egress POPs,or fanout, first at the POP-level and
thenonanaccess-link level. Sincemostof our tracesspan
from 13 to 24 hourseach(depending upon the link), we
arealso able to study the time of day behavior for these
demands. Our goal in this section is to classify the basic
behaviorswe observe into a few categories,andto under-
standthe range of behaviors that canoccur. We arealso
interestedin comparing differenttypesof accesslinks and
different egress POPsto seeif andwherecommonalities
lie.

First we consider the traffic demands on all five access
links together asone input stream. Note that this consti-
tutesa significant portion of the input traffic at our moni-
toredPOP. Giventhevarietyof accesslinkschosen, this is
alsohighly representative of thetotal input traffic entering
the POP. The monitored POPis henceforth refered to as
the ingress POP.

We usethemethodology described in theprevioussec-
tion to classify all the packets in a traceby their egress
POPs.Wethendeterminethetotalnumber of bytesheaded
towardseachegressPOPusing thepacket length informa-
tion in the IP headerof eachpacket record. This givesus
the fanout of traffic demands by volume (Figure 4). The
values presentedin this figure arebandwidth values that
wereaveragedover theduration of theentire tracefor ev-
ery link. This fanout constitutesthe row on our POP-to-
POPtraffic matrix.

For thepurposesof display wehaveorganizedthePOPs
into 3 groups: the west,midwestandeastregions of the
United States.The monitored POPis located in the west
coast of theUS.For proprietaryreasonsthePOPsareonly
identified with numbers. Within eachof the3 regionsthe
ordering is arbitraryanddoesnothaveany geographicsig-
nifigance.

We observe that there are two POPsthat are clearly
dominant, and receive a large amountof traffic (over 35
Mbps). Among the remaining POPs about half receive
quite a small amountof traffic (under 5 Mbps) and the
other half receive a moderate amount of traffic (10-20
Mbps). Our data suggests that ingres POPscould be
roughly categorizedaslarge, mediumandsmall, where(i)
roughly the samenumber of POPsfall into the small and
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mediumcategoriesandonly a few fall into the large cat-
egory; and(ii) eachcategory carriesapproximately twice
the volumeof the category below it. This simplecharac-
terization will prove useful in our interpretation of other
databelow. (We will discussthestability of thesecharac-
teristics in thenext subsection.)

Often in simulation environments, researchers assume
a traffic matrix. In the past,in absenceof data,the most
commonmodelis,givenasource,pick adestination atran-
dom according to a uniform distribution. This histogram
reveals that such an approachdoesnot at all matchInter-
net behavior. Moreover, thinking about how the Internet
is designed,it is easyto understandwhy we seethis non-
uniformbehavior. First,onewouldexpectthat somePOPs
would sink higher traffic demands than others becauseof
their geographic location. For example,dominant POPs
are expected to be located on the two coasts of United
Statesbecausethis is typically whereinternational trunks
terminate,andbecausethe coastsaremoreheavily popu-
latedthanthe center of thecountry. Secondly, onewould
expect this distribution to exhibit a significant degreeof
variation. The volume of traffic an egressPOPreceives
(from other ingressPOPs)depends upona large number
of factors, suchasthenumberandtype,of customersand
serversattachedto it. Similarly, the amount of traffic an
ingressPOPgeneratescanalsovary enormously depend-
ing upon the numberandtype, of customersandservers,
on its access links. Thuswe expecttheinter-POPflows to
vary dramatically from one to another, and to depend on

the(ingressPOP, egressPOP)pair.
Note that for thepurposesof bandwidth prediction, the

(ingressPOP, egress POP)pair might representa level of
granularity that is too coarse for accurate traffic estima-
tion. It is natural to hypothesize that theaccess links at the
ingressPOPmay differ from oneanother, andmayaffect
thetraffic flowing to eachegressPOPdifferently. Wethus
next consider the fanout of traffic at the ingressPOPon a
per-access-link-typebasis. Tocomparetheselinkswecon-
sideredthreemetrics: (i) thetotalvolumeof traffic perlink
(summingacrossall egress POPs); (ii) the max/minratio
of theaveragebandwidth headedtowards anegressPOP6

and(iii) thedistribution amongtheegressPOPs.Thetotal
volume andmax/minratios aregiven in Table I. We see
that the accesslinks differ from oneanother with respect
to thesesimplemeasuresthatspana rangeof values.

Figure5 demonstrates that the roughcategorization we
applied to egress POPsat the POP-level (i.e., the large,
mediumandsmallcategories)continuesto holdatthelevel
of input accesslink type. (Thesameis truefor thepeering
links, however we exclude thefanout plot dueto space re-
strictions.) In otherwords, a very smallnumber(between
1-3) of POPsreceive a large amount of traffic andtherest
of thePOPsareevenlysplit betweenthemediumandsmall
categories. To compare thefan-out of thedifferent access

�
In computing themax/minratiowe ignoredthethreesmallestPOPs

for a given accesslink becausetherewere typically a few POPsthat
receive anegligible amount of traffic andthiscreatesratiosthatarenot
representative.



Ingress peer peer ISP webhost webhost
Link #1 #2 #1 #2

volume 40 22 32 50 70
(Mbps)
max/min 13 50 13 35 63

TABLE I
COMPARISON OF ACCESS L INKS
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Fig. 6. Probability densityof POPfanout peraccesslink type

links numerically, we normalize and convert the fan-out
informationperlink into aprobability distribution. Let �����
denote the averagebandwidth that access link � sends to
POP� during oneday. For a given link � , the probability
thata byteof datachosenat random getssentto POP� is
givenby ����� ��!#"$�%��� 
'& � �(��� . Thedensity curvesfor each
of the five links is given in Figure6. The ordering of the
POPshereis differentthanin thepreviousgraphs,andthus
it no longerrepresents aneast/midwest/westorganization.
This ordering wasselectedto try to isolate a pattern.

To facilitate the discussion, we usethe term popular-
ity of a POPto refer to the likelihood that a byte of data
from aningressaccess link will besentto thategressPOP.
On theonehand,we seea few similaritiesamongthefive
links. Thefirst two POPsarethe mostpopular amongall
theaccesslinks. POPs#11-16 arefairly unpopular for all
links. For all other POPs, the popularity ordering jumps
around quite a bit for eachlink. For example, the likeli-
hood that a packet on a givenlink will choosePOP#4 can

vary from 0.02to 0.17. This graph indicatesthat POP#3
is mostlikely to be chosen by our ISP link, POPs#4 and
#5 aremost likely to be chosen by the peer 2 link, POPs
#6 and#7 aremostlikely to bechosenby thepeer1 link,
and #8 and #9 by the second web host link. In general,
for POP’s #3-#10, thelikelihoodof beingchosen canvary
about 10%. We believe that these differences aresubstan-
tial andthat the fanouts from the different links aresuffi-
ciently differentsothatonecannot concludethatthereis a
single underlying distribution thatrepresentsall theaccess
links. Notethat thecategorization of egressPOPsaccord-
ing to large/medium/smallis thesamefor differentaccess
links. The access links differ in their geographic spread
primarily in how they distribute traffic amongthemedium
sizedPOPs.

We thus infer that when studying traffic demandsfor
loadbalancing,andmoregenerally, whendesigningband-
width predictors for traffic engineering, the pair (ingress
POPaccess link type, egressPOP)should be explicitly
accountedfor rather thansimply using the (ingressPOP,
egressPOP) pair.

From this section, we conclude that in termsof geo-
graphic distribution there is a large disparity amongthe
traffic sentto the egressPOPsfrom a single ingressPOP,
and that the access links differ from one another signif-
icantly according to three different metrics. The excep-
tion is for the two web hostaccess links; however, these
two links carry traffic from the sameclient, which rein-
forces our notion that links generatedifferent traffic de-
mandsbased on their types.

B. Timeof Day Behavior

In the previous section, the fanouts we examinedwere
computed basedon day-long averages.In order to exam-
ine the consistency of the fanout throughout the day, we
look at inter-POPflowson anhourly basis.In Figure7 we
consider just four of our input links (becausethe 5th has
too few hours) andexamine the behavior throughout the
dayof threerepresentativePOPs,onein thelargecategory,
onein themediumandonein thesmall.First,we observe
that the large POPis the most volatile, that the medium
POPexperiences a long slow small decline, and that the
small POPremains fairly stable. We examined a num-
berof other POPsandfoundthis behaviorto beconsistent
of POPswithin their respective categories. Second,we
observe that during the day the distinction betweenlarge,
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Fig. 7. POP-level Timeof Day

trace peer peer webhost webhost
#1 #2 #1 #2

% reduction 30% 30% 50% 16%

TABLE II
NIGHT VS. DAY TRAFFIC

mediumandsmallremains,whereas at night thelarge and
mediumPOPsbecomelessdistinguishable.

Figure 7 indicatesthat somePOPsdo not experience
muchdecreasein traffic volumeatnight, while others(par-
ticularly thosein the large category) do. Whenwe con-
sideredtraffic volumebetween
 �

AM to ) PM (daytime)
and ) PM to ) AM (nightime)separately, wefound thatthe
nighttime peaktraffic is about � �

Mbps,about half of the
daytimepeak. Theaveragepercent reduction onaper-link
basisis shown in TableII. Thetableindicatesthattheaver-
agevolumeof night time traffic is anywhere from 15-50%
lessthan the average volume of day time traffic. This is
surprising sinceit is counter to thewidely heldbelief that
traffic in the backbonereducesby a few factors at night.
Thismayarisefrom anincreasein international traffic and
night-time backup activities.

We now examinetime of day behavior (Figures 8-11)
at the accesslink level to examine the variationsand if
our previous observationshold at the accesslink level as
well. In order to comparedifferent access links, we pro-
vide a separatefigurefor eachof four accesslinks (identi-
fiedin thefigurecaption). For eachaccesslink, weplot the
hourly bandwidth averagesfor six different POPs, hence

eachcurve corresponds to a single egress POP. Someof
the curves on thesegraphs exhibit a sharpdrop around
2:00am. This is dueto maintenanceactivitiesat the POP.
Fromthesefour plots we observe thefollowing:� A number of POPshave traffic that remains fairly
constantthroughouttheday.� A number of POPsexperiencea long slow declineof
loading throughout theday.� ThemostpopularPOPsareusually themostvolatile.� If wewereto rankthePOPsby volumereceived,then
mostof thePOPs (excepting thefew large ones) maintain
their rankthroughouttheday.� POPscan experiencean increaseat night (seeFig-
ure10 and11).

Theseobservations are interesting in that they reveal
counter-intuitive things about busy periods. Our experi-
encefrom telephonenetworks leadsusto expect peakpe-
riod behaviors in time-of-day plots. Thesefiguresreveal
thatsomePOPsdo not experienceany busy periods,some
POPsexperienceonebusy period, andothers canexperi-
encetwo.

Weseethat thecategorythatanegressPOPfalls into can
depend uponthe access link. For example,consider POP
#13. On the two peering links, this POPis a small one.
On the two web hosting links, it would be considereda
mediumone. This indicatesthatthefraction of traffic than
an egressPOPdraws from an ingressPOPdependsupon
the numberandtype of input access links. An alternative
way to seethis is given in Figures12 and 13. In these
plots we compare the traffic destined for a single egress
POPoriginatingfrom eachof theaccess links. This illus-
tratesthatanegressPOP’sbehavior candiffer dramatically
dependingupon whichaccess link onaningressPOPit re-
ceivestraffic from. For someaccesslinks, anegress POP
receivesaroughly constantamount of traffic while for oth-
ersits traffic experiencespeaksanddipsover thecourseof
theday. Thustheincoming traffic on anegressPOPis di-
rectly dependentupon thetypeof accesslink at theingress
POP.

V. OBSERVATIONS ABOUT IS-IS ROUTING IN THE

BACKBONE

In theprevioussection weexaminedpropertiesof traffic
demands, i.e. how muchtraffic wantsto go from oneend
of our network to another end. This saysnothing about
how thatdemandis routed through our network. Theinte-
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Fig. 9. Peer2
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Fig. 10. WebHostLink #1
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rior gatewayprotocolused for routing traffic in abackbone
hasa directeffect on link loadlevels.We have studiedthe
configuration of IS-IS, the internal gateway protocol used
in ourbackbone,andhavereachedafew conclusionsabout
currentrouting practices. Currently, theIS-IS link weights
are handcrafted by network operations experts suchthat
(i) the weightsare chosen such that traffic betweenany
ingress-egressPOPpair is restricted to only a few paths
throughthebackbone;and(ii) the intra-POPlink weights
canheavilyinfluencethepathchosen to traversetheback-
bone. While this approachhascertain advantagessuch
as easeof management, it may drive up link util ization
levels on paths between POPs when the inter-POPtraf-
fic demands areheavy. In particular, we have found that
for someheavy demand POP-pairs,a numberof alternate
paths exist, but many of them areunderutilized, while a
few have high util ization levels.

To get a better senseof the joint impact of the traffic
demand andthe routing on link utili zationlevels, we col-
lected SNMP dataon link load levels from all the back-
bone links in our network. Figure14providesa histogram
of this data, averaged over an entire day. We find that
the majority of the links have an average utili zation un-
der25%,andthat the link utilization levelscanvary from
3% to 60%. This histogramreveals (i) the extent of link
underutilizationand(ii) the extent of the disparity in the
utili zationlevelsof thebackbonelinks.

It is clearfrom thesefindings, combinedwith our find-
ings from SectionIV, that betterload balancing schemes
areneededin thenetwork. Therearedifferentapproaches

to load balancing. Enforcing a change in load balanc-
ing via the IS-IS routing protocol hasdifficulties. IS-IS
doesnot have the capability to balance traffic across all
of thesepaths unlessthey all have exactly the samecost.
Currently, the IS-IS weightsare handcrafted by network
operationsexperts. Moreover altering IS-IS weights has
potential repercussionson theentirebackbone. We there-
foresearch for amorepolicy-based approachtowards load
balancing.

Clearly, in order to usesomeof the underutili zedlinks
andpaths,a loadbalancing schemewould have to deviate
from using shortest hop paths. It is important to ensure
that significant delaysarenot introducedto traffic that is
reroutedon longerpaths. Webelievethatthiswill nothap-
penfor two reasons.First, thebackboneis highly meshed,
and thus most alternatepaths between an ingress-egress
POPpair arelikely to beonly oneor two hopslonger than
themin-hop path. Second, [1] shows that theaveragede-
lay acrossroutersin thebackboneis on theorder of a few
milliseconds. Therefore, theadditional delaythata packet
will incur by traversinga few moreroutersis likely to be
within acceptablelimits.

VI. TRAFFIC AGGREGATES FOR LOAD BALANCING

In orderto realize effective loadbalancing in theback-
bone, it is necessaryto understand how traffic should be
split over multiple alternatepaths. In this section, we ad-
dressthis issue by examining techniquesfor creating ag-
gregatetraffic streamsbetween(ingresslink, egressPOP)
pairs. The aggregation of packets into streams can be
based on a varietyof criteria andcanleadto streamswith
different levels of granularity. At the coarsest level, we
canaggregateall the packets into a single stream.On the
other hand, usingtheclassic five-tuple of (sourceaddress,
destination address,sourceport,destinationport,protocol)
leadsto very fine-grained streams.The criteria usedfor
creating traffic aggregatesdepends largely on thepurpose
of suchaggregation.For example,whenthegoalis to pro-
vide different levelsof service to different typesof traffic,
packetsmaybeaggregatedbasedon the(TOS)field or the
protocol field in the packet IP header. Sincewe areinter-
estedin the routing of theseaggregatestreams across the
backbone,it is natural to considerthe destination address
of packetsas the basis for aggregation. Moreover routes
are determined according the destination subnets (as ad-
vertisedthroughBGP),eachof which is anaggregateover



a rangeof IP addrreses. Subnetsin turn canbe grouped
on the basisof IP address prefixes. Therefore we con-
sider destination addressprefixes of different lengths as
the basisfor aggregatingPOP-to-POPtraffic. For exam-
ple, streamsmay becreated basedon an * -bit destination
addressprefix, in which caseall packetssharing thesame
first octetvalue for their IP addressbelong to onestream.
We shallhenceforth refer to such a streamasa +,* stream.
In general, whenan - -bit prefix is usedfor aggregation,
we referto theaggregatestreamasa +.- stream.

Aggregate traffic streams thus created would be as-
signed to different paths in order to balancethe network
load. Before adopting this approach to load balancing,
we needto examineproperties of these aggregatessuch
astheir traffic volumeandtheir stability over the time in-
tervalfor which suchloadbalancingwould becarried out.

We first consider +,* streamsandrank themin decreas-
ing order of traffic volume(sothatstream#1is thelargest).
Figure 15 showsthe cumulative percentageof traffic of
+,* streamsfrom theprivatepeeraccess link andtheweb-
host accesslink 
 , respectively. For this access link, the
traffic demandto three of the busiest egressPOPsis pre-
sented. We seethat for every egress POPpair, a few of
thetop-rankedflows account for anoverwhelmingly large
share of traffic. We have observed that this phenomenon
is widespreadacross mostother (ingressPOPaccesslink,
egress POP) pairs. This brings us to an important result
- the existenceof a few very high-volumetraffic streams,
andmany low-volumetraffic streamsin thebackbone. We
refer to the former aselephantsandto the latter asmice.
As mentionedin Section I, thephenomenonof “elephants
andmice” hasbeenreported at othergranularity levels in
other traffic studies [4], [3], [8]. Herewe demonstratethe
existenceof elephantsandmice at specific IP destination
addressprefix levels in a commercial IP backbone.

The existence of elephantshasimportant implications
for traffic engineering in general, namelythat in order to
realizemostof thebenefits, we canfocusprimarily on en-
gineering thenetwork for theelephants. Many of the dif-
ficulties in providing quality of service in the Internet to-
day stemfrom scalability issues. One cannot exert fine
grainedcontrol becauseof scalability problemsthat arise
with keeping too much stateinformation. The elephants
andmicephenomemmeansthatonecantry to exert more
careful control on the elephantsandthat coarsecontrol is
sufficient for the mice. Although this hasbeenobserved

before, we arenot aware of any concretesuggestions or
examplesof usingthis traffic behavior to influencecontrol.
Elephantsstreamsprovidea basisfor loadbalancing since
oncetheelephantsareidentified, they canbereroutedover
underutili zed portions of the network. The criterion for
identifying the elephants– destination addressprefix – is
simpleenough for usein practice without new andcom-
plex protocols.

For simplicity of implementation, it is attractive to have
a load balancing policy that is applicableover long time
scales,suchasa few hours, or evenpotentially throughout
the day-time. Of course,our approachof load balancing
via rerouting elephants, cannot beapplied unless therank-
ing of elephantsand mice remainsfairly stable on these
timescales. Figure 16 show the time-of-day variation of
bandwidth for someof the elephants andmice to a busy
POPfrom webhost1 access link. In the graph, the one-
houraverage of thebandwidthsof these streamsis plotted
against time for 
/* hours. Wefind thatthroughout this pe-
riod, the elephantsretain a large share of the bandwidth,
and that they maintain their relative ordering. In other
words,theelephantsremainelephantsandthemiceremain
mice. We have verified this behaviour for a large number
of ingress-egressPOPpairs. This resultencouragesus to
focus our attention on just a few streamsin the backbone
for thepurposesof loadbalancing.

Interestingly, we discover that the phenomenonof ele-
phants andmice is recursive. In other words, if we con-
sider a +,* elephant stream, and then further subdivideit
into sub-streams basedon say a 
/) bit prefix, then we
find elephantsandmiceagainamongthesesubstreams.In
Figure17 we consider the threelargest elephantsto each
of thePOPs� and 
 �

for thepeer1 access link, subdivide
eachinto +0
/) streams,rank them,andplot thecumulative
volume for the ordered streams. Thuseachcurve in Fig-
ure 17 corresponds to the +0
/) substreamsfrom a single
+,* streamfor a given POP. We find that 
 �

of the largest
flows account for * ��1

or moreof thebandwidth in every
case.As with the +2* streams,these +3
/) elephantsandmice
exhibit stable behaviorover many hours(figuresomitted
due to space considerations), even though the bandwidth
of someof theelephantsdecreasessubstantially at night.

We further examinethis recursive behaviour by taking
someof the +3
/) streamsfrom the previous stepand di-
viding theminto substreamsbased on a

� � -bit prefix. We
find that although the elephants and mice phenomenon
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Fig. 15. Distribution of traffic acrossp8 streamsfor Web-
hostaccesslink 1

10:00 14:00 18:00 22:00 2:00 6:00
0

1

2

3

4

5

6

Time of Day (Hour) − PST

B
an

dw
id

th
 (

M
bp

s)

stream 1
stream 2
stream 3
stream 4
stream 5
stream 6

Fig. 16. Time of dayvariations for p8 elephants andmice
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Fig. 17. Distribution of traffic acrossp16streamsfor peer
1 accesslink
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Fig. 18. Distribution of traffic acrossp24streamsfor peer
1 accesslink

still exists, it becomeslesspronouncedastraffic becomes
somewhatmoreuniformly distributed acrossstreams(Fig-
ure 18). Although we investigate1, 2 and3 byte masks,
there is no particular association with ClassA, B and C
addressesthat have becomelessmeaningful with the ad-
vent of CIDR. In fact, we expect that this phenomenon
will manifest itself at other prefix levelsaswell, certainly
thosebetween 8-24, but probably lesssoatprefixeslonger
than24.

A different way of studying the stability of elephants
and mice is to look at the frequency and size of rank

changesat a given prefix level. Suppose that we divide
time into equal-sizedslots andcompute theaverageband-
width for all the streams in eachtime slot. We can then
rank the streamsaccording to bandwidths and examine
the change in rank of streams from one time slot to an-
other. More precisely, let 4#���650! be the rank of flow � in
time slot 5 , where 57"8
�9 � 9;:;:;:<9=- and �>"?
�9 � 9;:;:;:<9%@ .
Let us define A��6�=9�5'9%BC!D"FE 4G�=�650!IHJ4I���65LKMBC!;E , where

ONPBQNR�S-?HT50! . For agivenvalueof B , weexaminethe
probability distribution for A��U: 9;: 9%BC! .

Figure 19 applies this technique for +,* traffic streams
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 �
. The results show that most of the rank changes are

small – in fact, rank changesof size
�

or lessaccount for
about X ��1

of thechanges.Moreover, this is true for rank
changesoverdifferenttime intervalsranging from � �

min-
utesto fivehours. Besidestheobviousimplication for load
balancing, this result hasa powerful implication for build-
ing traffic matrices. It providesa direction for predicting
the rank of a stream at a future time based on the current
rank. Development of suchprediction techniquesrequires
extensiveanalysisandsophisticatedstatisticalmodels,and
is beyondthescopeof thecurrentpaper.

This distribution contains all the elephants and mice
mixedtogether. To isolatetherankchangebehavior of the
elephantsalone,we checkedtheranking of particular ele-
phantsover entire traces. Wefoundthat70%of thetop 15
elephantsremainamongthetop15streamsthroughoutthe
day. We verifiedthis behavior for a numberof p8 streams
anda number of egress POPs.

In summary, we demonstrate the existence of the ele-
phantsandmicephenomenonat thegranularity of +2* , +3
/)
and + � � prefixes. We show that this phenomenonis re-
cursive in that elephantsthemselvesarecomposedof ele-
phantsandmiceata lowergranularity level. Weverify the
stability of theranking of streamsafew ways:by examing
thetime-of-daybehavior, by calculating thedensity on the

changeof rankprocessovermultiple timeintervals,andby
examining the top elephantsandtheir ranking throughout
theday. Our results indicatethere exist natural andsimple
aggregates,basedonp8andp16aggregates,thatconstitute
a large fraction of traffic and that remainstable through-
out the day. Many of today’s routers provide the capabil-
ity to do per-prefix loadbalancingover equal/unequal cost
links (e.g.,Cisco’s ExpressForwarding). Load balancing
at the traffic granularity that we identify here canbe im-
plementedby extending this capability.

VII . RELATED WORK

Starting with pioneering work by Paxson ([11],
[12]), network measurement andmonitoring hasreceived
widespreadattention from Internet researchers andprac-
titioners ([13], [3], [14], [4]). However, much of this
work reliesondatacollectedatpublic peeringpoints,edge
routers andfrom academicnetworks. Our work is unique
in that the analysis is based on traces and routing tables
collectedfrom a operational IP backbone. In this respect,
our papercomesclosest to the work in ([2], [3]). In [2]
Grossglauseret. al. proposea methodfor following the
trajectories of a subset of the packets flowing through a
backbonenetwork. Themethodis basedon usinga single
hashfunction, basedon packet content, at multiple nodes
in the network. It hasdirect applicability to the problem
of determining traffic demandson differentpaths through



a network.
Internet measurement datacanbe broadly dividedinto

routing data andtraffic data. The former consistsof data
about routing protocols and their behaviour. Enormous
amounts of suchdatahasbeencollectedandanalysedto
understand the behaviourof large-scale routing in the In-
ternet ([9], [13], [11], [14]). Traffic data, consisting of
packet traces, is not as widely available, especially from
operational backbones.However, both traffic androuting
dataareneed to construct traffic matrices.Theuseof traf-
fic matrices asa systematic way of representing andana-
lyzing Internet traffic hasbeen gaining attention recently
([3], [15], [7]), and[3] is an important recent work in this
area. Thereare strong similarities in the overall goal of
the work in [3] andour work – collectingandprocessing
datafrom anoperational backbonein order to understand
traffic demandsandimprove traffic engineering. However
our work differs from [3] in a numberof ways. First,
[3] uses datafrom peering links at different points in the
backboneto constructpoint-to-multipoint traffic demands
acrossthesepeering links. Thesetraffic demandscomprise
only of the transit traffic through their backbone. On the
other hand, we collect data from a diverseset of access
links (peering, web-hosting, ISPs,etc.) in our backbone,
andstudythegeographicspreadof this traffic over theen-
tire backbone. As we showedin this paper, thespatial and
temporal characteristicsof traffic dependson the type of
originating accesslink; this makes it important to study
traffic from different types of accesslinks. Secondly, [3]
seeks to build a traffic matrix representing multipoint de-
mandsfrom onerouter to a setof egressrouternodes; this
capturesall thealternateegresspointsto adestination net-
work beyond thebackbone. In our backbone, I-BGP poli-
ciesareusedto pick oneof many egress points to a des-
tination network at any given time. We are interestedin
studying internal routing andtraffic behaviour, given that
this egresspoint hasalready beendetermined by I-BGP.
Hencewe focus only on point-to-point POP-level flows.
Thesedifferencesnotwithstanding, bothour work and[3]
representimportant first efforts in understandingbackbone
traffic demands.

VII I . CONCLUSIONS

In this paper, we used packet-level traces collectedat
a large POP of a tier-1 IP backbone to understand the
dynamicsof ingresstraffic at a backbone POP. In order

to study geographical andtemporal propertiesof POP-to-
POPtraffic, we introduced a methodology for combining
our datawith BGP information to classify the incoming
traffic according to egress POPs. We found that thereis a
wide disparity in thevolumeof traffic headed towardsdif-
ferent egressPOPs.We analyzedthe traffic at threegran-
ularity levels,thePOPlevel, theaccesslink level, andthe
destination prefix level. A contribution wasto demonstrate
different types of temporal stability for eachof theseon
long time scales.

Wealsoexamined ournetwork to seehow thetraffic de-
mandsarerouted throughthebackbone.Wefound thatthe
POPtopology andIS-IS link weightsarecarefully chosen
to constrain traffic between mostingress-egressPOPpairs
to a few paths across the backbone. Thecombinedeffect
of suchrouting practicesandoverprovisioning meansthat
there is a lot of excesscapacity in the core that results
in (i) underutilized links, (ii) a wide rangeof link levels
within the underutilized range, and(iii) somelinks being
consistenly underutilized. Our findings on the disparate
geographic spreadof traffic demands combined with cur-
rentrouting practicesindicatethatthereis alot of roomfor
improvement in load balancing in the backbone. Current
routing practicestoday do not take into consideration the
traffic demandmatrix becausesuch matrices aretypically
not available. We believe this is one of the key reasons
why we seelarge variation in link load levels.

Our mainfindingscanbesummarized asfoll ows.
� The geographic spread of traffic from one ingress

POPacross all egressPOPsis far from uniform. A few
egressPOPssink large amounts of traffic, while the ma-
jority sink eithersmallor medium amounts of traffic. Our
initi al assessmentof POPsindicatesthata simplecatego-
rization, in whicheachcategorydrawsabouttwicethevol-
umeof traffic asthe onebelow it (i.e. large/medium and
medium/small ratiosareapproximately two), is possible.
Furtherwork needsto bedoneto modelPOPsin finer de-
tail. This datais important in that it confirmsempirically
our intuition (basedoninternetpractices)abouthow traffic
is distributedacrossbackbones. However, it alsocontra-
dicts the widely used simulation modelthat assumesuni-
form distribution of traffic amongdestinationnodes.� Accesslinks do not distribute traffic similarly across
egressPOPs;someaccess links aremorelikely to sendto
onesetof POPs, while othersaremorelikely to sendto a
different setof POPs. This differentiation occurs mostly



in mediumsizedegressPOPs,and not in large or small
POPs.� We found that the large egressPOPs can exhibit a
large variability during the day, whereasthe mediumand
small POPsexhibit little variability over a full day. More
importantly, we foundthatwhenPOPsareranked accord-
ing to volume,thenthey maintain their rankthroughout the
day. With respectto their rank, POPsappear quite stable.� The elephantsandmice phenomenonthat we found
amongstreamsaggregatedondestination prefixesis anat-
ural basisfor splitting traffic over multiple pathsin the
backbone, using routing policies. Identifying reroutable
flows at this level of traffic granularity is attractive be-
cause such flows exhibit stable behavior throughout the
day. Load balancing this way would require early iden-
tification of theelephantsin theaccess links of theingress
POPs.

Thevalueof our methodology, observationsandanaly-
sisextendsbeyondloadbalancingto otheraspectsof back-
bone engineering. For example, we found a closeconnec-
tion betweentraffic patternsamongst POPsandthearchi-
tecture of the POPs themselves. This can help in archi-
tecting POPs, or in adding new customersandprovision-
ing backbone capacity when the backbone is upgraded.
Also, our analysisof POPbehavior, its spatial andtempo-
ral characteristics,andits underlying dependenceupon ac-
cesslinkscanbeincorporated into capacityplanningmod-
els.
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