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Abstract—In this paper, we studytraffic demandsin an IP
bacblone,identify the routesusedbythesedemand, andeval-
uatetraffic granularity levelsthat are attractive for improving
the poorload balancingthat our studyreweals. The dataused
in this studywas collectedat a major POP in a commercial
Tier-1 IP badkbone. In the first part of this pape we asktwo
guestions.Whatis the traffic demand betweena pair of POPs
in the badkbone? How stableis this deman® We de\elop
a methodlogy that combinespadet-level tracesfrom access
links in the POP and BGP routing information to build com-
ponentsof POP-to-FOP traffic matrices. Our analysisshowvs
that the geogaphic spreadof traffic acrossegressPOPsis far
from uniform. In addition, we find that the time of daybehav-
iors for differentPOPsand differentaccessinks alsoexhibita
high degreeof heterogeneity In the secondpart of this work,
we examinecommecial routing practicesto assesfiow these
demand areroutedthrough the badkbone.Wefind that traffic
betweena pair of POPsis engineeredo berestrictedto a few
pathsand that this contributesto widely varying link utiliza-
tion lewels. The natural questionthat follows from thesefind-
ingsis whetheror not thereis a betterway to spreadthe traffic
acrossbadkbone paths. We identify traffic aggregaes based
on destinationaddressprefixesand find that this setof crite-
ria isolatesa few aggegatesthat accountfor an overwhelm-
ingly large portion of inter-POP traffic. We demonstratehat
theseaggegatesexhibit stability throughout the day on per-
hour time scales,and thus form a natural basisfor splitting
traffic over multiple pathsto improve load balancing

JorjetaJetchea is currently at Carngyie Mellon University This
work wasdonewhile shewasat SprintATL.

I. INTRODUCTION

Intemet baclkbonescontinueto grow at explosive rates,
fueled by the bandvidth demand®f new applicatiors and
by theadwentof faste accessechndogies. To accomalate
such growth while preservirg the robustness of the net-
work, mostIP backlone operdors have chogn a simple
appoachto traffic engireerirg: overprovisioning. Over
provisioning is the adoged appoach becase very little
information exists today abou the dynamics of the traffic
in an IP backlone. This is primarily due to the lack of
measuementinfragtructure andtechmiques for collecting
andprocessingdatafrom backlones To addres this defi-
ciengy, we study traffic tracescollecded at a Pointof Pres-
ence(POP)in acommerci& Tier 1 IP backlonenetwork.
A pas$ve monitaring systeanis usedto colled paclet-leel
tracesonanumbe of accessinks within thePOP[1]. The
datais then analyzedoffline in orderto understaml the dy-
namicsof traffic entaing the backlone at this POP We
descibe a methoddogy for extrading information abou
routing andtraffic flow within thebackbone Thismethod
ology forms the basisfor building componats of POP-
to-POPlevel traffic matrices,which arekey to studying a
variety of traffic engneerirg androuting issues We inves
tigate how much canbe said abaut the traffix matrix just
from the datacollectedat a single POP

It hasbeenobseved ([2], [3], [4]) thatobtaning infor-
mationabouttraffic pattensin bothtime andspaeis criti-
calfor mosttraffic engneeringfunctions. Traffic engireer
ing typically operdesonlongtime-scdessuchasminutes,
hours, weeksor longer Examplesof traffic engireerirg
functions include dimensiming, provisioning, route opti-
mization, whereto bestaddnew cusbmerlinks, load bal-
ancirg policies, designing POParchitectures, and select
ing failover stratajies. The particular application deter-



minesthe level of information nealed abou traffic pat-
terns. SincelP networks do not typicadly genentefeed
back stae informaton, traffic engireeringhasto rely on
traffic measurmentg2]. It hasbeenobsewredthatsimula-
tion datacamot provide sulstitutes[5]. Therefoe colled-
ing traffic measuremmats spaining multiple hoursin order
to build network-wide views of the traffic flows is cental
to beingableto efficienty engneeranIP backoone.

A network-wide view is typicdly expresedin theform
of atraffic matrix ([6], [3], [7]). A variety of information
canberepresentd in it. For example,the traffic volume
capuredin the matrix canreferto ary level of flow gran
ulanty. A traffic matrix alsohasan as®ciated time gran
ulanty thatspecifiesthe measuementinterval over which
bandvidth measurenentswere averaged. The chace of
exacly whatis repregntedin thematrix depandsuponthe
traffic engneering taskto be perfomedwith this matrix.
In a POP-to-PORraffic matrix the rows representingres
POPsandthe columnsrepresentegressPORs. Sinceour
datawascollectedatasingle POPin our network, we build
onerow of aPOP-to-PORraffic matrix. Dueto the costof
suchequpment,the enamousdifficultiesinvolvedin de-
ploying the equipmentin commercia backlbnesandthe
scaceavailability of this badkbonedata, eventhis compo
nentof atraffix matrix congitutesa significant amountof
usetl information.

We demmposeand study this data along a number
of different dimensons. The work in this pape canbe
viewed asa seach of answerdgo the foll owing quegions,
eachof which logically follows from the next. In thefirst
partwe ask,whatis the traffic demandoetweena pair of
POPs"How stalle is thisdemarl? Thetraffic matrix com-
piled in this partonly descrbesthe demanl or how much
traffic wantsto go from one POPto anoter; it saysnoth
ing abouthow thetraffic is routed. Thusin the secoml part
we ask,how arethesedemand routed in our commercal
baclkbone? Are link utilization levels similar throughou
the backbone?Our observations from thesetwo partsare
thattraffic is highly non-uniformin ageogaphicserseyet
the ranking of POPs(in termsof volume) remainsfairly
stable in time; andthatfew routesareusedandlink utiliza-
tion levels vary widely throughaut the backlobne. These
findings motivatethe third partwhich asks,is therea bet-
terway to spreadthetraffic acressthe patts? And at what
level of granularity shoud this bedone?

For the first part, we proceed to study the partition of

traffic throughaut the backoone as follows. We exam-
ine incoming traffic at a single POPat different levels of
grarularity. First, we analze the spatal charateridics
of POP-leel traffic. We discover a large dispaity in the
spatal distribution of the ingressPOPS traffic acrossthe
egressPOPs.Secoml, we bre&k up theingressPOP5 traf-
fic accading to acces link, and examinethe spatal dis-
tribution of the traffic from spedfic typesof accesslinks
acros the egres POPs. We find that the samedispaity
appars at this level of grarularity. We compae the ac-
cesslinks andfind that they behae differently from one
anoherwith resgectto three metricsconsdered For ex-
ample,we find thatone cannd isolate a single probability
distribution to charaterizethe geogaphical fanout of the
traffic from acces links. We alsoexaminetime of daybe-
havior of thetraffic at both the PORIlevel andaccesdink
level. Wefind thategressPOPscanberanked roughly into
three categories (large, mediumand small) base on the
amountof traffic they receve from the ingres POR and
that POPsgeneally remainin the samecategory through
the entire day. A stronger staementcan be madeabou
mary of the POR - if they areranked by the volume of
traffic they recave, they maintaintheir ranking throughou
theday We alsofind thatat night the overall traffic loadis
redwcedby only 15-50% depandingupon the acces link.

For the seconl part of our work, we begin by checkng
whethe or not overprovisioning hasled to a disparateuse
of resaurceson a network-wide bass. By examining both
SNMP data,we do indeed find thatthe amountsof exces
link camcitiesare inequitably distributed throughou our
baclkbone.We thenstudy1S-1S routing behaviorto under-
standhow I1S-IS is engineeral to influence path seledion,
andhow therouting impacsthelink utilizationlevels. We
find thatthe backloneis carefdly engneerel usingIS-IS
weightsto restict traffic betwea POPpairsto afew pathrs
eventhoudh mary alternatepatts exist.

In the third part of our study, we retum to our traffic
datato asses at what grandarity level it is desirdle to
do load balancing We wantto detemine a traffic granu
larity that definesa unit of flow (or stream)that could be
reroued on an alterrate path. Having examined our data
at both the POP-leel and the acces-link-level, we now
study thedataatthegrandarity level of destnationadd-ess
prefixes. We find thata small numker of theseaggegate
streans, calledeleprants gereratea large fraction of the
total traffic, while a large numbe of thes streans, called



mice genernteasmallfraction of thetotd traffic. Theele-
pharts and mice pheromenonhasbeenobseaved befare
in Internet traffic at the inter-AS level [4], at the level of
multipoint demamisfrom oneroute node to asetof router
nodes[3] andin thelntemetasit wasmary yearsago[8].
Here we demonstate this pheromenonat the grarularity
level of specfic prefixes. We alsodemonstate the stabl-
ity of theseaggegateshroughaut theday. Thestablity of
thes elephats makesthemwell-sutedasabass for rout-
ing traffic on altematepathsandthus improving the load
balancein the backione.

Therestof the paperis organzed asfollows. Our mea-
suranentinfrastrudure is briefly presntedin Sectionll.
Sectionlll descibesamethodlogy for building aPOP-to-
POPview of traffic flow acrosgshebadbone basednob-
servationsat aningressPOP Our techrique makes exten
sive useof BGPandIS-IS routing information. The spa@
andtime charateridics of traffic atthe PORIlevel andthe
accesslink level areanalysedin SectionlV. In SectionV
we study IS-IS routing in orderto understam how rout-
ing pracices influencethe partition of traffic acrcss the
baclkbone In SectionVI we aggrejate the traffic basel
on destiration addessprefixes anddemorstratethe exis-
tence of theeleghantsandmice phenanenonatthis granu
larity level. We analyz propeties of theseaggreyatesand
disausstheir applicationto load balarcing. SectionViII
disaussesrelataed work, and SectionVIll discussessome
of the implications of our resuts andidentfies direcions
for future work.

Il. MEASUREMENT INFRASTRUCTURE

Thedataused for this study wasgatheedfrom anoper-
ational IP backboneusing the pas$ve monitaing infras-
tructure descrbed in [1]. The backlone topology con-
sistsof a setof nodesknownasPoints-d-Presege (POPS)
conrected together by high bandvidth backlone links.
EachPOPalsolocally conrectscusbmersthrough acces
links, ranging from large corporate networks to regional
ISPsand websevers. Peerimg at a POPis provided ei-
ther through dediatedlinks to another backbone(private
peeing) or throuch public Network AccessPoints(NAPS).
EachPOPhasatwo-level hierarchial structure(Figurel).
At thelower level, custanerlinks arecomectedto acces
routers. Theseaccesgouteas arein turn connestedto the
baclbonerouters. The backloneroutes provide comec-
tivity to otha POPsandto the pees. The backbonelinks

To Backbone

ISP

\\\\\ \\\/

Fig. 1. Monitored POPLinks/Architectureof aPOP

@\\\/

Web
Hosting

Link TraceLengh | TraceSize | # Packets
(hous) (109)
Peerl 16 51GB 853
Peer2 24 47GB 794
WebHost1 19 51GB 853
WebHost2 13 51GB 853
Tier 2 ISP 8 17GB 284

Fig.2. Summay of Data
conrectingthe POPsareoptical fiberswith bandvidths of

2.5 Gbps(OC-48). They carty IP traffic usingthe Paclket-
over-SONET (POS) protocol. The exterior and interior
gatevay protacols for the baclboneare Border Gatavay
Protocd (BGP)andIS-IS respetively.

The infrastrudure developed to monitor this network
conssts of passve monitaring systemghat collect packet
traces and routing information on the links located be-
tweenthe accessroutas and the badkbonerouters, or on
thepeaing links. Themonitoring systenstapontothe se-
lected link using optical splitters, and collect the first 44
bytes of every paclet on theselinks. Every packet recod
is timestanpedusing a GPSclock sigral which provides
accuateandfine-granedtiming information. The format
of the pacletrecad is asfollows.

« GPStimesamp: 8 bytes

« Sizeof record: 4 bytes

« Sizeof POSframe: 4 bytes
« HDLC heacer: 4 bytes

« IP paketheade : 44 bytes

BGP tables were downloaded from one routet in the
POPonee perhou during thetime the paclet traceswere

Lall routersin the POPhave the sameview of BGProutes
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collected. In this study, we useddatafrom five acces
links, colleded on August 9, 2000, starting at 10:00am
US Pacific Standad Time (UTC-7). The arrons in Fig-
ure 1 indicatethe monitored links usedin this study. The
table in Figure 2 providesa summaryof our traces. The
traces are of different lengths becase paclets were col-
lected until the harddisk in eachmonitoling system filled
up. Therefae heavily loadal linksfilled up thedisk faser
thanlightly loaded links. We have colled¢ed mary other
traces during Augustand Septembe200Q Theresuts in
this paper have been verified againg one othe day We
preentthedatafrom a singledayto avoid overloadirng the
pape with excesive graphs.

[11. METHODOLOGY

In this secton we explain how we corstructthe row of
our POP-to-PORraffic matrix representing our backione
traffic. Thisrow in thetraffic matrix correponds to data
thatoriginatesatthemonitored POP(i.e.,theingres POP)
and leaves the network through ead of the othe egres
POPs(including itself). To do this, we needto mapeach
paclet recaved at the monitored POR to the egressPOP
throughwhichit leavesthe network. All backtoneroutas
paricipate in the BGP protocol andexchangeinformation
with eachotheraboutroutes leamedfrom route's exterral
to the network, calledextemal pees. This information is
kept in the BGP table of eachrouter and canbe usedto
deteminethelastegressouterfor eachpaclet degination.
However, information on mappirg an egress router to an
egress POPis not readly available andhasto be derived
from the valuesof standird BGP attributes.

We startby illustrating with an examplethe methalol-
ogy we useto detemine the egressPOPfor a paclet en-
tering the baclbone (Figure 3). Consicer a packet with
a destnation addessof 1.1.1.1. Suppoe that the BGP
table at the ingres router (7.7.7.7in the figure) for this

paclet, idertifies the destnation subret for this paclet as
1.1.1.0/24. The BGP table entry at the ingress router,
which correspomisto this subret contans a Next-Hop en-
try which is typically the address of the extemal BGP
peer from which a border route in our backlone first
learredtherouteto the destirationandinjectedit into the
I-BGP?mesh.This border route is in the egressrouterfor
desthation 1.1.1.1, since it is the route that paclets for
subret1.1.1.0/24 needto go throughin order to reachthe
exterral peerontheirwayto thedestirationnetwork. Sup-
posetheaddres of theborderrouter is 2.2.2.2 andthatthe
addessof the external peerrecordedin the Next-Hop en-
try in the BGPtable is 3.3.3.3%. TheBGPtableat7.7.7.7
alsocontinsan entry for 3.3.3.3 (or the subret coniin-
ing it), whoseNext-Hop field idertifies the address of the
borderrouter, i.e. the egressroute for this paclet. To find
the egressPOPfor the packetdegination, we usethe BGP
Communityld attribute which is anidentifier shaedby all
routers ata POP . This attributeis recordedin eachBGP
table entry and identifies the egressPOPfor all destna-
tionsthatmapto that entry In our example the Commu-
nity Id allows usto identfy the POPto which the egres
route 2.2.2.2 belongs.

However, thatare mary casesvhenthe Communityld
attributefor a route is not setto an idertifier that speci
fiesthe egressPOP(due to internal policies)for the BGP
entryit belongsto. In suchcase, we extractthe Origina-
tor attributefor the route announcementto a given Next-
Hop. The Originator attribute value corresponls to the
addessof aroute in our backlone.In theabore example,
the router 2.2.2.2 would be the Originator for the route
to 3.3.3.3. Queryirg the BGP table retums the Commu-
nity Id attribute asso@tedwith the Originator, andhene
the POPat which the Originator is locaied. This POPis
the egressPOPasso@ted with the Next-Hop that we are
interestedin (3.3.3.3 in our example).

Note that there are a few ca®s, when BGP attributes

ZpacklpneroutersuseBGPto exchange informationaboutroutesto
externalnetworks andpoliciesinternalto the backbore

3Typically a BGPtablewill containa numberof alternatepathsfor
a destinatiorsubret. However we considerhereonly the routechose
asthe"best” or "preferred” route basedon BGP policiesandattribute
values.

4Thisinformationis notavailablein resporseto “show ip bgp”. How-
ever, knowing all possiblevaluesfor the communityid attribute, it is
possibleto usethe “show ip bgpcommunityx” commando determine
theattribute valuefor eachroute.



fail to revealthe POPname.In thesecaseswe perform a
Tracepouteto the Next-Hoprouter addessasso@tedwith

the BGP entry for the paclet destiration We canextract
the nameof the lasthop routerwithin the backbonefrom

theoutput of Traceoute, anddelivetheidertity of thePOP
from thename.Thenameof ead routerata POPcontains
a sub-dring that is derived from the nameof the city in

which the POPconfainingthe route is located (for exam-
ple, arouter’'s namein a POPin Miami would contain the
string mia).

The complete algorithm for detemining the egres
POPsfor destiration networks in the BGP tabe is omit-
teddueto space congraints.

Recallthatthe BGPtableswe usedwerecollededonce
anhour, atime-scde onwhich they have beenobsnedto
be relatively stalde [9]. The numberof unique Next-Hop
entriesin eachtablewason the orderof a few thousands.
Of these about98% wereresolved to egressPOPsusing
BGP attributes, and the restwereresdved using Tracer
oute Overall, morethan99% of the destiration networks
in the BGPtableswereresohedto egress POPsusingour
techique

Oncewe obtan a mappirg of desthation networks to
egress POPswe canappl it to the paclettracesto deter-
mine the traffic flowing from the monitored POPto each
othe POR This taskis anabgous to the probem of per
forming lookups on paclketsarriving at a route to deter-
mine the egressport. For this purpose, we usedthe IP
lookup technque descibed in [10]. This technque uses
an LC trie-basedlongestprefix matchanda softwareim-
plemeriationis publicly available. We modifiedthis soft-
ware to perform a longest prefix match on paclets in a
traceusing our destnation-to-POPmap. The outpu con-
sistsof peregressPOPpaclkettraces. Thesecanbefurther
analzed to understar the dynamic of traffic betwea
ary two POPsin the network. We have developed toals
to suldivide the traffic betweentwo POPsbasedon vari-
ouscriteria suchprotocol numbe, destnation prefix, etc.
Tools have alsobeendesighedandimplemenéd, to study
thevariation of traffic on differenttimes@les.Theseand-
ysistoolswereusedto computeall of theresuts preseted
in this paper

®http:/iwvwwnada.kth.segnilsson/pblic/soft.html.

V. TRAFFIC IN SPACE AND TIME
A. Gegraphic Spread

We look at the geagraphical spread of traffic demand
acros egres POPs,or fanout, first at the POP-level and
thenonanaccess-lirk level. Sincemostof ourtracesspan
from 13 to 24 hourseach(depgending upon the link), we
are also able to study the time of day behaior for thes
demand. Our god in this sectim is to classify the bastc
behaviorswe obseve into a few categories,andto under-
standthe range of behaviors that canoccu. We are also
interestedin compariry differenttypesof accesslinks and
different egress POPsto seeif andwherecommonaliies
lie.

First we consder the traffic demand on all five acces
links togetter asoneinput stream. Note that this const
tutesa significant portion of the input traffic at our moni-
toredPOP Giventhevariety of accesdinks chose, thisis
alsohighly repregntatve of thetotd input traffic entaing
the POP The monitored POPis hencdorth refered to as
theingress POR

We usethe methalology descibedin the previous sec-
tion to classfy all the paclets in a trace by their egres
POPsWethendetermire thetotal numbe of bytesheadel
towardseachegressPOPusing the padket length informa-
tion in the IP header of eachpaclketrecord This givesus
the fanaut of traffic demand by volume (Figure 4). The
values presntedin this figure are bandvidth values that
wereaveragedover the duraion of the entire tracefor ev-
ery link. This fanaut constiutesthe row on our POP-to-
POPtraffic matrix.

For thepurposesof display we have organizedthe POPs
into 3 groups: the west, midwestand eastregions of the
United States. The monitored POPis located in the west
coad of theUS. For proprietaryreadnsthe PORs areonly
identified with numbes. Within eachof the 3 regionsthe
ordering is arbitrary anddoes not have ary geogaphicsig-
nifigance

We obseave that there are two POPsthat are clearly
dominant, and recave a large amountof traffic (over 35
Mbps). Among the remainirg PO abou half recave
quite a small amountof traffic (under 5 Mbps) and the
othea half receve a moderae amoun of traffic (10-20
Mbps). Our data suggests that ingres POPscould be
roughly categorizedaslarge, medium andsmall where(i)
rouchly the samenumter of POPsfall into the smalland
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mediumcategoriesandonly a few fall into the large cat-
egory; and (ii) eachcategory carriesappoximatdy twice
the volume of the categyory below it. This simple chara-
terization will prove usefd in our interpretdion of other
databelown. (We will disaussthe stahlity of thesechara-
terigics in the next subgction)

Often in simulation ervironmerts, reserches assume
a traffic matrix. In the past,in absnceof data,the most
commonmodelis, givenasouce,pick adestnation atran-
dom accading to a uniform distribution. This histogam
reveak thatsuch an appoachdoesnot at all matchinter-
net behavior Moreover, thinking abaut how the Internet
is desigied, it is easyto undestandwhy we seethis non-
uniform behaior. First,onewould expectthat somePOPs
would sink highe traffic demarmls than others becase of
their geogaphiclocaton. For example,dominart POPs
are expeded to be located on the two coags of United
Statesbea@usethis is typically whereinternational trunks
terminate,andbecaisethe coastsaremore heavily popu
latedthanthe cente of the country. Secomlly, onewould
exped this distribution to exhibit a significant degree of
variation. The volume of traffic an egressPOPreceives
(from otheringress POPs)depermls upon a large numker
of factas, suchasthe numberandtype, of cusbmersand
senersattachedto it. Similarly, the amourt of traffic an
ingressPOPgeneatescanalsovary enormowsly depend-
ing upon the numberandtype, of custanersandseners,
onits acces links. Thuswe expectthe inte-POPflows to
vary dramatially from oneto anaher, andto depem on
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Fig.5. Fanou of WebHostLinks

the (ingressPOR egressPOP)pair.

Notethatfor the purposesof bardwidth predction, the
(ingressPOR egress POP)pair might representa level of
grarularity that is too coar® for accuate traffic estma-
tion. It is natual to hypathesiz that theacces links atthe
ingressPOPmay differ from oneanoter, and may affect
thetraffic flowing to eachegressPOPdifferently. We thus
next consder the fanaut of traffic attheingressPOPon a
peraccesdink-typebass. Tocompaetheselinkswe con
sideredthreemetrics: (i) thetotal volumeof traffic perlink
(summingacrcssall egres PORs); (ii) the max/minratio
of theaveragebandwidh headdtowards an egressPOP?
and(iii) thedistributionamongtheegres POPs.Thetotd
volume and max/minratios are given in Tablel. We see
that the accesdinks differ from one anoterwith respet
to thesesimplemeasuesthatspanarangeof values

Figure5 demorstrates thatthe rough cateyorization we
appled to egress POPsat the POP-level (i.e., the large,
mediumandsmallcategories)continuesto hold atthelevel
of inputaccesdink type. (Thesames truefor the peaing
links, however we exclude thefanaut plot dueto spae re-
strictions.) In otherwords a very smallnumber(betwea
1-3) of POPsrecave a large amoun of traffic andtherest
of thePOPsareevenly split betweerthemedium andsmall
catgyories. To compae the fan-out of the different acces

5In compuing the max/minratio we ignoredthethreesmallesPOPs
for a given accesdink becauseahereweretypically a few POPsthat
receve angyligible amourn of traffic andthis creategatiosthatarenot
representatie.



Ingress peer| peer| ISP | webhost| webhast

Link #1 | #2 #1 #2

volume 40 | 22 | 32 50 70

(Mbps)

max/min | 13 | 50 | 13 35 63
TABLE |
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links numeically, we normdize and corvert the fan-ou
informationperlink into a probability distribution. Let &;

dende the averagebandvidth that acces link : send to
POP; during oneday For a givenlink 4, the probability
thata byte of datachosnat randan getssentto POPj is
givenby F;(j) = bij/ >°; bi;. Thedensty curvesfor each
of thefive links is givenin Figure6. The ordeing of the
POPdhereis differentthanin the previousgraghs,andthus
it nolongerrepresens an east/midvest/wesbrganizaton.
This ordering wasselectedto try to isolate a patten.

To facilitate the discussion we usethe term popuar-
ity of a POPto refer to the likelihood that a byte of data
from aningressacceslink will besentto thategressPOR
Ontheonehand,we seea few similaritiesamongthe five
links. Thefirst two POPsarethe mostpopuar amongall
theaccesdinks. POPs#11-16 arefairly unpgoular for all
links. For all other POFR, the popularity ordering jumps
arownd quite a bit for eachlink. For example the likeli-
hoad that a packetonagivenlink will choog POP#4 can

vary from 0.02to 0.17. This gragh indicatesthat POP#3

is mostlikely to be chosa by our ISP link, POPs#4 and
#5 aremostlikely to be choen by the pee 2 link, POPs
#6 and#7 aremostlikely to be choenby the peerl link,

and#8 and #9 by the secom web hod link. In geneal,

for POPs #3-#10, thelikelihoodof beingchose canvary
abou 10%. We beliewe thatthe< differences aresubdan-
tial andthatthe fanauts from the differentlinks are suffi-

cienty differentsothatonecanrot condudethatthereis a
sinde undelying distribution thatrepresentsall theacces
links. Note thatthe categorizaion of egressPOPsacmrd-

ing to large/medium/smallis the samefor differentacces
links. The acces links differ in their geayraptic spreal

primarily in how they distribute traffic amongthe medium
sizedPORs.

We thus infer that when studying traffic demandsfor
loadbalarcing, andmoregererally, whendesgningband
width predidors for traffic enghneerirg, the pair (ingress
POPacces link type, egressPOP)shauld be explicitly
accaintedfor rather than simply using the (ingressPOR
egressPOB pair.

From this sedion, we corclude that in termsof geo
grarhic distribution thereis a large disparity amongthe
traffic sentto the egressPOPsfrom a single ingressPOR
andthat the accesslinks differ from one anotter signif-
icanly accading to three different metrics The excep
tion is for the two web hostaccesslinks; however, thes
two links carry traffic from the sameclient, which rein-
forces our notion that links gereratedifferent traffic de-
mandsbasel onther types

B. Timeof Day Behavia

In the previous sectim, the fanauts we examinedwere
compued basedon day4{ong averages.In orde to exam-
ine the congstercy of the fanaut throughou the day, we
look atinter-POPFflows onanhouly basis.In Figure7 we
consgder just four of our input links (becaisethe 5th has
too few hours) and examine the behaior throughou the
dayof threerepregntative POPspnein thelarge catayory,
onein themediumandonein the small. First, we obseve
that the large POPis the mostvolatile, that the medium
POPexperiences a long slow small decine, andthat the
small POPremairs fairly stade. We examinad a hum-
berof other POPsandfoundthis behaviorto be corsistert
of POPswithin their respetive catgories Second,we
obseve thatduring the day the distinction betweenlarge,
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mediumandsmallremairs, where& at night thelarge and
mediumPOPshecomdessdistinguishable

Figure 7 indicatesthat somePOPsdo not experience
muchdecreaein traffic volumeatnight, while others(par-
ticularly thosein the large catayory) do. Whenwe con-
sideredtraffic volumebetweenl0 AM to 6 PM (dayime)
and6 PMto 6 AM (nightime) sepaately, we found thatthe
nighttime peaktraffic is abou 30 Mbps, abou half of the
dayime ped&. Theaverage percent redudion on aperlink
bassis shavnin Tablell. Thetableindicatesthattheaver-
agevolumeof nighttime traffic is anywhere from 15-50%
lessthanthe average volume of day time traffic. Thisis
surrising sinceit is counter to the widely held belief that
traffic in the backlbnereducesby a few factas at night.
This mayarisefrom anincreasein intemational traffic and
night-time backyp actiities.

We now examinetime of day behaior (Figures 8-11)
at the aceesslink level to examine the variations and if
our previous observationgold at the accesslink level as
well. In orderto comparedifferentacces links, we pro-
vide a sepaatefigurefor eachof four accessinks (ident-
fiedin thefigurecaptian). For eachaccesslink, we plotthe
houly bardwidth averagesfor six different PORs, hene

eachcurve correponds to a single egres POP Someof
the curves on thesegraphs exhibit a sharpdrop arourd
2:00am. This is dueto maintenanceactivitiesat the POP
Fromthesefour plots we obsewe thefollowing:

« A numbe of POPshave traffic that remairs fairly
congantthroughoutthe day.

« A numbe of POPsaxperiencealong slow decine of
loadng throughaut the day.

« Themostpopular PORs areusudly the mostvolatile.

« If wewereto rankthePOP<y volumerecaved,then
mostof the PORs (exceping thefew large oneg maintan
their rankthroughoutthe day.

« POPscan experience an increaseat night (seeFig-
urel0and1l).

Theseobsevatiors are interesting in that they reveal
courterintuitive things abaut busy periods. Our experi
encefrom teleptonenetworks leadsusto exped peakpe-
riod behaiors in time-of-day plots. Thesefiguresreveal
thatsomePOPslo not experienceary busy periods,some
POPsexperienceonebusy period, and othes canexperi
encetwo.

Weseethat thecategorythatanegres POPfallsinto can
depend uponthe acces link. For example,consder POP
#13. On the two peerng links, this POPis a small one.
On the two web hosting links, it would be consdereda
mediumone Thisindicatesthatthefraction of traffic than
an egressPOPdraws from aningress POPdepadsupan
the numberandtype of input acces links. An altermtive
way to seethis is givenin Figures12 and 13. In thes
plots we compae the traffic destned for a single egres
POPoriginatingfrom eachof the acces links. Thisillus-
tratesthatanegress POPsbehavior candiffer dramatially
dependingupon which acceslink onaningressPOPIt re-
cewvestraffic from. For someaccessinks, anegres POP
receivesaroughly consantamourt of traffic while for oth-
ersits traffic experiences peaksanddipsover the courseof
theday Thustheincomingtraffic on anegressPOPis di-
rectly depandentupon thetype of accesslink attheingress
POP

V. OBSERVATIONS ABOUT IS-IS ROUTING IN THE
BACKBONE

In theprevioussectian we examinedpropertiesof traffic
demand, i.e. how muchtraffic wantsto go from oneend
of our network to anottrer end. This saysnothing abou
how thatdemands routed through our network. Theinte-
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rior gatevay protocol used for routing traffic in abacklone
hasadirecteffectonlink loadlevels. We have studiedthe
configuration of 1S-1S, the internal gatevay protocol used
in our backlone,andhavereathedafew condusionsabou
currentrouting practices Currenty, thelS-1Slink weights
are handcafted by network opeations experts suchthat
() the weightsare chose suchthat traffic betweenany
ingress-gressPOP pair is resticted to only a few patts
throughthe backtone;and(ii) theintra-POPlink weights
canheavilyinfluencethe pathchose to traversethe back
bore. While this apgoach hascertan advantagessuch
as easeof managenent, it may drive up link utilization
levels on patls between PO when the inte-POP traf-
fic demand areheavy. In partiaular, we have found that
for someheary demaml POP-pairsa numberof altemate
patls exist, but mary of them are underutilized, while a
few have high utilization levels.

To get a better senseof the joint impact of the traffic
deman andtherouting on link utili zationlevels, we col-
lected SNMP dataon link load levels from all the back
bore links in our network. Figure14 providesa histogam
of this data, averaged over an entire day We find that
the majority of the links have an average utili zation un-
der25%, andthatthelink utilizationlevels canvary from
3% to 60%. This histogramreveds (i) the extent of link
underutilization and (i) the extent of the dispaity in the
utili zationlevels of the backbonelinks.

It is clearfrom thesefindings combinedwith our find-
ings from SectionlV, that betterload balarcing schenes
areneeckdin the network. Therearedifferentapgoaches

to load balarting. Enforcing a chang in load balanc-
ing via the 1S-1S routing protocol hasdifficulties. 1S-1S
doesnot have the capalility to balarce traffic acrcss all
of thesepatls unlessthey all have exactly the samecost.
Currenty, the 1S-1S weightsare hanctrafted by network
opertionsexperts. Moreover altering 1S-1S weights has
potential reperaissimns on the entirebackone We there
fore seart for amorepolicy-basel apprachtowards load
balarcing.

Clearly, in order to usesomeof the undeutilizedlinks
andpats, aloadbalarting schemewould have to deviate
from using shortest hop paths It is importart to ensue
that significant delaysare not introducedto traffic thatis
rerouedonlongerpatts. We beliewe thatthis will nothap
penfor two rea®ns. First, thebackloneis highly meshed,
and thus most altemate paths betwea an ingress-gress
POPpairarelikely to beonly oneor two hopslonger than
the min-hop path. Second[1] shows thatthe averege de-
lay acrassroutersin the badkboneis on the order of afew
milliseconds Therefoe,theaddtional delaythata paclet
will incur by traversinga few moreroutersis likely to be
within acceptablelimits.

V1. TRAFFIC AGGREGATES FOR LOAD BALANCING

In orderto realize effective load balancing in the back
bone it is necessaryto understam how traffic shout be
split over multiple alternatepatts. In this sectian, we ad-
dressthis isswe by examining techriqguesfor creatng ag-
gregatetraffic streansbetween(ingresslink, egressPOP)
pairs The aggegation of paclets into streans can be
basel on a variety of criteria andcanleadto streanswith
different levels of grandarity. At the coar®stlevel, we
canaggegateall the paclets into a singe stream.On the
othe hand usingthe classc five-tude of (souce address,
desthation addiess souceport, destirationport, protocol)
leadsto very fine-graned streams. The criteria usedfor
creatng traffic aggegatesdepenms largely on the purpose
of suchaggreyation. For example,whenthegoalis to pro-
vide different levels of senice to different typesof traffic,
pacletsmaybeaggegatedbasednthe (TOS)field or the
protocol field in the paclet IP heackr. Sincewe areinter-
estedin the routing of theseaggreate streans acros the
baclkbone,it is natual to considerthe degination addess
of pacletsasthe bags for aggreyation. Moreover routes
are detemined accordng the destiration subnés (as ad-
vertisedthrough BGP),eachof whichis anaggegateover



arangeof IP addreses Subnetsn turn canbe grouped
on the basisof IP addres prefixes. Therefoe we con-
sidea destnation addessprefixes of different lengths as
the basisfor aggegating POP-to-PORraffic. For exam-
ple, streamamay be creaed basedon an 8-bit destnation
addessprefix, in which caseall pacletsshaing the same
first octetvalue for their IP addiessbelorg to onestrean.
We shallhencdorth referto such a streamasa p8 stream.
In generd whenan N-bit prefix is usedfor aggegation,
we referto theaggegatestreamasapN stream.

Aggregate traffic streams thus creaed would be as-
signed to different paths in orde to balancethe network
load Before adoging this appoachto load balarcing,
we needto examine properties of thes aggreyatessuch
astheir traffic volume andtheir stablity over thetime in-
tervalfor which suchloadbalancingwould be carried out.

We first consder p8 streamsandrankthemin deaeas-
ing order of traffic volume(sothatstrean¥1lis thelargest).
Figure 15 showsthe cumulatve perentageof traffic of
p8 streamdrom the private peeracces link andthe web-
hostaccesdink 1, respetively. For this acces link, the
traffic demandto three of the busiest egressPOPsis pre-
sened. We seethat for every egress POPpair, a few of
the top-ranked flows accaunt for an overwhemingly large
shae of traffic. We have obseved that this phenanenon
is widespgeadacros mostothe (ingressPOPaccesslink,
egress POB pairs. This brings us to an important resut
- the existenceof afew very high-volumetraffic streams,
andmary low-volumetraffic streansin thebackbone We
refer to the former aselepghantsandto the latter asmice
As mentinedin Sectim |, the phenomenorof “elepharts
andmice” hasbeenrepated at othergrarularity levelsin
other traffic studies[4], [3], [8]. Herewe demongratethe
existenceof elephantsand mice at spedfic IP destnation
addessprefix levelsin acommercal IP backlone.

The existence of elephantshasimportart implications
for traffic engneerng in geneal, namelythatin order to
realize mostof the bendits, we canfocusprimarily onen-
gineering the network for the eleghants Many of the dif-
ficulties in providing quality of servie in the Internet to-
day stemfrom scalaility issues. One camot exert fine
grained cortrol becaiseof scalaliity problemsthatarise
with keepng too much stateinformation. The elephants
andmice phenanemmeanshatonecantry to exertmore
cardul control on the eleplantsandthat coarsecortrol is
sufficient for the mice. Although this hasbeenobsened

befare, we are not aware of arny conciete suggestians or
examples of usingthistraffic behaior to influencecontrol.
Elephans streamsprovide a basisfor load balarcing since
oncetheelephantsareidentified, they canbereroutedover
undeutilized portions of the network. The criterion for
identifyin g the elephants— destnation addessprefix — is
simple enoudn for usein pradice without new and com-
plex protocols.

For simplicity of implementatian, it is attractive to have
a load balarting policy that is applicable over long time
scales, suchasafew hours or evenpotertially throughou
the day-ime. Of course, our apprach of load balanéng
via rerauting elephants cannd be appied unlestherank
ing of eleplantsand mice remainsfairly stable on thes
timescdes. Figure 16 shawv the time-d-day variation of
bandvidth for someof the elephants and mice to a busy
POPfrom webhostl accesslink. In the graph, the one
houraverage of the bandvidths of thes streansis plotted
agains time for 18 hours. We find thatthroughou this pe-
riod, the elephantsretan a large shae of the bardwidth,
and that they maintain their relaive ordering. In othe
words,theelephatsremaineleplantsandthemiceremain
mice. We have verified this behaiour for alarge numbe
of ingress-gressPOPpairs This resultencairagesusto
focus our attenton on just a few streamsin the backlone
for the purpcsesof load balancing

Interestindy, we discover tha the pheromenonof ele-
pharts andmice is recusive. In otha words, if we con
sidera p8 eleplant strean, and then further subdivideit
into sub-streans basedon say a 16 bit prefix, then we
find eleghantsandmice againamongthesesulstreamsin
Figurelr we considerthe threelargest elepghantsto eadh
of the POPst and12 for the peerl acces link, subdivide
eachinto p16 streans,rankthem,andplot the cumulatve
volume for the ordered streams. Thuseachcurve in Fig-
ure 17 correspond to the p16 substreamsfrom a single
p8 streamfor a given POR We find that 10 of the largest
flows account for 80% or moreof the bandwvidth in every
case Aswith thep8 streamsthe® p16 eleptantsandmice
exhibit stalle behaviorover mary hours(figuresomitted
dueto spae corsiderdions), even thoudh the bandvidth
of someof the elephantsdeadeasesubstantally at night.

We further examinethis recusive behaiour by taking
someof the p16 streamsfrom the previous stepand di-
viding theminto subdreamsbasel on a 24-bit prefix. We
find that although the eleptants and mice phenomenm
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still exists, it becaneslesspronauncedastraffic becanes
someavhatmoreuniformly distributed acrossstreans (Fig-

ure 18). Although we invedigate 1, 2 and 3 byte masks,
there is no particular asso@tion with ClassA, B andC

addesseghat have becomelessmeanirgful with the ad-
vent of CIDR. In fad, we expect that this phenanenon
will manifestitself at other prefix levels aswell, certanly

those betweea 8-24, but probably lesssoat prefixeslonger
than24.

A different way of studying the stablity of eleplants
and mice is to look at the frequeng/ and size of rank
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chargesat a given prefix level. Suppog that we divide
time into equa-sizedslots andcompue the average band
width for all the streansin eachtime slot. We canthen
rank the streamsaccoding to bandvidths and examine
the change in rark of streans from onetime slot to an-
othe. More predsely, let R;(n) be the rank of flow i in
time slotn, wheren = 1,2,---, N andi = 1,2,---, M.
Let us defined(i,n, k) = |R;(n) — Ri(n + k)|, where
1 <k < (N —n). Foragivenvalueof k, we examinethe
probability distribution for §(-, -, k).

Figure 19 applies this techrique for p8 traffic streams
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betwea the peerl accesslink and POP12 for an aver-
aging interval of 30 minutes,andk = 1,2,4,6,8 and
10. The resuts shav that most of the rank changs are
small—in fact, rank changsof size 5 or lessaccouwnt for
abou 70% of the changes.Moreover, this is true for rank
chargesover differenttime intervalsrangirg from 30 min-
utesto five hours. Besidegheobviousimplication for load
balancing, this resut hasa powerful implication for build-
ing traffic matrices. It providesa direction for prediding
the rank of a stream at a future time basel on the curren
rank Developmen of suchpredction techriquesrequres
extensive analysisandsoplisticatedstatisticalmodels,and
is beyondthe scqpe of the currentpaper

This distribution contains all the elephants and mice
mixedtogether To isolatethe rankchangebelavior of the
elepghantsalone, we checledtheranking of particular ele-
pharts over entire traces. We foundthat 70%of thetop 15
elepghantsremainamongthetop 15 streamsthroughoutthe
day We verifiedthis behaior for a numberof p8 streams
andanumbe of egres POR.

In summary we demongrate the existence of the ele-
pharis andmice pheromenonatthegranularity of p8, p16
and p24 prefixes We show that this pheromenonis re-
curdve in thatelephantsthemsévesarecompaedof ele-
pharts andmiceatalower grarularity level. We verify the
stahlity of theranking of streansafew ways: by examing
thetime-of-daybelavior, by calcuating the densty onthe

chargeof rankprocessover multiple timeintervals,andby
examining the top elephantsandtheir ranking throughou
theday Ourresutsindicatethere exist naturd andsimple
aggegatespasednp8andpl6aggregatesthatconstitute
a large fraction of traffic andthat remainstalde through-
outtheday Marny of today’s routess provide the capail-

ity to do perprefix load balancing over equaluneqial cost
links (e.g.,Cisco’s ExpressForwarding. Load balanéng

at the traffic grarularity thatwe identify here canbe im-

plemenied by extending this capdility .

VIl. RELATED WORK

Starting with pioneering work by Paxson ([11],
[12]), network measurem gt and monitoring hasreceved
widespeadattention from Internet resarcheas and prac
titioners ([13], [3], [14], [4]). However, much of this
work relieson datacollectedat public peerng points, edge
route's andfrom acadkmic networks. Our work is unique
in that the analysis is basd on traces and routing tables
collectedfrom a opemtiond IP backkone. In this respet,
our papercomesclosest to the work in ([2], [3]). In [2]
Grossdauseret. al. propcse a methodfor following the
trajectories of a subsé of the paclets flowing throug a
baclkbonenetwork. The methodis basedon usinga single
hashfunction, basedon paclet content, at multiple nodes
in the network. It hasdirect appicability to the probdem
of detemining traffic demandson different patts through



anetwork.

Intemet measuremet datacanbe broady dividedinto
routing data andtraffic data. The former consbstsof data
abou routing protools and their behaviour Enormots
amours of suchdatahasbeencollectedand andysedto
understaml the behaviourof large-scée routing in the In-
terret ([9], [13], [11], [14]). Traffic datg conskting of
paclet traces is not aswidely available, especally from
opentiomal backlones. However, both traffic androuting
dataarened to constuct traffic matrices. The useof traf-
fic matrices asa systemé#c way of represening and ana-
lyzing Internet traffic hasbeen gaining attertion recently
([3], [15], [7]), and[3] is animportart recen work in this
area Thereare strong similarities in the overall goal of
the work in [3] andour work — collectingand processimg
datafrom an operdional backbonein order to understanl
traffic demandsandimprove traffic engireerirg. However
our work differs from [3] in a numberof ways. First,
[3] uses datafrom peerng links at different pointsin the
baclboneto constructpoint-to-multipoint traffic demand
acrassthesepeaing links. Theseraffic demand comprise
only of thetranst traffic through their backlobne. On the
othe hand we collect datafrom a diversesetof acces
links (peeaing, web-tosting ISPs,etc.) in our backbone,
andstudythe geogaphicspread of this traffic overtheen-
tire backbone As we shovedin this paper the spatid and
temporl chamacterstics of traffic dependson the type of
originating acaesslink; this makesit important to study
traffic from different types of accesslinks. Secondly [3]
seels to build a traffic matrix representirg multipoint de-
mandsfrom oneroute to a setof egressrouternodes this
capuresall the alternateegresspointsto a destnation net-
work beyond the backtone. In our badkbone I-BGP poli-
ciesare usedto pick oneof mary egres points to a des-
tination network at any giventime. We areinterestedin
studying internal routing andtraffic behaviou, given that
this egresspoint hasalread beendetermired by I-BGP.
Hencewe focus only on point-to-point POP-level flows.
Thesedifferencesnotwithstandng, both our work and|[3]
represenimportart first effortsin understaming backone
traffic demand.

VIIl. CONCLUSIONS

In this paper, we usal paclet-lewel traces collectedat
a large POP of a tier-1 IP backlone to undestandthe
dynamics of ingresstraffic at a backlobne POR In order

to study geayraphcal andtempora propertiesof POP-to-
POPtraffic, we introduceal a methoalogy for combiring
our datawith BGP informationto classify the incoming
traffic accordng to egress PORs. We found thatthereis a
wide disparity in thevolumeof traffic heade towardsdif-
ferert egressPOPs.We analyzedthetraffic at threegran
ularity levels,the POPIlevel, the accesslink level, andthe
destnation prefix level. A contiibution wasto demonstate
different types of tempora stabiity for eachof theseon
long time scales

We alsoexaminead our network to seehow thetraffic de-
mandsarerouted throughthebacklone.We found thatthe
POPtopology andIS-IS link weightsarecarefdly chosa
to condrain traffic betwee mostingress-gressPOPpairs
to a few paths acros the backbone. The combinedeffect
of suchrouting pracicesandoverprovisioning meanshat
thereis a lot of excesscapadty in the core that resuls
in (i) underutilized links, (i) a wide rangeof link levels
within the undeutilized range and(iii) somelinks being
consstenly undeuwutilized. Our findings on the dispaate
geogaphic spreadof traffic demanls combired with cur-
rentrouting pradicesindicatethatthereis alot of roomfor
improvemert in load balarcing in the backlone. Currert
routing pracicestoday do not take into congderafon the
traffic demandmatrix becawge sut matrices aretypically
not available. We believe this is one of the key rea®ns
why we seelarge variation in link load levels.

Our mainfindingscanbe summarize asfoll ows.

« The geogaphic sprea of traffic from one ingress
POPacros all egressPOPsis far from uniform. A few
egressPOPssink large amourts of traffic, while the ma-
jority sink eithersmall or medium amouris of traffic. Our
initi al asessmenbf POPsindicatesthata simple cateyo-
rization, in which eachcategory dravs abouttwice thevol-
umeof traffic asthe onebelow it (i.e. large/medium and
medium/snall ratios are approiimately two), is possible.
Furtherwork needgo be doneto modelPOPsn finer de-
tail. This datais importart in thatit confirmsempirically
ourintuition (basedninternetpradices)abouthow traffic
is distributedacrossbacklones. However, it also contra
dicts the widely useal simulation modelthat assumesuni-
form distribution of traffic amongdestnationnodes

« Accesslinks do not distribute traffic similarly acros
egressPOPs;someacces links aremorelikely to sendto
onesetof PORs, while othersaremorelikely to sendto a
different setof PORs. This differentiaion ocaurs mostly



in mediumsizedegressPOPs,and not in large or small
POPs.

« We found that the large egressPORs can exhibit a
large variability during the day whereasthe mediumand
small POPsexhibit little variability over afull day More
importantly, we foundthatwhenPOPsareranked accord
ing to volume,thenthey maintan their rankthroughou the
day With respectto theirrank, POPsapper quite stable

« The elephantsand mice pheromenonthat we found
amongstreansaggegatedon destnation prefixesis a nat-
ural basisfor splitting traffic over multiple pathsin the
baclkbone using routing policies. Idertifying reroutble
flows at this level of traffic grarularity is attradive be-
cau® such flows exhibit stalde behavior throughou the
day Load balancing this way would requre early iden
tification of the elephatsin theacces links of theingres
POPs.

Thevalueof our methoddogy, obsevationsandanaly
sisextends beyondloadbalancingto otheraspets of back
bore engireering For example we found a closecomec-
tion betweentraffic pattensamongs POPsandthe archi-
tectue of the POFs themseles. This canhelp in arch-
tecting PORs, or in adding new custanersand provision-

ing backlone capaity when the backlone is upgraded.

Also, our analysis of POPbelavior, its spdial andtempo-
ral chamcterstics,andits undelying dependene upon ac-
cesdinkscanbeincorporatel into capacity planming mod-
els.
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