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Physically-based Grasp Quality Evaluation
under Pose Uncertainty
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Abstract—Although there has been great progress in robot
grasp planning, automatically generated grasp sets using a
quality metric are not as robust as human generated grasp
sets when applied to real problems. Most previous research on
grasp quality metrics has focused on measuring the quality of
established grasp contacts after grasping, but it is difficult to
reproduce the same planned final grasp configuration with a
real robot hand, which makes the quality evaluation less useful
in practice. In this study we focus more on the grasping process
which usually involves changes in contact and object location, and
explore the efficacy of using dynamic simulation in estimating the
likely success or failure of a grasp in the real environment. Among
many factors that can possibly affect the result of grasping, we
particularly investigated the effect of considering object dynamics
and pose uncertainty on the performance in estimating the actual
grasp success rates measured from experiments. We observed
that considering both dynamics and uncertainty improved the
performance significantly and, when applied to automatic grasp
set generation, this method generated more stable and natural
grasp sets compared to a commonly used method based on
kinematic simulation and force-closure analysis.

Index Terms—Grasp quality evaluation, object dynamics, pose
uncertainty

I. INTRODUCTION

Grasping objects with robot hands reliably and stably is
one of the key goals of robust manipulation, but it is still
challenging to achieve it in a real environment. One way
to achieve more robust grasping is to evaluate the grasps in
simulation. This approach has been extensively studied over
the past decades.

Most previous research on grasp quality evaluation focused
mainly on measuring the quality of an established final grasp
configuration, or the situation where the robot hand is already
holding an object with contacts. In practice it is difficult to
reproduce the same final grasp configuration with a real robot
hand due to limitations in sensing and control of the robot
system. In most cases, the object may move unexpectedly due
to finger contacts during grasping. This could cause a catas-
trophic failure such as dropping, or result in a different robot
hand configuration and different contacts from the originally
planned grasp, making the quality evaluation less informative.

Different from most previous work, we focus more on the
grasping process than the final grasp configuration. We want
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to estimate the likely success or failure of a grasp in the
real environment using a simulation technique so that we can
use more robust grasps and avoid grasps that are likely to
fail in practice. Grasping involves rapid change in contact
between the hand and the object, and this also changes the
position and orientation of the object being grabbed. Thus,
it is natural to try using a dynamic simulation technique,
instead of kinematic simulation that has been commonly used
in many grasp quality measure literature, to predict the result
of grasping more correctly.

Most existing solutions to dynamic simulation have put
focus on improving the plausibility of the resulting motions
or speeding up the computation time by developing better
techniques for modeling and handling the equations of motion.
However, efficacy of using dynamic simulation in evaluating
the quality of a grasp has been rarely studied in the grasp
community, even though the grasping process cannot be well
described with a static analysis model. In fact, it is still an
open question how much we can trust the result of dynamic
simulation especially when the simulation involves complex
interactions through rapidly changing contacts because there
are too many uncertainties in the real world that cannot be
exactly modeled within the simulation.

In this article we explore the question of “Can we use
dynamic simulation to estimate the probability of success or
failure of a grasp in the real environment?” which is a funda-
mental question in both the grasp and simulation communities,
and what we found is that using dynamic simulation improves
the performance of grasp evaluation in predicting actual grasp
success rates if uncertainty is considered within the simulation.
This is our main contribution.

We define a grasp as the combination of a relative pose
(position and orientation) of the hand to the object and the
finger joint angles prior to grasping. A grasp for an object
and a robot hand is regarded as successful when the hand can
grab the object securely by closing the fingers from the grasp,
and as a failure if the robot drops or loses the object during
the grasping process. Note that the grasp definition actually
represents a ‘pre-grasp’ prior to closing the fingers, and this
form of definition is suitable to a data-driven grasp planning
approach where the robot chooses a grasp having a feasible
trajectory from a precomputed set of good grasps, moves the
robot hand to a particular place specified by the grasp, and
finally closes the fingers to grab the object.

Since most of the existing grasp quality measures compute
the quality score based on contact information, many grasp
analysis tools such as GraspIt! [24] and OpenRAVE [10]
run a simple kinematic grasping simulation to obtain relevant
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contact points to evaluate a grasp. They close the fingers
until touching the object or reaching the joint limits while the
object remains at the same location even after the collision
by the fingers. However, such an existing method, i.e., the
combination of kinematic grasping and an existing grasp
quality metric, performs poorly in predicting the success or
failure of actual robot grasping. In many cases the method
misjudges a good grasp as a bad one, or vice versa. For
example, the two grasps shown in Figure 1 for a mug and a
watering can are two of the best grasps chosen by the existing
method, but they look fragile and would not perform well in
the real environment. On the contrary, the grasp shown in the
right of the figure was discarded because it did not form force-
closure under the static object assumption though, in the real
environment, it would have resulted in a stable power grasp
after the object’s location is changed by the contacts.

In this paper we discuss how to improve upon this grasp
quality evaluation method using dynamic simulation. There
are many factors that can affect the success or failure of a
grasp, such as dynamics of the system including the object
and the hand mechanism, uncertainty in the modeling and
sensing, and the control algorithm for finger closing. However,
taking all of the factors into account in the simulation is
difficult to implement and to validate. In this study, we focus
on investigating the effectiveness of considering dynamics in
grasp evaluation rather than building a dynamic simulator for
accurately reproducing grasping. Thus, our approach is to
concentrate on a small number of key factors directly affecting
grasp success or failure, and to remove other factors from
consideration.

More specifically, we investigate the effect of considering
two missing factors in the kinematic simulation – object
movement during grasping and pose uncertainty – on the
performance in estimating the actual grasp success rates
measured from experiments. Though the two factors always
exist in the real world and can affect the grasping result
significantly, they have been rarely considered at the same time
in most of previous research on grasp quality evaluation. In our
simulation, full 3D dynamics of the object, which is assumed
as a rigid body, is considered to capture its motion interacting
with the hand during grasping. The uncertainty in the object
pose is handled by running the dynamic simulation multiple
times where each simulation starts from a slightly different
initial condition sampled from an error model. To simplify
the problem, the dynamics of the robot hand mechanism is
ignored. A simple penalty-based contact model is used to
consider the interaction between the object and the hand
during grasping. We also assume a simple open-loop grasp
controller where the closing speed is adjusted based on grasp
contact forces. Better estimation of the success rate of such
an open-loop grasp is useful in itself for systems that rely
on a relatively simple finger closing mechanism for grasping.
Our approach, however, may also be used in conjunction with
more sophisticated sensor feedback driven grasping algorithms
to remove poorly performing grasps from consideration.

In our prior work [19], we evaluated the quality of grasps
with a new method considering the two key factors, and
showed its effectiveness in estimating actual grasp success

Fig. 1. (Left, middle) Two high ranking grasps chosen by a typical
existing method consisting of a kinematic grasping simulation with static
object assumption and a force-closure based quality metric [11]. However,
they look fragile and would not work well in the real world. (Right) A grasp
discarded by the existing method. Due to the static object assumption, the
object remains in its original location even after the finger contacts. As a
result, the palm still does not support the object and the grasp does not form
a force-closure. In the actual grasping, however, this would have resulted in
a stable power grasp.

or failure through an experiment with simple objects. We
extend the work by refining the suggested measuring algo-
rithm, adding more algorithms to the comparison, and testing
with more complicated objects. We also apply the method to
automatic grasp set generation and discuss the benefits of using
it over the existing method.

The rest of this article is organized as follows: We briefly
review relevant previous work in Section II, and introduce our
simulation based methods for grasp evaluation in Section III.
The robot experiment for measuring the actual grasp success
rates for selected grasps and objects is described in Section
IV. We compare the simulated grasp quality score data with
the measured success rates, and analyze the performance of
the tested evaluation methods in predicting the actual grasp
success rates in Section V. We apply the simulation-based
method to grasp set generation and discuss the benefit of using
the new method over existing methods in Section VI, and
conclude this work in Section VII.

II. PREVIOUS WORK

Much previous work on grasp quality metrics has focused
on analyzing the 6-dimensional space spanned by contact
wrenches. Li and Sastry [22] suggested using the smallest
singular value of the grasp matrix, which relates the fingertip
forces and the net wrench applied to the object, and the
volume of the wrench space as quality metrics. They also
proposed a task oriented quality measure to consider the type
of task to be done with the grasp. Ferrari and Canny [11]
suggested using the largest disturbance wrench that can be
resisted in all directions by the contacts. Geometrically, this
corresponds to the radius of the largest ball, centered at the
origin, which is contained within the convex hull of the unit
contact wrenches. This force-closure based metric is one of the
most popular methods for measuring grasp quality and has
been implemented in many systems for grasp analysis such
as GraspIt! [24]. Ciocarlie and Allen [8] proposed a metric
considering the distances between predefined contact points
on the hand and the object to assess the quality of a pre-grasp
which is very close to, but not in contact with the object,
and applied this to online dexterous grasp planning using
optimization on a low-dimensional subspace. Balasubramanian
et al. [2] investigated grasp quality measures that may be
derived from human-guided robot grasps and reported that the
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wrist orientation for the highly successful human generated
grasps tends to be aligned to the principal axes of the object
much more closely than for the GraspIt! grasps. Metrics
considering certain geometric relations of the contact points
have also been proposed in [5], [25], [27]. We refer readers to
[32] for a nice summary of a variety of grasp quality metrics.

Grasp quality measures have many applications such as
finding an optimal grasp [11], [18], [22], [25], and generating
grasp sets [10], [15]. In this paper, we primarily consider the
application of grasp set generation, although our findings are
relevant to other applications as well. A large grasp database
containing grasps of various objects was built using GraspIt!
[15]. Other manipulation planning tools such as OpenRAVE
[10] also provide a function to sample grasp candidates, test
them with a metric, and build a grasp set automatically in
order to use the precomputed grasp set in motion planning
algorithms such as RRT-Connect [20]. Most of the existing
methods for automatic generation of a grasp set obtain the
contact points of the grasp using a simple kinematic simulation
of finger closing with a static object assumption, i.e., the
object remains at the same position even after collision with
the fingers. However, the assumption does not hold in many
practical situations because the object can move significantly
in response to the collision during grasping and in such
cases the existing metrics may not give us useful information
on grasp quality. To handle the issue, we need to consider
dynamics of the object in the simulation for evaluating grasp
quality.

There are many solutions to obtain physically plausible
interactions between a robot hand and an object [1], [10], [21],
[23], [30], but most of them focused on building simulation
tools and did not investigate the effectiveness of using dynamic
simulation in evaluating grasp quality. Goldfeder et al. [13]
employed an approximate dynamic simulation, in addition to
the static simulation, where object response due to forces
applied by the hand is captured without considering other
environment forces such as the supporting surface, but they
did not discuss the efficacy of considering dynamics in their
grasp quality analysis in detail. Zhang et al. [35] explored
whether a dynamic simulation model can predict the actual
grasping process accurately, using a planar grasping testbed
equipped with a linear actuator as a thumb and three fixed
pins as fingers. They showed that simulation with a well-
calibrated model can be effectively used as a surrogate for
real experiments in their 1-dof planar grasping setting. In this
article we explore the efficacy of using dynamic simulation
in predicting the likely success or failure of a grasp in 3D
environment.

Another issue in evaluating grasp quality is data uncertainty.
There is an extensive body of research on action planning
in the presence of significant uncertainty such as the work
by Brost [4], and Goldberg and Mason [12]. However, we
assume that the robot is capable of estimating object pose with
moderate error. Zhen and Quian [36] investigated how small
uncertainty in the friction coefficients and contact locations
affects grasp quality. Christopoulos and Schrater [6] similarly
incorporated shape uncertainty into grasp stability analysis
of two-dimensional planar objects by considering the effect

of small changes in contact force position and direction.
Goldfeder et al. [13] handle shape uncertainty by cross testing
grasps with alternative shapes that are nearest neighbors to a
given model. Hsiao et al. [16] introduced a method considering
uncertainty in object shape and pose data by combining
the data from a set of object detection algorithms using a
probabilistic framework to find an optimal grasp.

Running multiple simulations with sampling has also been
used to consider pose uncertainty in evaluating the quality
of a grasp. OpenRAVE [10] computes grasp repeatability
statistically by iterating kinematic grasping with randomly
sampled object pose deviations and identifies the grasp as
fragile if the deviation of the gripper’s surface points is
significantly larger than the deviation of the object’s surface
points. Most recently, Weisz and Allen [33] incorporated pose
uncertainty into the static grasp quality analysis by computing
the probability of force-closure in the presence of pose error.
They sampled pose error uniformly from a 3-dimensional error
model representing an object on a support plane and applied
the existing force-closure analysis to compute the probability.
In our prior work [19], we took a similar sampling approach
to consider pose uncertainty. However, we used a probabilistic
distribution model for the pose error and incorporated object
dynamics along with different metrics into the grasp quality
evaluation.

Notably, the effects of uncertainty and dynamic effects
together have not been examined in detail, with simulation
results compared to experiments in prior research. In [19] we
show that considering both effects together is critical. In the
present manuscript we build upon and elaborate those results.

III. GRASP QUALITY EVALUATION

In this section we describe the elements we used to evaluate
the quality of a grasp in detail. Open-loop grasping is simu-
lated using our in-house physically-based grasp simulator and
the quality of the grasp is evaluated based on the simulation
result with a few measures which will be detailed below. In
order to consider the object pose uncertainty, the simulation
is repeated multiple times for each grasp where, at each trial,
the simulation starts from a slightly different initial condition,
and then the evaluated scores are averaged.

A. Grasping Simulation

In our simulation, after placing an object on a planar surface
and moving the robot hand to a particular place specified by
the grasp definition, we close the fingers to grab the object
with closing speed adjusted based on the magnitude of the
calculated contact forces. After all fingers have been closed,
the hand is lifted a certain distance in order to see if the grasp
can hold the object without ground support.

Full 3D rigid body dynamics of the object is considered
to capture its motion interacting with the robot hand and the
planar surface during the grasping process. More specifically,
at every time step, the acceleration of the object is calculated
from the current state of the object and the contact forces, and
then is integrated to obtain the state of the object at the next
time step. The frictional contact forces between the object and
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the hand, and between the object and the ground, are computed
using a penalty-based method by Yamane and Nakamura [34].
The hand geometry is modeled as a set of uniformly distributed
points, and a point-triangle collision detection algorithm is
used to find the contact points.

We use a kinematic hand model consisting of the rigid links
and the finger joints. The joints are driven by motors to close
the fingers, and the closing speed is adjusted depending on the
magnitude of the motor torque by

v =

{
v0(1− τ

τm
) (τ < τm)

0 (τ ≥ τm)
(1)

where the motor torque τ is obtained by converting the contact
forces using Jacobian matrices and the nominal closing speed
v0 and the torque limit τm are set by users. As the motor
torque increases due to the forces at the contacts, the motor
speed is reduced linearly. Note that the motor torque is highly
approximated by ignoring the dynamics of the mechanical
hand and the actual control system. The method, however,
is still effective in simulating a simple open-loop closing
mechanism, that is often found in many robotic systems, while
saving the large amount of effort that would otherwise be
required to obtain an accurate model of the complicated hand
dynamics.

If the motors continue to close the fingers after touching the
object, the fingers penetrate the object a little bit more at the
next time step. This increases the penalty-based contact forces,
and accordingly, decreases the closing speed. This mechanism
eventually stops the closing at some point when the motor
torque exceeds a given limit. Optionally, we can set a break-
away torque so that the finger can keep closing with its outer
joint only while the inner joint remains in place when the inner
link has been blocked by the object. Finally, if all fingers have
been closed or do not move for more than some period of
time, the hand starts lifting the object to a certain point along
a predefined trapezoidal velocity profile. During lift-up, the
finger closing mechanism is still running, so the fingers keep
squeezing the object and can close further when the object
moves due to the changing circumstances. In our simulation
the fingers are not back-drivable.

We monitor the simulation results such as the object pose
and the contacts at each time step. After the simulation is done,
we evaluate the grasp quality based on the gathered simulation
data using the measures described below.

B. Grasp Quality Measures

As mentioned before, our focus in this study is on predicting
the likely success or failure of a grasp using simulation. A
grasp is regarded as successful when the hand can grab the
object securely by closing the fingers from the grasp, and as
a failure if the robot drops the object during the grasping
process. Thus, one obvious way to evaluate the success or
failure of a simulated grasp is to check if the hand still
holds the object after the grasping simulation by counting
the contacts between the object and the hand (Measure B).
However, we are also interested in developing a new measure
based on the monitored simulation data such as pose deviation

during grasping (Measure C) and investigating if such a
measure is effective in estimating grasp success or failure.
Finally, a popular existing measure is employed in our analysis
for comparison purposes (Measure A).

• Measure A: Maximum disturbance wrench
Computing the maximum disturbance wrench that can
be resisted by the contacts (Ferrari and Canny [11]) is
one of the most popular ways to evaluate the quality
of a grasp, and this metric has been used in many
grasp analysis tools [10], [24]. Once a final grasp
configuration with contacts has been obtained after the
grasping simulation, we compute the minimum distance
to the boundary of the convex hull of the unit contact
wrenches to obtain the maximum disturbance wrench
that can be resisted. We use OpenRAVE [10] to perform
the computation. Note that even with this metric, our
approach differs from the approaches used in the existing
tools because we consider the dynamic motion of the
object, which may be substantial, during grasping.

• Measure B: Number of contact links
One simple way to evaluate the success or failure of a
simulated grasp is to check if the hand still holds the
object by counting the contacts between the hand and
the object after the grasping process. We judge that a
simulated grasping has failed if the object was out of the
hand or it had contacts with less than two hand links at
the end of grasping. If the object was held within the hand
and supported by three or more links, we regard the grasp
to be successful. If the object was supported by only two
links so that it may dangle, we give a half credit to the
grasp. Note that we count the number of contact links,
not the number of contact fingers, so grabbing with only
two fingers can still get the full credit in some situations.
After the lift-up process, our system counts the number
of contact links, and measures the quality score using the
following 3 step scoring system:

– 1: The hand is holding the object with three or more
contact links.

– 0.5: The hand is holding the object with only two
contact links, so the object is likely to dangle.1

– 0: The hand failed in grasping the object.
The metric is easy to implement in the simulation
system and also convenient to apply to the experiment
for measuring the actual grasp success rates (Section IV).
The 3-step scoring system does not return a continuous
score so it might not discriminate a good grasp from
bad ones very well or vice versa. We make up for this
by averaging the score values obtained from multiple
simulations (Section III-C). The score value could also
be weighted by the number of contact points at each link
or the contact properties such as the normal direction
for possible improvement, but those were not tested in

1Although we did not consider this, in case of non-rigid object or fingers,
two contacts can form a force-closure or stable grasp due to the non-zero
contact area. Refer to [7] to see how to incorporate soft contact into a force-
closure based grasp analysis.
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this study.

• Measure C: Pose deviation
Here we assume that a grasp is better if it makes the
object move less during grasping because unintended
object movement caused by finger contacts is likely
to increase the chance of failure in grasping. At each
time step, the relative pose of the object to the hand is
monitored and the pose deviation from the initial pose is
calculated. Then, a grasp quality score is obtained by:

q =

{
1− δ

L (δ < L)
0 (δ ≥ L)

(2)

where δ is the pose deviation and L is a deviation
limit which is introduced to normalize the deviation and
defined by user.
We consider the deviation in the position and orientation
separately and compute them with

δp = ‖pcom − p̄com‖, δR = ‖log(R̄TR)‖ (3)

where pcom ∈ <3 and R ∈ SO(3) denote the relative
center of mass position and the orientation of the object
with respect to the hand coordinate system, and the bar
symbol represents the reference value for measuring the
deviation. Note that δp and δR are invariant under change
of coordinate frames for the hand and the object.
We can apply the quality measure in many ways. One
way, which is used in this paper, is to use the pose
deviation at the end of grasping which measures the
difference between the planned and final object poses
with respect to the hand. In our analysis (Section V-A),
we set the deviation limit L to 5 cm and 30 deg for
position and orientation respectively2, and the obtained
quality scores for position and orientation were averaged.
Another way is to use the maximum pose deviation
during grasping, which is more conservative. We can
also try using the pose deviation measured in a particular
period of time, such as the lift-up process as tested in our
prior work [19].

C. Object Pose Uncertainty

In the real environment, we do not know the exact positions
and orientations of the hand and the object due to sensor uncer-
tainty. Thus, the actual hand pose relative to the object before
grasping is always different from the ideal pose specified by
the grasp definition, and this error can affect the success or
failure of the grasp significantly.

There are two major sources of sensing error in the robot
system we used in our experiments – a vision-based object
pose estimation system and a cable-driven robot arm manipu-
lator3. The actual uncertainty is affected by many factors. For

2We set 1 cm and 10 deg for the deviation limits in our prior work [19].
In this work we increased the values to 5 cm and 30 deg because we added
larger objects such as Long box and Watering can in the experiment (Table
I). However, it is unclear to us whether using different values (e.g., by scaling
to the size of the object) for each object would be better than using constant
values as we did in this study.

3WAM Arm from Barrett Technology Inc.

example, the object pose error from the vision-based system
may vary depending on the position of the object. The arm
manipulator is known for its high backdrivability, but the cable
driven mechanism makes it difficult to achieve precise position
control, so the end-effector pose error may vary depending on
the joint configuration and loading and also in time even after
the calibration is done. Thus, it is very difficult to precisely
measure the amount of uncertainty while considering all the
possibilities that can arise in the real environment.

One way to consider pose uncertainty is to run multiple
grasping simulations starting from slightly different initial
conditions for each grasp where the initial condition is set
by sampling from an error model representing the pose un-
certainty. OpenRAVE [10] computes grasp repeatability by
iterating kinematic grasping with randomly sampled object
pose deviations. Weisz and Allen [33] used a regular sampling
from a bounded 3-dimensional parametrization space (x, y, θ)
to obtain the probability of obtaining a force-closure grasp, but
applying a regular sampling to the full 6-dimensional pose
space error is computationally expensive. Note that existing
approaches assume the object is stationary during the grasping
process and do not consider the effect of the pose error on the
movement of the object during grasping.

We use a Monte Carlo method. For each grasp, the grasping
simulation is repeated multiple times where the initial condi-
tion is set by randomly sampling from a probabilistic pose er-
ror model, and the evaluated grasp quality scores are averaged.
We assume the pose uncertainty follows a normal distribution
in the 6-dimensional pose space. In most of the simulation
results shown in this paper, we used (ep, eR) = (5mm, 5deg),
for every object, where ep and eR denote the expectations of
the half-normal distributions for the positional and rotational
pose errors respectively.4 We note that, however, we have not
measured the actual pose uncertainty in our robot system.
Our focus in this study is on investigating the qualitative
effect of considering pose uncertainty rather than on making a
physically correct model of the real world (see Section V-A).
We will also discuss how the change of the parameters of our
uncertainty model affects the simulation result in Section V-B.

One of the main issues in using a Monte Carlo method is
to set an appropriate sample size. If the sample size is too
small, the result will not reflect the underlying uncertainty
correctly. If the size is chosen too large, the method can
become computationally too expensive. In order to determine
an appropriate sample size for our grasp quality evaluation,
we observed how the estimated quality scores and their range
of error change with iterations. Figure 2 shows the error bars
of the evaluated grasp quality scores for three test grasps. For
each grasp, we ran 20 sets of independent sampling processes,
and each process iterated up to more than 1000 times. At each

4In our prior work [19], we used (ep, eR) = (1cm, 6deg) in the
analysis where the parameter values were determined based on the reported
accuracy of the vision-based object pose estimation system (MOPED-1V
[9]) used in the experiment. However, this does not include other sources
of sensing error such as manipulator calibration error which we did not
measure. In this paper we examined nine different sets of the parameters
{(5mm, 5deg), (5mm, 10deg), · · · , (15mm, 15deg)} to see how the pa-
rameter setting affects our grasp quality analysis. See Section V-B for more
detail.
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Fig. 2. The mean and standard deviation of the grasp quality score over the
iterations.

iteration in a process, the grasp quality score was obtained by
averaging the quality values in the current and all previous
iterations. Then, the mean and standard deviation of the quality
scores of all 20 processes were computed at each iteration, and
marked in the figure at every 50 iterations. The grasp quality
score appears to start getting stabilized from 50 iterations, and
based on this observation, we set 100 as the sample size for
testing a grasp under uncertainty. Note that, however, there is
no specific rule of thumb for deciding the sample size. For
example, considering a substantial reduction in the standard
deviation between 100 and 150 samples in the middle graph
of Figure 2, one can be more conservative by choosing a larger
number (e.g., 150) as the sample size.

IV. EXPERIMENT

In order to evaluate the performance of the simulation-
based method described in Section III in predicting the likely
success or failure of a grasp, we measured actual grasp success
rates experimentally. In our experiments we used an open-loop
grasp with a simple finger closing mechanism. After the robot
grabs an object with the grasp under testing, we manually
inspect the final grasp configuration with our own scoring
systems and repeat this multiple times to obtain an averaged
score value which is regarded as the actual grasp success rate
of the grasp.

We conducted the experiments with HERB, a service robot
equipped with Barrett WAM arms and Barrett hands [31].
The procedure of our grasping experiment is shown in Figure
3. At each trial for testing a particular grasp, we place an
object at a random location on a table. The robot estimates
the pose (or the position and orientation) of the object using
its own vision-based system [9]. Based on the estimated object
pose, an RRT-based robot planner creates a trajectory to the
grasp and executes the robot to approach the object along the
trajectory. When the robot hand has reached the grasp pose
(i.e., the pre-grasp), we command the robot to close the fingers
to grab the object and then lift it up. Finally, we examine the
grasp manually as described below and mark the score of the

Fig. 3. Procedure of our experiment

grasp. For each grasp of an object, we repeated this 10 times
to obtain an averaged quality score of the grasp.

In the experiments we focused on the success or failure of
grasping. If the robot hand has failed in grasping the object
(e.g., dropping, which is quite obvious to judge by the human
operator), we give the score of 0 to the grasp. If the hand
successfully grabbed the object and the final grasp is secure,
we give the score of 1 to the grasp. But, in reality, there exist
situations that are hard to judge success or failure — in fact,
even though the robot can grab an object, it is not always easy
to say that the grasp is secure or fragile.

People are the best experts at grasping, and we believe
that humans are also expert at judging how good or secure
an established grasp would be in performing a task such as
moving the object into another place. Perhaps, a person can
make a best decision on this when he or she is allowed to touch
and jiggle the object and the robot hand with his or her own
hand interactively and feel the stability of the grasp, which is
reflected in our interactive inspection method described below.
We also tested a simplified method which counts the number
of contacts visually without touching the object. The visual
inspection is conceptually the same as Measure B described
in Section III-B, and can be regarded as a possible surrogate
for the interactive inspection as discussed later (Figure 5).

• Visual inspection with a 3-step scoring system:
We use the same 3-step scoring system (Measure B)
described in Section III-B. We regarded a final grasp
with three or more contacts as a success and gave the
score of 1 to the grasp. In case the fingers grabbed the
object with only two contacts so that the object could
possibly dangle, we gave 0.5 to the grasp. If the hand
failed in grasping, we gave 0 to the grasp. We inspected
the final grasp with our naked eyes without touching the
object to count the number of contacts. Note that, again,
we are counting the number of contact links, not the
number of contact fingers.

• Interactive inspection with a 5-step scoring system:
We deliberately touched and jiggled the object grabbed by
the robot hand with human hand to feel the stability of the
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Fig. 4. The grasps used in the experiments. They were also used in our performance analysis described in Section V-A.

grasp, and marked the quality score using the following
5-step scoring system.

– 1: Stable grasp (unmovable by the small disturbance
force).

– 0.75: The object moves by the disturbance force, but
will not drop.

– 0.5: The object is movable and droppable by the
disturbance force.

– 0.25: The grasp is fragile (won’t be able to carry the
object with the grasp).

– 0: Grasping failed.
At least two people participated in the measurement and
achieved consensus at every trial to try to keep objectivity
in scoring. The forces applied to the object by the human
hand for inspection were about 2 N or less.

One advantage of using manual inspection methods is
that we can directly use human intuition and experience in
evaluating the quality of a grasp. Such a direct use of human
intelligence in decision making often leads to a better and
reliable result.5 However, this requires a significant amount
of human labor, and also, the scoring might not be objective
though we tried to attain objectivity as much as possible. To

5For example, Balasubramanian et al. [2] showed human-guided grasps
often perform better than the best grasps chosen by GraspIt!.

TABLE I
THE OBJECTS TESTED IN OUR EXPERIMENTS

Objects Description Mass (g)
Pop-tarts A paper box filled with contents. 175

Fuze bottle A plastic juice bottle filled with water. 595
Mug A plastic mug. 80

Watering can An empty plastic watering can. 430
Long box A paper box filled with contents. 880

alleviate these issues, one can employ an automatic evaluation
process such as the one used by Morales et al. [26] where they
used three consecutive shaking movements of the hand to test
the stability of a grasp in conjunction with tactile sensors for
checking whether the object has been dropped by the shaking.

Five objects have been tested in the experiments (Table I).
For each object, we generated a set of force-closure grasps
using OpenRAVE and manually chose the 10 grasps, shown in
Figure 4, having different approaching directions and distances
from the object. The mug, long box, and watering can were



IEEE TRANSACTIONS ON ROBOTICS (ACCEPTED, PREPRINT) 8

Fig. 5. (Left) Correlation between the two sets of experimental grasp quality
scores. (Middle, right) The quality scores of the grasps for Mug and Watering
can. The numbers in gray are the correlation coefficients.

tested with both 3-step and 5-step scoring systems while Pop-
tarts and Fuze bottle were tested with the 3-step scoring system
only. Figure 5 shows the two sets of the experimental grasp
quality scores with their statistical correlation values.6 Though
their magnitudes are somewhat different, the two score sets
show a very good consistency. For the big objects (long box
and watering can), the correlation coefficients between the
two score sets were very high while the coefficient got a
little bit lower for the small and light object (mug). We used
the experimental data obtained from the visual inspection (3-
step scoring system) as the ground truth when we evaluate
the performance of the simulation-based methods (Section V)
because we used it for all objects. However, because of the
good consistency between the two scoring systems, we also
got a similar result when we replaced it with the interactive
inspection data.

V. RESULTS

In this section we investigate the performance of simulation-
based methods in predicting the actual grasp success or failure.
We calculate the quality scores using the measures described in
Section III-B and obtain the correlation coefficients between
the score sets from the simulations and the experiment. We
also examine the effect of changing parameter settings for the
uncertainty model and finger closing on the performance of
the methods.

A. Performance Analysis

We first examine an existing method, or the combination
of the kinematic grasping and a force-closure based measure,
which is one of the most popular methods that has been
used for generating grasp sets automatically. According to our
study, however, the method turned out to be poor in predicting
the actual grasp success rates. We additionally investigate the
effect of adding the missing two elements – object dynamics
and pose uncertainty – one by one or at the same time to the
grasping simulation, and see which method is most effective in
estimating the actual grasp success or failure, which is the core
of this study. Eight combinations of the simulation elements
have been tested for this purpose as listed below7:

6We use Pearson’s correlation defined as ρ =
cov(X,Y )
σXσY

where cov means
covariance and σX and σY are the standard deviations of the two data sets
X and Y .

7The label characters ‘S’, ‘D’, ‘U’, ‘a’, ‘b’ and ‘c’ represent ‘static’,
‘dynamic’, ‘uncertainty’, ‘Measure A’, ‘Measure B’, and ‘Measure C’ re-
spectively. See Section III-B for the description of the measures.

• Sa: Static object + Measure A (Existing method)
In this method the fingers close kinematically until they
touch the object or reach joint limits and the object
is assumed to be static during the grasping. Then, the
magnitude of the maximum wrench that the grasp can
resist is measured by calculating the minimum distance to
the boundary of the convex hull of the contact wrenches
(Ferrari and Canny [11]).

• SaU: Static object + Measure A + Uncertainty
We added the object pose uncertainty to the existing
method by running multiple simulations for each grasp
and averaging the quality scores as described in Section
III-C.

• Da: Dynamic object + Measure A
We run the physically-based grasping simulation de-
scribed in Section III-A, and evaluate the grasp quality
with the existing force-closure based measure.

• DaU: Dynamic object + Measure A + Uncertainty
The uncertainty in the object pose is added to the previous
method by running multiple simulations for each grasp.

• Db: Dynamic object + Measure B
After running the physically-based grasping simulation,
we evaluate the quality of a grasp using the 3-step scoring
system based on the number of contact links at the final
grasp configuration.

• DbU: Dynamic object + Measure B + Uncertainty
The pose uncertainty is added to the previous method by
running the simulation multiple times for each grasp.

• Dc: Dynamic object + Measure C
After running the physically-based grasping simulation,
we calculate the score values using (2) from the transla-
tional and rotational deviations at the final grasp config-
uration. We set the deviation limit L to 5 cm and 30 deg
for position and orientation respectively.

• DcU: Dynamic object + Measure C + Uncertainty
Again, the uncertainty in the object pose is added to the
previous method by running multiple simlations for each
grasp.

For each object, we computed the quality scores of the
same 10 grasps, which we had tested in the experiments, using
the simulation methods listed above. Then, we evaluated the
ability of the methods to predict the actual grasp success or
failure by calculating the correlation coefficient between the
simulated scores and the experimental data (visual inspection),
which is summarized in Figure 6.

In the top row of Figure 6 we compare the grasp quality
scores from the existing method (Sa) with the actual grasp
success rates obtained from the experiment. The numbers in
gray denote the correlation coefficients between the two score
sets. As seen from the graphs, the two data sets for each object
have no consistency and, as a result, the correlation is very
low. This implies that the existing method does not predict the
actual grasp success or failure well. In the paragraphs below
we explore the ways of possible improvements listed above by
adding missing factors, such as pose uncertainty and dynamics,
to the simulation or applying different quality measures, and
investigating their effects on the performance.
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Fig. 6. The performance of the simulation-based methods in predicting the actual grasp success rates obtained from the experiments. (Left) The correlation
coefficients of the tested methods. (Right) Comparison of the quality scores from the methods and the experiments. The number in gray at the lower right
corner is the corresponding correlation coefficient. (Correlation is not defined for Mug(Db) because standard deviation of the Db scores is zero.)

We first tried adding pose uncertainty to the existing method
by repeating the kinematic grasping where the initial object
pose relative to the hand is set slightly differently by sampling
the pose error from a normal distribution model. In our
test, however, this method (SaU) did not make meaningful
improvement in estimating the actual grasp success rates as
shown in the second row of Figure 6. For some objects,
the correlation coefficients have increased compared to the
existing method, but overall, the correlations are not high
enough to be effectively used for estimating the likely success

or failure of actual robot grasping.

The third row of Figure 6 shows the results of considering
object dynamics in the grasping simulation. The three mea-
sures described in Section III-B were used to evaluate the grasp
quality after grasping and their corresponding results were
marked as Da, Db, and Dc respectively. The pose uncertainty
was not considered here. Overall, the methods did not show
consistency across the objects – for example, the methods Db
and Dc showed relatively good correlation for the two big
objects (Watering can and Long box), but not for the other
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Fig. 7. Lifting up Long box in simulation (upper) and experiment (lower).
In the simulation the hand was able to hold the grip of the object even after
the rotation by the gravity, but in the experiment, the robot hand dropped the
object in such a situation. In our experiment with Long box, instead of having
the robot lift it up automatically, we had to manually remove the base support
carefully due to the limitation of the robot arm workspace.

objects. Especially, the quality score from the method Db tends
to be all-or-nothing and this makes it difficult to discriminate
better grasps effectively. The third graph (Mug) in the third
row of the figure is a good example of this – all of the 10
grasps got the same score of 1 because they ended up with
successful grasps with three or more contact points, which
could happen quite often in the simulation even though it may
not be so plausible in the real world. Thus, in such situations,
we anticipate that adding pose uncertainty to the simulation
would be effective in discriminating better grasps from worse
ones.

In order to investigate the effect of considering object
dynamics and pose uncertainty at the same time, we have
tested three methods (DaU, DbU, and DcU) where each of
them uses different measure to evaluate the quality of a grasp
while using the same physically-based grasping simulation
and pose uncertainty model. In our experiment the method
DbU, using the measure based on the number of contact
links (Measure B), showed the best consistency with good
performance in estimating the actual grasp success rates of the
tested objects (Figure 6, fifth row). This is perhaps because
the method uses the same 3-step scoring system based on
the number of contact links which has also been used in the
experiments.

The method DbU, however, showed some limitation in
distinguishing better performing grasps from others for some
objects. For example, in our test, the method showed a poor
performance compared to our initial expectation for the long
box. We had anticipated that the method would work very
well for the object because the movement of the long object
during grasping is largely affected by the gravity and our
physically based simulation can effectively capture this. It
turned out that the relatively poor performance was because

the slip movements after the large rotation occurring in the lift-
up stage were not correctly captured by our simple frictional
contact mechanism based on a penalty-based method and the
Coulomb friction model. More specifically, as shown in Figure
7, our grasping simulation tends to hold the long box even
after the large rotation by the gravity while the real robot
hand dropped the object quite often in such a situation, and
this is why counting the number of contacts did not work well
for the object.

Using the force-closure based measure (Measure A) in the
method DaU also resulted in a relatively good consistency
across the objects except for the small and light plastic mug
(Figure 6, fourth row). It is very difficult to reproduce the com-
plicated actual movements and the final grasp configuration
through a physically-based simulation for such a small and
light rigid object due to the limitation in model correctness
that can be achieved in practical time and effort. Thus, the
simulated contact points at the final grasp configuration can
be quite different from the actual contact locations seen in the
experiment. For this reason, we speculate that the force-closure
based measure can be more sensitive to the simulation error
than the simple measuring mechanism counting the number
of contacts after grasping (Measure B), especially when both
were applied to predicting the likely success or failure of a
grasp.

We did not consider the pose deviation in measuring the
grasp quality in our experiments, so it would not be so sur-
prising to see the method DcU, measuring the pose deviation
at the final grasp configuration, show very low correlations to
the experimental data (Figure 6, bottom row). Interestingly,
however, the method worked for the large objects (Watering
can and Long box). We speculate this is because a large
pose deviation of the objects during the grasping and the
lift-up stages usually resulted in the loss of grip in our
experiments, and such a situation is handled by penalizing
the pose deviation in the method DcU.

In summary, the existing method (Sa) showed poor per-
formance in estimating the likely success or failure of the
actual robot grasping. Adding pose uncertainty to the existing
method (SaU) increased the correlation to the experimental
data slightly, but still the performance is not enough for
using the method in predicting the actual grasp success rates.
Considering object dynamics (Da, Db, and Dc) can make
some improvement in simulating the actual robot grasping,
but their performance was not consistent across the objects.
Finally, we observed that considering both object dynamics
and pose uncertainty in the simulation can bring a significant
improvement in performance with consistency as shown in the
method DbU.

B. Sensitivity Testing

We have used the same setting for pose uncertainty in
every simulation result shown in Section V-A, but the ac-
tual uncertainty may vary depending on many factors such
as the object type and even the location of the object as
mentioned in Section III-C. In order to investigate the effect
of parameter change on the simulation results, we repeated the
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Fig. 8. Correlation for various parameters for pose uncertainty. The blue, red, and magenta bar clusters represent the method DaU, DbU, and DcU respectively.
For each method, we tested nine sets of parameters for pose uncertainty. The rightmost diagram shows the parameter values we used in the test and their
numbering – for example, in order to obtain the first bar (from left) of each method, we set (ep, eR) = (5mm, 5deg) as the expectations of the half-normal
distributions for the positional and rotational errors, which is the original setting of the simulations shown in Section V-A.

Fig. 9. Correlation for various settings for finger closing. Each row represents
the result of a different finger closing setting where the top row is the result
of the original setting used in Section V-A. The bar clusters in blue, red and
magenta represent the methods DaU, DbU, and DcU, which are considering
object dynamics and pose uncertainty, and each bar in the clusters shows the
correlation value of a particular uncertainty setting described in Figure 8.

same analysis multiple times with different sets of uncertainty
model parameters and showed how the performance of the
methods changes depending on the parameter setting in Figure
8. Though the individual score values are somewhat different
depending on the parameters, overall, the performance (or
correlation) of each method was well preserved in most of
the objects except for the plastic mug. This suggests that,
as long as the object is not too small and light, considering
pose uncertainty with a reasonable parameter setting would
be still beneficial to predicting the likely success or failure
of the actual grasping more correctly, even though we do not
have good information on the actual uncertainty. However, in
case of the small and light object (Mug), the simulation result
was very sensitive to the change of parameters. We speculate
that this is because the small size and light weight increases
uncertainty in the dynamic response of the object to finger
closing, and as a result, a less accurate uncertainty model can
degrade the performance of the methods more significantly.

We have also investigated the effect of change in our simu-
lation setting for finger closing such as break-away and target
joint angles. In the simulations in Section V-A we disabled
the break-away function and set the target joint angles same
as the ones used in the experiments. Two additional settings
have been tested – first, the break-away function was enabled,

TABLE II
FRICTION COEFFICIENTS USED IN OUR SIMULATION

Objects Friction coefficients (µs, µd)
(finger tip) (table)

Pop-tarts 0.50, 0.30 0.30, 0.20
Fuze bottle 0.50, 0.30 0.30, 0.20

Mug 0.47, 0.39 0.19, 0.14
Watering can 0.40, 0.30 0.23, 0.14

Long box 1.53, 0.45 0.36, 0.19
µs : static coefficients, µd : dynamic coefficients

and second, the target joint angles were disabled so that the
fingers can close further up to their joint limits – and the results
are shown in Figure 9. Changing the break-away condition
affects interaction between the fingers and the object during
grasping directly, so this caused some change in the simulation
results.8 As expected, the light and small object (Mug) was
more affected by this than the other objects. Closing the
fingers further, however, did not make meaningful change for
most objects. Only Fuze bottle showed some change in the
correlation coefficients because the power grasping around the
narrow neck of the bottle object can be directly affected by
the change in the target joint angles. Note that, however, the
overall trend in the correlation coefficients across the methods
and the uncertainty settings was well preserved in both cases,
and this also supports our finding that considering both object
dynamics and pose uncertainty improves the performance in
predicting the actual grasp success rates consistently even with
the presence of a small range of errors in modeling.

C. Simulation Setting

Considering object dynamics in the grasping simulation is
very computationally expensive compared to the kinematic
simulation used in the existing method because the step size
for integration must become much smaller in order to capture
the fast and complicated response of the object by the collision
during grasping and suppress numerical instability. In our
dynamic simulation we set the step size as 0.5 msec for
the simple objects such as Pop-tarts, and 0.2 msec for more
complex objects such as Mug, and this requires up to 20,000
iterations of collision checking and solving the equations of
motion of the rigid object for a single grasping simulation.

8This is just for investigating the effect of closing mechanism change on
the simulation result. The breakaway cannot be disabled in the actual Barrett
hand used in our experiment.
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Fig. 10. Representative grasps chosen by the method considering dynamics
and uncertainty (DcU+DbU, upper) and the existing method (Sa, lower). See
Figure 11 for the top 10 grasps of each object using each of the two metrics.

In our implementation, it took about 3.6 sec in average to
physically simulate Mug grasping on a desktop PC with an
Intel Core 2 CPU running at 2.83 GHz where more than 90%
of the computation time was spent for collision checking. On
the other hand, in the kinematic grasping for the existing
method, at most about 200 iterations of coarse and fine
stepping suffice to obtain the contacts between the object and
the robot hand. It took about 0.1 sec in average to run the
kinematic grasping with OpenRAVE on the same machine.

We used a penalty-based contact model by Yamane and
Nakamura [34] and Coulomb friction model. The friction
coefficients were obtained by measuring the forces that we
applied to push the object while having the robot hand grab it
with a pinch grasp, and the grasping force of the hand.9 Table
II shows the friction coefficients we used in our simulation.

VI. APPLICATION: GRASP SET GENERATION

We have applied the simulation-based evaluation methods
to automatically generating grasp sets. For each object, 1000
grasps were randomly chosen from a myriad number of grasp
candidates which were generated using a simple geometry-
based sampling technique [3] implemented in OpenRAVE. We
set positive values for the distance between the palm and the
object in sampling to avoid unwanted collision at the pre-
grasp stage. Then, the quality scores of each grasp candidate
were evaluated using the methods. Note that the grasp eval-
uation methods are independent of the sampling method, so
any sampling technique for generating grasp candidates can
replace the current sampler.

In Figure 10 we compared the typical grasps chosen by the
method considering dynamics and uncertainty (DcU+DbU),
and by the existing method (Sa). Also, see Figure 11 for the top
10 grasps of each object using each of these two metrics. For
DcU+DbU, we chose the grasps with minimal pose deviation
(Measure C, DcU) among the grasps having more than 90%
of simulated grasping success rates (Measure B, DbU).10Note
that any combination of the measures can be used here. For
example, one can add DaU to this in order to ensure the
final grasp configuration forms a force-closure which is not
a feature of DbU and DcU. As seen in the figures, the method

9For some objects, we failed in measuring the friction coefficients and used
moderately reasonable values instead. For example, in the case of Watering
can, the trunk was too big and the handle was too narrow to be grabbed
by the finger tips for measuring friction. For Fuze bottle, we failed to get
reasonable force data during the simple friction test possibly because of the
local deformation on the plastic bottle surface by the pinch grasp.

based on dynamic simulation tends to choose power grasps
using both palm and fingers for better success rates, while the
existing method sticks to the pinch grasps as mentioned in
Section I. We will discuss this difference further later in this
section.

In Figure 12 we showed the top 30 grasps chosen by
Sa, SaU, and DcU+DbU respectively. Obviously, the existing
method (Sa) does not have an ability to recognize unrealistic
grasps such as edge grasp which is likely to cause a failure
in the real environment. Adding uncertainty to the existing
method (SaU) can improve this to some extent, but still there
remain many unrealistic grasps in the chosen grasp set, while
most of such grasps were excluded by considering dynamics
and uncertainty (DcU+DbU). In Figure 13 the chosen grasps
are marked as blue circles (Sa), green squares (SaU), and red
dots (DcU+DbU) in the scatter plot where the dots represents
the simulated quality scores (DbU and DcU) of the 1000 grasp
candidates. In the simulation test, 10 out of the top 30 grasps
had a simulated grasp success rate less than 40% for both Sa
and SaU and the average rate of the 30 grasps was about 60%
for both, which indicates that the grasp sets generated with
the existing method and its variant considering uncertainty are
likely to cause frequent grasp failure in the real robot grasping.

Interestingly, the method considering both dynamics and
uncertainty (DcU+DbU) chose quite realistic grasps in type
and location that are very similar to the actual human grasps on
the handle (Figure 12, right). We could also observe a similar
result for the drill object, and showed the accumulated finger
prints of the grasps in Figure 14. Apparently, if available, the
method based on dynamic simulation tends to choose a grasp
utilizing the design feature for grasping such as handles to
increase the grasp success rates, which results in more robust
and natural grasps.

In order to consider the pose uncertainty in the grasp quality
evaluation, we ran the grasping simulation 100 times for each
grasp. This means we had to run 100,000 iterations of the
grasping simulation to choose good grasps from the 1000
grasp candidates. This took about 4 days for the dynamic
simulations and about 3 hours for the kinematic simulations in
case of the plastic mug. The long computation time is not so
critical in offline running for known objects, but prevents the
method from being used for unknown objects online. Note
that, however, the grasping simulations are independent of
each other, and thus parallelizable.

The computation time can be significantly reduced by using
heuristic grasp filtering. In our experience, if the robot hand
has failed to grab an object located at its nominal position
(without uncertainty) with a grasp, the grasp is not likely to
become a good grasp and we do not need to test the grasp
any more. Also, if the averaged grasp success rate from the
first 10 simulations (with uncertainty) is lower than a reference
value (90% in our test), we can discard the grasp instead of
proceeding the remaining 90 simulations. Figure 15 shows
an example of heuristic grasp filtering for the watering can
where the green dots and the pink dots represent the grasps
that can be discarded after the first and the tenth simulation

10See, for example, the red dots in Figure 13.
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Fig. 11. The top 10 grasps chosen by DcU+DbU (upper, red boxes) and Sa (lower, blue boxes). Simulated final configurations of the grasps are shown here
for convenience in visual comparison.

respectively. Less than 200 (shown as the black dots) out of
the 1000 grasp candidates need the full 100 simulations to
consider the pose uncertainty, which can save up to 80% of
the computation time.

As mentioned above, any sampling technique for generating
grasp candidates can be incorporated with the simulation-
based grasp evaluation methods. In particular, running dy-
namic simulations multiple times for every grasp candidate is a
very expensive process, so reducing the sampling search space
by choosing an appropriate method can greatly improve overall

processing speed. For example, one can use other sampling
techniques such as eigengrasps (a low-dimensional basis for
grasp configuration) [8], a superquadratic decomposition tree
[14], and a grid of medial spheres [28] to reduce the search
space significantly without sacrificing potentially high quality
grasp candidates too much. We speculate that the existing
force-closure based method can also benefit from such a
sampling technique by taking more meaningful and natural
grasp candidates into account. Note that, however, even in such
a case, our evaluation method based on dynamic simulation
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Fig. 12. The top 30 grasps chosen by the existing method (Sa, left), the
existing method with uncertainty (SaU, middle), and the method considering
both dynamics and uncertainty (DcU+DbU, right).

Fig. 13. The simulated quality scores (DbU and DcU) of the 1000 grasp
candidates for the watering can. The blue circles, green squares, and red dots
represent the top 30 grasps chosen by Sa, SaU, and DcU+DbU respectively.

would still work better than the existing force-closure based
method in predicting the likely success or failure of a grasp
candidate (Section V) and thus build a better grasp set by
choosing more robust grasps among the candidates.

Our dynamic simulation based method tends to favor power
grasps while the existing method (Sa) seems to prefer pinch
grasps (Figure 10 and 11). We should first note that the reason
why the existing method prefers pinch grasps is not because
the force-closure based quality measure (Measure A) favors
pinch grasps, but because, as mentioned above, we set positive
values for the distance between the palm and the object in
grasp sampling to avoid unwanted collision at the pre-grasp

Fig. 14. Accumulated finger/hand prints of the top 30 grasps chosen by Sa
(left), SaU (middle), and DcU+DbU (right). The color varying from yellow
to red represents the density of the prints.

Fig. 15. An example of heuristic grasp filtering for saving the massive
simulation time in considering uncertainty. The green dots and the pink
dots represent the grasps that can be discarded after the first and the
tenth simulation respectively without proceeding the remaining 99 and 90
simulations.

stage and the employed kinematic finger closing with the static
object assumption cannot create contacts on the palm unless
the palm was already in contact with the object before closing
the fingers. Thus, most of the power grasp candidates were
discarded because they could not form a force-closure grasp
due to lack of palm contacts.

One simple way to include power grasps would be to allow
initial contact at the palm by setting the distance from the
palm to the object to zero in sampling. This sampling strategy
has also been used in a power grasp planner [29]. However,
the grasps are likely to cause unwanted collision at the pre-
grasp stage, and thus a more sophisticated planning and control
mechanism would be needed to reach the generated grasps
carefully without pushing away the object. One alternative
to this is to keep setting positive palm distance in sampling,
as we did in this study, and use a grasp quality metric that
can handle pre-grasp configurations without contacts. The
quality metric used by Ciocarlie and Allen [8] is a good
example of this. They assess the quality of a grasp, where
the fingers are not in contact yet, by assuming the hand can
apply potential contact wrenches at pre-determined desired
contact locations on fingers and palm. The potential contact
wrenches are scaled depending on the distances between the
desired contact locations and the object, and thus the contact
locations closer to the object make larger contribution to the
grasp wrench space.

Dynamic simulation, on the contrary, can create contacts
on the palm naturally by pulling the object inward toward the
palm with the closing fingers. The object wrapping with whole
hand can work quite robustly even under the pose uncertainty,
and this gives power grasps higher scores or higher grasp
success rates. Thus, the grasp set generator, which picks grasps
with high scores, is more likely to choose power grasps than
pinch grasps.

Note that, however, the grasp quality measures (Measure A,
B and C) can be applied to any set of grasp candidates. This
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means that, if a particular type of grasp set is needed, one can
first pick grasps satisfying the requirement using an appropri-
ate quality measure, and then examine the grasps further with
our dynamic simulation based measure to pick more robust
ones among them. For example, if a pinch grasp set is needed
to manipulate an object, the task oriented quality measure by
Li and Sastry [22] in conjunction with the kinematic grasping
simulation can be used to filter out unwanted grasp candidates,
and then choose grasps with better grasp success rates among
them using our dynamic simulation based method. The same
strategy can also be applied to refining an existing grasp set
database such as [15].

VII. CONCLUSION

Evaluating the quality of a grasp correctly is necessary to
improve the robustness of robot grasping. We investigated
the performance of several simulation-based algorithms in
predicting the likely success or failure of a grasp in the real
environment through experiments. We observed that the force-
closure based existing method has poor performance and this
can be significantly improved by considering object dynamics
and pose uncertainty at the same time in the evaluation. The
new method considering both dynamics and uncertainty was
able to estimate the actual grasp success rates more correctly
and with more consistency than the existing method and its
possible variant with added uncertainty.

We have also applied the new algorithm to generating grasp
sets automatically and were able to obtain grasp sets with
better quality than the existing method. The new method tends
to choose, if available, stable and realistic grasps such as the
power grasps on the handle. We anticipate that, when applied
to a fully automated robot grasping planner, such a grasp set
would improve not only the robustness but also the naturalness
of robot grasping.

Most importantly, we showed that dynamic simulation,
which is often thought to be difficult to apply to an evaluation
problem involving rapidly changing contacts, can be effec-
tively used to improve the performance of estimating the actual
grasp success rate of a grasp in the real environment. The
straightforward approximation we used in our physically based
grasping simulation (e.g., the kinematics-based hand closing
mechanism) was quite effective in capturing the effect of
object dynamics in open-loop grasping with minimal effort and
time for modeling and implementation. Running the low cost
simulation multiple times to consider uncertainty significantly
improved the performance of the simulation based algorithm
with consistency even without having precise models for, e.g.,
the robot hand and pose uncertainty.

Although promising, the presented method has limitations
that require further improvement in the future. We have
shown object dynamics and pose uncertainty are key important
factors, but there are many other factors that can significantly
influence grasping in the real environment. For example,
we expect capturing frictional contact more correctly with a
sophisticated model would improve the accuracy of simulation
of the subtle and complex phenomena in slip contact and lead
to a better performance in predicting the grasp success rates.

Fully considering hand dynamics and control loop would also
improve the performance, though building a precise model
for a robotic hand system requires a great effort and time
in general. It would be interesting to extend the grasp quality
evaluation method, currently applied to open-loop grasping, to
more sophisticated grasping control mechanisms such as force
compliant grasping [17]. Data portability is also an important
issue in practice. For example, it would become an interesting
topic for future research to investigate how well a grasp set
generated assuming one grasping mechanism would work with
another grasp controller.
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