

Coordinated Multi-Lateral Trades for Electric Power Networks: Theory and Implement

International Journal of Electrical Power & Energy Systems, vol.21, no.2 p. 75-102, 1999
Felix F. Wu and Pravin Varaiya

Dong Jia

Outline

- Background and Motivation
- Coordinated Multi-Lateral Trades
- An Example (3-Bus Scenario)
- Conclusion and Discussion

A/

Changes in Power Networks

- Increase competition;
- Enhance consumer choice;
- Properly arrange access to transmission services.

Two Schemes to Reconstruct Transmission System?

Bilateral Model

Poolco Model

Bilateral Model

Suppliers and consumers independently arrange trades

- Setting by themselves the amount of generation and consumption
- Setting by themselves the corresponding financial terms.

Disadvantage

Lack of Coordination.

Need Power System Operator!

Poolco Model

Suppliers and consumers

offer price and quantity bids to poolco for traditional bundled services.

Pool System Operator

- determines which trades to accept and execute
- sets the price at which trades are settled

Disadvantage

Poolco is a monopolist.

Goals

To develop a new operating paradigm that is compatible with the competitive

market structure.

Outline

- Background and Motivation
- Coordinated Multi-Lateral Trades
- An Example (3-Bus Scenario)
- Conclusion and Discussion

A/

Power System Operation

Three Main Operating Objectives

- Power Balance
- Security/Reliability
- Economy

Requirements

- Coordination among all parties
- Security & Economy
- Scheduled & Real-Time Power Balance

Coordinated Multi-Lateral Trades for Electric Power Networks
Dong Jia

Coordinated Multi-Lateral Trading

Basic Idea

- Suppliers and Consumers seek profit on their own.
- Power System Operator (PSO) guarantees security.

Coordinated Multi-Lateral Trading

Coordinated Multi-Lateral Trading

- Loss-Included Trades
- Feasible Trades
- Trading Arrangements

. . . .

Loss-Included Trades

How to allocate total losses to individual trades?

- The PSO calculates and broadcasts a quadratic loss matrix.
- The brokers estimate their shares according to that matrix.

Feasible Trades

How to find feasible & profitable trades?

- The PSO calculates the loading vector and broadcasts this set of numbers to everyone.
- Based on the loading vector, brokers privately arrange profitable trades that are feasible.

Trading Arrangements

- How many parties need to be involved in the trade?
- Who should be contacted for negotiation?
- What is the optimal level of generation (or consumption) for each party in the trade?

Implementation Requirements

- Scheduled vs. Real-Time Markets
- Computation Requirements
- Communications Requirements
- Data Requirements
- Organizational Requirements

Coordinated Multi-Lateral Trades for Electric Power Networks
Dong Jia

Outline

- Background and Motivation
- Coordinated Multi-Lateral Trades
- An Example (3-Bus Scenario)
- Conclusion and Discussion

A

-- System Parameters

	r	X
1-2	0.0600	0.4000
2-3	0.0315	0.2500
3-1	0.0400	0.2000

Cost Functions (\$/hr)

$$c_1(q_1) = 6480q_1 + 128q_1^2$$

$$c_2(q_2) = 6620.8q_2 + 160q_2^2$$

$$c_3(q_3) = 6684.8q_3$$

Per Unit: 1 p.u. = 100 MW

-- Initial Trades

Contract Flows

Power Flows

Marginal Costs (MC)
$$\frac{c_i}{p_i}$$
 $MC_1 = MC_2 = MC_3 = 6.6848$

Coordinated Multi-Lateral Trades for Electric Power Networks

Dong Jia

-- Initial Trades

Contract Flows

Marginal Costs (MC) $\frac{c_i}{p_i}$ Operating Point

Power Flows

$$MC_1 = MC_2 = MC_3 = 6.6848$$

.

Coordinated Multi-Lateral Trades for Electric Power Networks

Dong Jia

-- Curtailed Trades

Contract Flows

Power Flows

Marginal Costs (MC) $MC_1=6.5984$, $MC_2=6.6848$, $MC_3=6.6848$

A

-- Curtailed Trades

Contract Flows

Power Flows

Marginal Costs (MC) $MC_1=6.5984$, $MC_2=6.6848$, $MC_3=6.6848$

M

-- Additional Trade

Marginal Costs (MC) $MC_1=6.6464$, $MC_2=6.7328$, $MC_3=6.6848$

-- Additional Trade

Marginal Costs (MC) $MC_1=6.6464$, $MC_2=6.7328$, $MC_3=6.6848$

A

-- Loss Allocation

Estimated Loss Component (MW)

Components of Transmission Losses (MW)

	TA	ТВ	TC	Total		TA	ТВ	TC	Total
 TA	0.63	0.096	0.33	1.05	TA	0.62	0.094	0.32	1.03
 ТВ	0.096	0.099	0.11	0.31	TB	0.094	0.097	0.11	0.30
 TC	0.33	0.11	0.22	0.66	TC	0.32	0.11	0.21	0.65
 Total				2.02	Total				1.98

-- Loss Allocation

 Estim	ated L	osses	(MW)	Loss Allocation (MW)						
 Trading	TA	ТВ	TC	Total	Trading	TA	ТВ	TC	Total	
 Est Losses	1.04	0.31	0.65	2.00	Loss Alloc	1.03	0.30	0.65	1.98	

Estimated Loss Component (MW)

Components of Transmission Losses (MW)

	TA	ТВ	TC	Total		TA	ТВ	TC	Total
 TA	0.63	0.096	0.33	1.05	TA	0.62	0.094	0.32	1.03
 TB	0.096	0.099	0.11	0.31	TB	0.094	0.097	0.11	0.30
 TC	0.33	0.11	0.22	0.66	TC	0.32	0.11	0.21	0.65
 Total				2.02	Total				1.98

Outline

- Background and Motivation
- Coordinated Multi-Lateral Trades
- An Example (3-Bus Scenario)
- Conclusion and Discussion

W

Conclusion

- This model achieves short term efficiency!
- This scheme can be achieve by today's techniques

Is PSO Necessary?

- ? Transmission Constraints
- ? Loading Vector & Quadratic Loss Matrix

