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Abstract

This work concerns multi-agent control systems where the agents coordinate their actions

without the help of a central coordinator. Each agent uses a model predictive control (MPC)

strategy, viewing inuences from neighbor subsystems as bounded disturbances in its local

model. Agents exchange predictions of the bounds on their future state trajectories and

incorporate this information into their local MPC problems. Minimax optimization is used

to minimize the worst-case performance, and some additional constraints are incorporated

to guarantee the feasibility of control actions. Parameterized feedback control policies are

introduced in the MPC optimization to reduce conservativeness. The principal contributions

of the proposed research are:

� A framework for multi-agent coordinated control systems with MPC strategy;

� A one-step delayed information exchange for coordination;

� Viewing interactions among subsystems as bounded disturbances with updated informa-

tion;

� A new MPC optimization problem to incorporate bounded disturbances and model un-

certainties;

� Introducing parameterized feedback policy in the MPC optimization to reducing conser-

vativeness;

� The application of a set approximation algorithm for the proposed distributed control

scheme;

� Computing the corresponding �-control invariant sets;

� Incorporating set-membership estimation into the scheme to accommodate the uncer-

tainties in state estimation;

� Information compensation for the time mismatch in asynchronous control;

� Techniques to compute the reachable sets for hybrid systems;

� Demonstration of the proposed framework for two application examples: generation con-

trol in power systems and plant-wide control in chemical plants.
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1 Introduction

This proposal concerns the decentralized control of large-scale dynamic systems comprised of several

interacting subsystems as shown in Figure 1. Controllers, or agents, are designed to control the

subsystems based on local measurements to achieve some local objectives. We consider applications

where the distributed agents need to coordinate with each other to achieve certain global objectives,

such as the stability of the whole system.

Figure 1: Agent-Controlled Large-Scale System

Many large-scale systems �t the scenario of Figure 1. Power systems o�er one set of examples.

Figure 2 shows a power system with a three areas, six generators and fourteen buses. Three agents,

A, B and C, take charge of the load-frequency control in each area. Their objectives are to optimize

generation allocation and maintain the power balance between the power generation and the power

consumption. Because these agents are owned by di�erent organizations, they are not willing to

divulge all local information. But the stability of the whole system is of concern to all the agents.

Chemical plants o�er another set of examples, for instance the Tennessee Eastman (TE) process

shown as Figure 3. The operation of the system requires the coordination among four operation

units: the reactor, the compressor, the separator and the stripper. The control objective is to

maintain the production rate and composition at set-points and keep other variables within speci�ed
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Figure 2: ABC System

limits. Typically, a controller is designed for each of these four units. As higher performance

requirements are proposed, explicit coordination among the controllers is called for. To avoid the

high cost in building a centralized control unit, a attractive solution is to introduce information

sharing to achieve coordination.

In most large-scale system applications, like the above two examples, the agents need to take into

account the inuences from other parts of the whole system when they make decisions. Several ap-

proaches have been proposed to design decentralized control systems [40, 41]. Robust decentralized

control is a widely used method [18, 31, 39], where the inuences from other parts are considered as

disturbances. Since there is no coordination during control, the control actions are often too con-

servative using this approach. Hierarchical decentralized control is an important method to achieve

coordinated control [17]. In this case, a centralized controller is designed to optimize the parameters

in decentralized controllers based on a simpli�ed global model. The problem with this method is

that a model of the global system is required, which is hard to develop, or even unavailable, in some

applications.

In this work, we consider systems where distributed controllers only have local models, objectives

and constraints. However, global objectives of concern to all controllers, such as system stability,

require coordination among the distributed agents. In this research, we propose a new coordination
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Figure 3: Tennessee Eastman Process

scheme for decentralized control in which the agents exchange dynamic information about their

future local state trajectories. At each stage, the agents' decisions are based on the updated

information, including the local measurements and the information from other agents.

To handle such complex coordinated control problems, we propose to use model predictive control

(MPC), also called receding horizon control (RHC), in each agent because it is an optimal control

strategy that incorporates operating constraints explicitly [8, 14, 32]. At each stage, all agents solve

local MPC control problems to �nd the control actions. Figure 4 gives the iteration process for

each agent. Between two consecutive control decisions, they exchange their predictions about the

local future behaviors. Such information is incorporated in local MPC problems to estimate the

inuences from other parts of the system.

Since the agents do not have global information, the inuences from other subsystems appear as

disturbances in the local MPC problems. Consequently, the robust MPC approach can be applied.

We will explore methods for exchanging information to make the controls less conservative than the

typical robust decentralized control approaches so as to accommodate stronger interactions among

the subsystems.

In the context of the proposed scheme for decentralized control, we address the following prob-

lems:
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Figure 4: Local Iteration in Agents

� The communication scheme for coordination;

� Method to handle interaction;

� The formulation of MPC problem to achieve coordination;

� The method to reduce the conservativeness in control actions;

� Stability of the system by the proposed scheme;

� A set approximation method in computation;

� Computation of the controlled invariant set;

� Uncertainties in state estimation;

� Reachable set computation in hybrid systems;

� Information compensation in asynchronous control;

� Demonstrations of the proposed framework using simulation examples.

The proposal is organized as follows. Section 2 proposes an optimization problem to achieve

distributed coordination for decentralized control. Section 3 reviews previous works in the related

areas: minimax and feedback MPC, set approximation, and MPC for hybrid systems. Section 4

presents techniques for solving the distributed coordination problem and gives the results obtained

thus far. Section 5 illustrates the proposed scheme for a three-solenoid example. Section 6 lists the

research issues for the future work in the Ph.D. program.
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2 Problem Description

2.1 Distributed Control Problem

In this research, we will develop a distributed control scheme, where each agent solves its local

control problem without a central arbitrator. The inuences from other subsystems are represented

as bounded disturbances in the local model and the agents try to �nd a performance-guaranteed

control action based on their local measurements and the information from other agents. We assume

that each agent knows only its local model, objective and constraints. For coordination, the agents

broadcast bounds on the future values of the local states at each step after they apply local control

actions. We propose to formulate a minimax MPC problem for each agent, similar to methods used

in centralized MPC to handle bounded uncertainties [4, 28, 37].

To describe our approach, we �rst consider the single-agent control problem. Consider a system

with the dynamics

z (k + 1) = F (z (k) ; u (k) ; w (k)) (1)

and the operating constraints

G (z (k) ; z (k + 1) ; u (k) ; w (k)) � 0 (2)

where z 2 Z is the system state vector, u 2 U is the agent's input (manipulated variables) to the

system, and w 2 W � Rnw is the vector of external disturbances.

The model of the system used by the agent is of the form

x (k + 1) = f (x (k) ; u (k) ; v (k)) (3)

with the constraints

g (x (k) ; x (k + 1) ; u (k) ; v (k)) � 0 (4)

where x 2 X is the state vector of the model, and v 2 V is the disturbance signal in the model,

which represents the external disturbances and the model uncertainties.

In this proposal, we �rst consider perfect state estimation, which means that the agent knows its

state from the measurements. We let G : Z ! X denote the mapping from the state variables in the

real world to those in the agent's model. In the proposed future work, imperfect state estimation
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will be considered by using set-valued estimators, called set-membership state estimators [36], which

give the set of all possible values of the state given the measurement.

The agent formulates an optimization problem using a parameterized control policy u (j) =

h (x (j) ; � (j)), rather than an open-loop control sequence as used in traditional MPC. � (j) is

a vector of control policy parameter characterizing the feedback policy at time j. The form of

h (�; �) is �xed by the designer and the values of � (j) are the variables of optimization. When h

is independent of x (k), h (� (j)) is an open-loop control policy ; when all � (j) have the same value

for all j, it becomes a time-invariant state feedback control policy. Following the standard MPC

philosophy, the agent solves the a min-max parameterized optimization problem given below with

the constraints on states and the bounds of the uncertainties given by

C = fX (1) ;X (2) ; � � � ;X (N � 1) ;V (0) ;V (1) � � � ;V (N � 1)g.

where X (j) � X , j = 0; � � � ; N � 1, are the constraints on the state, which may also be updated

from stage to stage and V (j) � V, j = 0; � � � ; N�1, are bounds on disturbances and can be updated

by system identi�cation techniques for model uncertainties or from some information source. For

simplicity, the control prediction horizon and the state prediction are assumed to be the same,

N . The problem solved by the agent at each stage is stated in Figure 5. The constraints with

quanti�ed variables make the problem time consuming. In [4], Bemporad proposes a method to

eliminate quanti�ed variables and thus simpli�es the optimization problem.

The information required to formulate P1 at stage k is

IkP1 =
�
Jk (�; �; �; �) ; fk (�; �; �) ; gk (�; �; �) ; xk0;�

k (0) ; � � � ;�k (N � 1) ; Ck
	

(5)

All components in IkP1 are not necessarily the same at each instant. xk0 = G (z (k)) is the current

state obtained through estimation. And as mentioned above, the constraint set C can vary from time

to time. The parameter constraints �k (1) ; � � � ;�k (N � 1) may be updated when other components

in IkP1 are updated.

2.2 Model Requirement

The �rst issue to be addressed is the relationship between the agent's model and the real system.

What guarantees that a feasible solution of P1 is feasible for the real system? To ensure that the
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P1: (M2P(C) Optimization)

min
�

max
V

J (�; V )

where

� = f� (0) ; � (1) ; � � � ; � (N � 1)g

V = fv (0) ; v (1) ; � � � ; v (N � 1)g

subject to

x (j + 1) = f (x (j) ; u (j) ; v (j)), j = 0; 1; � � � ; N � 1

u (j) = h (x (j) ; � (j)), j = 1; 2 � � � ; N � 1

� (j) 2 � (j) ; j = 0; 1; � � � ; N � 1

v (j) 2 V (j) ; j = 0; 1; � � � ; N � 1

x (0) = x0

~x(j+1)=f(~x(j);h(~x(j);�(j));~v(j))2X (j+1); 8~v(j)2V(j); j=0;1;� � � ;N�1

g(~x(j);f(~x(j);h(~x(j);�(j));~v(j));h(~x(j);�(j));~v(j))�0; 8~v(j)2V (j); j=0;1;� � � ;N�1

Figure 5: Min-Max Parameterized Optimization with Constraint Set C

agent's decisions are feasible and useful, we require that the model the agent uses is an abstraction

of the real dynamics, de�ned as follows. Here, we extend the concept of abstraction in [12].

De�nition 2.1 (Abstraction) The model (3)-(4) is an abstraction of the system dynamics (1)-

(2), if G (Z) � X and for all x 2 X and u 2 U satisfying

g (x; f (x; u; v) ; u; v) � 0; 8v 2 V; (6)

the following are true for all z 2 G�1 (x),

G (z; F (z; u; w) ; u; w) � 0; 8w 2 W; (7)

G (F (z; u;W)) � f (x; u;V) : (8)

G is called the abstraction function and the inverse mapping G�1 : X ! 2Z is called the con-

cretization function.

When the model in the agent is an abstraction of the real dynamics, everything in the real world

is anticipated. If the current state is known, the next state will be sure to fall in the predicted
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reachable set of the next stage no matter what the actual disturbance is. The abstraction model

helps the agent to compute controls that are truly feasible for the real system.

De�nition 2.2 (Feasible Control Law) A control law u (k) = H (x (k) ; k) is a feasible con-

trol law for the model (3)-(4) if for any initial state x (0) 2 X and any disturbance sequence

v (k) 2 V, k = 0; 1; � � �,

u (k) 2 U and g (x (k) ; x (k + 1) ;H (x (k) ; k) ; v (k)) � 0; k = 0; 1; � � � ; (9)

where x (k + 1) = f (x (k) ;H (x (k) ; k) ; v (k)). The control law u (k) = H (G (z (k)) ; k) is feasible

for the system (1)-(2) if for any initial state z (0) 2 Z and any disturbance sequence w (k) 2 W,

k = 0; 1; � � �,

u (k) 2 U and G (z (k) ; z (k + 1) ;H (G (z (k)) ; k) ; w (k)) � 0; k = 0; 1; � � � ; (10)

where z (k + 1) = F (z (k) ;H (G (z (k)) ; k) ; w (k)), k = 0; 1; � � �.

In [20], we proved that if the model in the agent is an abstraction of the system, the control law

generated by the M2P(C) is feasible for the real system.

For a system controlled by M agents, the control action applied to the system is the composite

action of all the agents. The disturbance signal in the local model includes the model uncertainties,

the external disturbances and the inuence from other subsystems. In the following discussion,

subscript i denotes the variables and functions related to the agent i. In this proposal, we consider

the case where all agents are synchronized. In the future research, we will take into account

asynchronous distributed agents. For the distributed control, we use the following distributed

version of abstraction.

De�nition 2.3 (Distributed Abstraction) Models in M agents

xi (k + 1) = fi (xi (k) ; ui (k) ; vi (k)) ; i = 1; 2; � � � ;M (11)

with local constraints

gi (xi (k) ; xi (k + 1) ; ui (k) ; vi (k)) � 0 (12)

compose a distributed abstraction of the real dynamics (1)-(2) if Gi (Z) � Xi, i = 1; 2; � � � ;M ,

and for all
�
xT1 x

T
2 � � �x

T
M

�T
2 X1�X2�� � ��XM and

�
uT1 u

T
2 � � �u

T
M

�T
2 U1�U2�� � ��UM satisfying

gi (xi; fi (xi; ui; vi) ; ui; vi) � 0; 8vi 2 Vi; i = 1; 2 � � � ;M; (13)
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the following are true for all z 2 G�11 (x1)
T
G�12 (x2)

T
� � �
T
G�1M (xM),

G (z; F (z; u; w) ; u; w) � 0; 8w 2 W (14)

Gi (F (z; u;W)) � fi (xi; ui;V) ; i = 1; 2; � � � ;M (15)

where

u =
�
uT1 u

T
2 � � �u

T
M

�T
2 U : (16)

Gi : Z ! Xi is called the local abstraction function and the inverse mapping G�1i : Xi ! 2Z is

the local concretization function.

In [20], we showed that if the models in all agents compose a distributed abstraction of the

system, all local control actions generated by the distributed control laws feasible for the local

models compose control actions to the system. In the following discussion, we assume that local

models in distributed agents compose a distributed abstraction of the system. Then, this feasible

control actions the agents get is feasible to the real world.

3 Previous Work

3.1 Minimax MPC

Model Predictive Control (MPC), also called receding horizon control (RHC), is a control scheme

where the control input is obtained by solving an optimal control problem over a �nite horizon. In

the standard formulation, an open-loop optimal control problem is formulated and solved, based

on the state of the system. Only the �rst control in resulting control sequence is applied to the

physical system. The controls for future instants are obtained by repeating this process. MPC is

very popular in process control because it is an optimal control heuristic that incorporates operating

constraints explicitly [8, 14, 32]. Several papers have been published on decentralized or distributed

MPC following the standard formulation [1, 2, 9, 10, 16, 21, 30]. In this work, some variations are

introduced to make less conservative decisions and guarantee the feasibility of local decisions.

In MPC literature, min-max optimization is used to �nd control actions which optimize the

worst-case performance under bounded uncertainties, including external disturbances and model

mismatches. In [15] and [42], the min-max MPC problem is formulated using open-loop control
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policies. Since only a single open-loop control sequence is optimized over all disturbance realizations,

this approach often meets feasibility diÆculties. In [24] and [37], feedback control strategies are

introduced into the MPC formulation. Kothare [24] incorporates a linear time invariant feedback

policy into the formulation of an in�nite horizon min-max MPC formulation. Scokaert and Mayne

[37] add a logic constraint to the optimal control problem, which requires the same control action

for the same value of state variables, to implicitly add the feedback control policy. In [4], Bemporad

introduces aÆne feedback control policy into the MPC optimization to make control actions less

conservative for the system with bounded disturbances. In this work, we follow the idea in [4] to

handle bounded uncertainties by introducing parameterized MPC problem.

3.2 Set Calculus

In the proposed scheme, agents must predict their future reachable sets and provide the estimates to

other agents. There are two popular methods to estimate the reachability set: the ellipsoidal method

[25, 26, 27] and the polyhedral method [3, 11, 13, 34, 35]. In the ellipsoidal method, the closed set

is approximated by a set of ellipsoids, which are described by quadratic functions. The greatest

virtue of the ellipsoidal method is that it avoids the curse of dimension in approximating high-

dimension sets. But the complexity in computation prevents it from being widely used. Although

the polyhedral method has diÆculties in higher dimensions (beyond 3 or 4), people tend to use it

for its simplicity in computation because each hyperplane is described by a set of linear constraints.

All previous research in this area focuses on evaluating the performance of the system and checking

the speci�cation for reachability, so accuracy is of the �rst importance. In our work, the set

approximation is used for on-line coordination among controllers, thus the simplicity and the speed

of the computation are the most important things. Although some researchers proposed to use some

special polyhedra to avoid diÆculties in higher dimension problems, such as parallelotope [23] and

orthogonal polyhedra [7], there is no eÆcient way to �nd a single such polyhedron as an optimal

approximation. We propose an easy way to compute a single ellipsoid as an optimal approximation.

3.3 Control in Hybrid System

In many complex systems, hybrid properties need to be considered. The common method to design

control scheme for hybrid system is �rst to design controllers for dynamics of continuous variables in
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each mode of the system and then to design discrete controllers based on a high-level discrete event

model. In [5, 38], an MPC strategy was introduced to design control scheme for hybrid systems

though mixed-integer optimization. Both continuous variables and discrete variables are taken into

account simultaneously. Following the same idea, we propose to extend our framework to handle

hybrid properties of the system. In the work thus far, we have focused on continuous-state systems.

In the future work, we will consider the problem in distributed control of hybrid system.

4 Min-Max Feedback DMPC

This section summarizes the results presented in [20] and [19]. We assume in the discussion that

the uncertainties in the local model for an agent are the inuences from other subsystem. The

proposed method can be extended to handle other external disturbances and model uncertainties.

4.1 Constraint Updating

In our scheme, the agents model the inuences from other parts of the system as disturbances. A

straightforward method to achieve coordination is to have all agents predict the future reachable

sets of the local state variables and broadcast these sets to neighbor agents for them to estimate

the bounds of the interactions. This means that the agents update the uncertainty bounds in their

local optimization problem in the following way:

Vk
i (j)=X̂1 (k+jjk�1)� � � � � X̂i�1 (k+jjk�1)� X̂i+1 (k+jjk�1)� � � � � X̂M (k+jjk�1) ; (17)

where j = 0; 1; � � � ; N � 1 and X̂i (k + jjk � 1) is the future reachable set predicted at the stage

k � 1. And the corresponding disturbance variable is

vi (j) =
�
~xT1 (j) � � � ~x

T
i�1 (j) ~x

T
i+1 (j) � � � ~x

T
M (j)

�T
; (18)

To make the approach clear, we consider constraint updating for a single agent and omit the

subscript. As the bounds on disturbance signals are updated at each stage, the decisions of the agent

depend on the incoming information from other agents, or more generally from any possible source.

To ensure that the decisions are correct, the following constraints on the updated information need

to be satis�ed:

Vk (j) � Vk�1 (j + 1) ; j = 0; 1; � � � ; N � 2; and Vk (N � 1) � V; (19)
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with the initial bounds V̂0 (j) = V, j = 0; 1; � � � ; N � 1. If (19) is violated, then the previous

information missed some possible values of disturbance signal. As a result, the previous decision

can lead to infeasibility because some possible disturbances are not considered.

To guarantee that the set information passed to other agents satis�es the requirement (19) for

the updated information, the agents need to put the following requirements on the prediction:

X̂ (k + jjk) � X (k + jjk � 1) ; j = 0; 1; � � � ; N � 2; and X̂ (k +N jk) � X ; (20)

with the initial predicted reachable sets X̂ (jj � 1) = X , j = 0; 1; � � � ; N�1. X̂ (k + jjk) denotes the

future reachable set predicted recursively by the controller at the control step k using the set-valued

state equations, given by

X̂ (k+j+1jk)=
n
xjx=f

�
x0; h

�
x0; �k�(j)

�
; v
�
; x0 2 X̂ (k+jjk) ; v 2 Vk (j)

o
; j=0; 1;� � �; N�1 (21)

with X̂ (kjk) = fx̂ (k)g. Let �k� =
�
�k� (0) ; �k� (1) ; � � � ; �k� (N � 1)

	
be the solution to the M2P(C)

optimization at the stage k. The simplest way to satisfy the requirement (20) is to update the state

constraints in the following way:

X k (j) = X̂ (k + jjk � 1) ; j = 1; 2; � � � ; N � 1; (22)

Following the approach developed in [29] for centralized control, we introduce the control in-

variant set to the MPC problem so that a initial solution can be constructed based on the optimal

solution at the previous stage. For the model (3) and (4), with a variation of the notion in [22],

T x � X is said to be a �-control invariant set if there exists a �T
x

2 � such that

x 2 T x =) f
�
x; h

�
x; �T

x
�
; v
�
2 T (x); 8v 2 V: (23)

Throughout the remainder of the proposal, the set T x will denote a �-control invariant set. And it

is not diÆcult to see that T z = G�1 (T x) is the corresponding �-control invariant set of the system

(1) and (2). At each control step, the controller solves the P1 problem with the end state constraint

X (N) = T x: (24)

This end constraint not only helps the agent to construct initial feasible solutions, but also helps

the agent to achieve the stability of the system.

By constraint updating (17), (22) and (24), each agent has a local min-max feedback DMPC

(M2F-DMPC) problem.
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4.2 Set Approximation

Since the precise set representation computations are impractical or even impossible, an approx-

imation method needs to be used. Generally, the inclusion relation between two sets cannot be

maintained under set approximation, which means X � eX , Y � eY and X � Y ; eX � eY, where eX
and eY are approximations of X and Y, respectively. So, with the set approximation, the feasibility

of M2F-DMPC is threatened. To avoid this side e�ect, the following set approximation process at

the control step k is proposed as follows.

Step 1: Let j = 0 and calculate the set approximation
ê
X (kjk) of the set X̂ (kjk).

Step 2: If
ê
X (kjk) * ê

X (kjk � 1), let
ê
X (kjk) =

ê
X (kjk � 1).

Step 3: Let j = j+1 and calculate the set approximation
ê
X (k + jjk) of the set X̂ (k + jjk) de�nition

by the equation (21).

Step 4: If
ê
X (k + jjk) * ê

X (k + jjk � 1), let
ê
X (k + jjk) =

ê
X (k + jjk � 1) or

ê
X (k +N jk � 1) =

eT x if j = N .

Step 5: If j = N , stop; otherwise, go to Step 3.

This scheme is suitable for any set approximation method. For LTI systems, we propose an

ellipsoid method to approximate the future reachable sets in [20].

4.3 Current Results

De�nition 4.1 � is said to be a feasible solution to the M2P(C) problem if all constraints are

satis�ed. The M2P(C) problem is said to be feasible if there exists a feasible solution �.

Theorem 4.1 If the M2P(C) problem with updated state constraints and bound on uncertainties

is feasible at the �rst step k = 0, then it is feasible at all control steps k � 0 with updated

state constraints and bounds on uncertainties satisfying equations (22) and (19). And furthermore,

x (k) 2 T x, i.e. z (k) 2 G�1 (T x), for k = N;N + 1; � � �.

Theorem 4.1 shows that that the stability of the system is ensured by updating the state con-

straints following the equations (22). This is not the stability in the sense of asymptotical stability.
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For LTI system, if we update the �-control invariant sets as described below, the asymptotical

stability can be achieved. Theorem 4.1 is based on the precise set calculation. The feasibility

of M2F-DMPC and the stability of the system is maintained by the proposed set approximation

scheme.

Theorem 4.2 (Feasibility with Set Approximation) With the above set approximation scheme,

if M2F-DMPC is feasible at the �rst step k = 0, it is feasible at all control steps k � 0. Furthermore,

the state of the system z goes into
M\
i=1

G�1i (T x
i ).

For LTI systems, agents can update the end constraint, i.e. the �-control invariant set at each

step, in the following way

T x;k
i =

8<
:

�k=NT x
i k is a multiple of N ;

T x;k�1
i otherwise.

; (25)

where Ti is the initial �-control invariant set in agent i and 0 < � < 1 is selected such that Ti � �Xi.

Following this procedure, the asymptotic stability of the whole LTI system is achieved.

Theorem 4.3 If the M2F-DMPC problems for LTI system for all agents are feasible at the �rst

control step k = 0, then, with the �-control invariant set updating procedure (25), the model is

asymptotically stable at the point x = 0 which means that the system goes to
M\
i=1

G�1i (0) asymptoti-

cally.

5 Solenoid Example

Consider the example shown in Figure 6, consisting of four springs with the spring constants k

and three identical solenoids with the masses m, each of which is controlled by an MPC controller

solving P1, with the parameterized control policy.

The state variables xi;1 and xi;2, i = 1; 2; 3, are the position and velocity of the ith solenoid,

respectively. The zero-order hold, with sampling time Ts = 0:2s, is used to get the discrete-time

model with m = 1kg and k = 10N/m. Figure 7 shows the future reachable set predicted by three

agents at the step k = 0 when the open-loop control policy is used in the P1 optimization. The

solid ellipsoids are the predicted reachable sets and the dashed ellipsoids form the state constraints.
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Figure 6: A solenoid example.

X̂i (1j0), i = 1; 2; 3, in the upper plots give the reachable sets at step 1 and X̂i (2j0), i = 1; 2; 3, in the

lower plots give the reachable sets at step 2. All computations are through the ellipsoidal method in

[20]. Since the open-loop control sequence can only manipulate the centers of the reachable sets, we

move the centers of all future reachable sets to the original point because it is easier to tell whether

the optimization problem can be feasible or not. We can see that no matter what the agent 2 selects

as the open-loop control sequence, it is possible of the state x2 (2) to violate the state constraint.

Figure 7: Feasibility DiÆculty of Open-Loop Control Policy.

In the following we evaluate the performance of the proposed the decentralized control scheme

by using parameterized feedback control policy as follows

u (j) = K (j) x (j) + u0 (j) : (26)
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In the simulation, the prediction horizon is set to be 2 and the initial conditions are

2
4 x1;1 (0)

x1;2 (0)

3
5 =

2
4 x2;1 (0)

x2;2 (0)

3
5 =

2
4 x3;1 (0)

x3;2 (0)

3
5 =

2
4 0:1

0

3
5.

We simulated 20 steps and the Figure 8 gives the simulation results. The upper three �gures give

the responses of the three sub-systems. The curves with crosses are positions and the curves with

circles are velocities of those plates. The lower three plots demonstrate that the predictions of

the corresponding agents which are used as the dynamic information by the neighbor agent(s).

The dotted ellipsoids in the three lower plots are the physical state constraints. The solid curves

and the dashed ones show the predicted reachable set X̂i (k + 1jk) and X̂i (k + 2jk) respectively,

i = 1; 2; 3 and k = 1; � � � ; 20. We can see, by using the parameterized feedback policy, the feasibility

problem is avoided. Each sub-system goes back to the equilibrium point and the uncertainties in

the predictions of the controllers decrease during the control process.

Figure 8: Simulation results.
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6 Future Research and Plan

The remaining dissertation research will focus on four areas, namely, computational issues, exten-

sions to hybrid systems, asynchronous agents, and demonstrations through simulations of applica-

tions.

6.1 Computational Issues

6.1.1 �-Control Invariant Set

To implement the proposed scheme, the computation of the �-control invariant set is unavoidable.

In [22], Kerrigan and Maciejowski presented the basic principle for computing control invariant sets

given feasible control sets. In our scheme, the maximal �-control invariant set needs to be computed

given the parameterized control policy and the feasible control set. We will develop a procedure

�nd the proper form of the parameterized control policy and compute the corresponding �-control

invariant sets.

6.1.2 Set-Membership Estimation

In the work to date, we assume that the local state is available. In practice, there are uncertainties

in the information about the state. In [6, 36], a recursive ellipsoid-based set-membership estimation

was proposed to give all possible values of the state. This scheme will be extended for the proposed

distributed MPC scheme.

6.2 Hybrid Systems

Although the work till now considered only the continuous system, all methods and results are

applicable to hybrid systems. When hybrid properties are taken into account, the agent contains

di�erent continuous dynamic models and di�erent controllers for di�erent modes shown as Figure

9

We use discrete state variables to described di�erent modes of the system and discrete control

variables and discrete disturbance variables to model the event inputs and the event disturbances.
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Figure 9: Structure of Distributed Control for Hybrid System

The state, control and disturbance variables become:

z =
�
zTc z

T
d

�T
2 Zc � Zd; u =

�
uTc u

T
d

�T
2 Uc � Ud and w =

�
wT
c w

T
d

�T
2 Wc �Wd: (27)

Correspondingly, the variables in the agent's model become:

x =
�
xTc x

T
d

�T
2 Xc � Xd and v =

�
vTc v

T
d

�T
2 Vc � Vd: (28)

As discrete variables appear in the formulation of the proposed optimization problem P1, the

optimization problem becomes a minimax, parameterized mixed-integer optimization problem as in

[5, 38].

Besides the mix-integer programming problem, a challenging problem faced by each agent in

controlling hybrid systems is the prediction for the future reachable set. For continuous-state

systems, the reachable sets at any time are connected sets. But in hybrid system, every time when

a reachable set reaches a switching surface, it may split into two parts. Generally, the reachable

set for each future time point is no longer a connected set. If the prediction horizon is long, the

number of sets will be very large for the end time point. This will greatly increase the computation

and communication loads. The future research will focus on the computation and representation of

future reachable set.
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6.3 Asynchronous Agents

In the previous discussion, we assume that all agents work synchronously at the same rate. But in

very large-scale system, agents generally have local clocks. Thus, the agents need to include time

information in their communications. Even so, the information from other agents cannot be applied

directly to the optimization problem. For example, since the agent i works at the time sequence

ti0; t
i
1; t

i
2; � � �, it needs the information about the states of other subsystems at those time points.

But, because the agent j works at the time sequence tj0; t
j
1; t

j
2; � � �, it sends the state information of

those time points to agent i. Therefore, some method is needed to compensate such time mismatch.

In the future work, we will introduce additional disturbance signal to model the errors caused by

such time mismatch.

6.4 Applications

To demonstrate and evaluate the proposed method for decentralized control, we will develop simu-

lations of real applications. Power system and chemical plant will be two example systems.

6.4.1 Load-Frequency Control in ABC System:

First, we will apply our scheme to the distributed automatic generation control (AGC) and use the

system shown in Figure 2 as the example system. The three agents, A, B and C, control the set-point

of power generation in their local areas. The objective of AGC is to maintain the frequency and

the power ow through each transmission line. The agents will coordinate their actions following

our scheme to achieve better transient performance of the system.

6.4.2 Plant-Wide Process Control in TE Process:

Secondly, we will apply our scheme to plant-wide control in chemical industry and use the TE process

shown as Figure 3 as the example. The four agents, the reactor, the compressor, the separator and

the stripper, coordinate to maintain the production rate and composition at set-points and keep

other variable within the speci�ed limits. A simpli�ed model in [33], including 26 state variables,

10 manipulated variables and 23 output variables, will be used for the demonstration.
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6.5 Tentative Timetable

In the future research of my Ph.D. program, the contributions are expected in the following aspects:

1. The computational issues in the M2F-DMPC scheme;

2. The reachable set computation for the hybrid system;

3. The information correction techniques for asynchronous agents;

4. Implementation of the scheme to some benchmark applications.

By the end of this Ph.D. program, a complete implementable scheme is expected to be con-

structed for distributed coordination in multi-agent control system. The scheme will be illustrated

by some real applications rather than the toy example in this proposal. Figure 10 is the timetable

of the future work.

Figure 10: Time Schedule for Future Work
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