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Objective

½ To extend Model Predictive Control (MPC) to decentralized 

control of large scale systems

½ To develop some methods for controllers to coordinate their 

control actions by themselves
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Outline

½ Model Predictive Control (MPC)

½ The Decentralized MPC (DMPC) Scheme

½ Example: Load Frequency Control Problem

½ Summary & Open Problems
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Model Predictive Control (MPC)

At each control instant:

½ Optimal open-loop control inputs are calculated for some prediction horizon;

½ Future states of the system are predicted by using a model of the system;

½ The control signal for the current instant is applied to the system.
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MPC Formulation
optimal control problem at control instant k
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( ) ( )( )kUkXJ
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where,
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x: state variable of the system u: control input  to the system

v: external input to the system N: prediction horizon

s.t.
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Why Use MPC ?

J “Feedback” open-loop optimal control strategy

J Easy to incorporate operating constraints
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Decentralized Control Schemes

� Sandell, N. R., Varaiya, P., Athans, M. and Safonov, M. G., “Survey of Decentralized Control Methods for Large Scale 
Systems”, IEEE Transactions on Automatic Control, Vol. AC-23, No. 2, pp. 108-128, 1978

� Siljak, D. D., “Decentralized Control and Computations: Status and Prospects”, Annual Review of Control, Vol. 20, pp. 131-141, 
1996

Completely Decentralized Control
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Decentralized Model Predictive Control 
(DMPC)

Sub-System #i Sub-System #j

DMPC #i DMPC #j

Interaction

Communication

Controls & Measurements

Decentralized Model Predictive Control (DMPC) 

Underlying System
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DMPC Scheme

Exchange information with other controllers

Measure the local sub-system

Solve the local model predictive control problem

Apply the control signal for the current instant
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Assumptions

ã Linear Time-Invariant (LTI) system

ã Local effects of control input 

ã Full knowledge about local part and interaction

ã Local operating constraints

ã Working simultaneously
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Stability Method for MPC
Approaches: 

Add stability constraints to the optimal control problem.

½ Stability constraints on the final state

½ Stability constraints on the state at next instant

� Keerthi, S. S. and Gilbert, E. G., Optimal Infinite-Horizon Feedback Control Laws for a General Class of 
Constrained Discrete-Time Systems: Stability and Moving Horizon Approximation, Journal of 
Optimization Theory and Application, Vol. 57, pp. 265-293, 1988

� Michalska, H. and Mayne, D. Q., Robust Receding Horizon Control of Constrained Nonlinear Systems, 
IEEE Transactions on Automatic Control, Vol. 38, pp. 1623-1632, 1993

� Kwon, W. H.and Byun, D. G., Receding Horizon Tracking Control as a Predictive Control and its 
Stability Properties, International Journal of Control, Vol. 5, pp.1807-1824, 1989

� Cheng, X. and Krogh, B. H., Stability-Constrained Model Predictive Control for Nonlinear Systems, 
Proceedings of the 36th Conference on Decision and Control, 1997
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Stability Of DMPC
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For LTI system, if the model can be expressed by the 

following canonical form

the system can be stable under the decentralized model 

predictive control with following stability constraints

( ) ( ) ( ) 2122
|1ˆ kxkxkkx iiii β−≤+ 10 << iβ

ni ,,2,1 L=

ni ,,2,1 L=
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Stability Of DMPC (con’d)

If each sub-system satisfies the matching condition

( ) ( )iij BspanAspan ⊂

The overall system can be transformed to the 

canonical form by a block-diagonal matrix

( )nPPPdiagP ,,, 21 L=

ni ,,2,1 L= nj ,,2,1 L= ij ≠
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Example: Load Frequency Control

½ To keep the frequency of the system constant

½ To maintain the power interchange as scheduled

Area #jArea #i
Pij

Xtieij

local states: iδ∆ if∆ local control input: giP∆
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Simulation Study

1. System performance in two cases

• Case 1: Euler Approximate Model

• Case 2: Discrete Equivalent Model

2. Results for different stability constraints

3. Effects of different prediction horizons
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Case 1: Euler Approximate Model

DMPC Scheme (with information exchange and stability constraints)

Decentralized MPC (without information exchange and stability constraints)
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Case 2: Discrete Equivalent Model

DMPC Scheme (with information exchange and stability constraints)

Decentralized MPC (without information exchange and stability constraints)

Centralized MPC (with stability constraints)
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Results For Stability Constraints
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Effects Of Prediction Horizons
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Summary

Implement Model Predictive Control (MPC) in 

decentralized control system

á Model predictive controllers coordinate by themselves, 

instead of by a centralized coordinator;

á Stability of this decentralized model predictive control 

scheme is guaranteed for systems with certain structure.
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Open Problems

K Imperfect Model and Unknown Disturbances

K Coupling among Constraints

K Inaccessibility of Some State Variables

K Nonlinear Properties of Systems


