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Abstract

In this paper, we explored a distributed model predictive
control (DMPC) scheme. The controllers apply model
predictive control (MPC) policies to their local subsystems.
They exchange their predictions by communication and
incorporate the information from other controllers into their
local MPC problem so as to coordinate with each other. For the
full local state feedback and one-step delayed prediction
exchange case, stability is ensured for controllable systems
satisfying a matching condition by imposing stability
constraints on the next state in the prediction. An example of
multi-area load-frequency control is used as an example
application for this DMPC scheme to show the performance of
the scheme.

1 Introduction

Model predictive control (MPC), also called receding
horizon control, is a control scheme where the control input is
obtained by solving an open-loop optimal control problem over
a given horizon. Optimization produces an optimal control
sequence. The first control in that sequence is applied to the
physical system. At the next control instant, the controller
obtains new measurements and solves an updated optimal
control problem. MPC is very popular in the process industries
because it is an optimal control strategy that incorporates
operating constraints explicitly. Many successful MPC
applications have been reported in the last two decades [2,12].
In the MPC literature, various methods have been proposed to
assure stability for MPC strategies. In the dominant scheme,
stability constraints are applied to the end state in the prediction
[1, 10], but it is necessary for the prediction horizon to be long
enough. Recently, Cheng and Krogh proposed a new scheme,
stability-constrained model predictive control (SC-MPC), in
which a constraint propagated from previous steps is imposed
on the first state in the prediction in the current optimization
problem [4,5,6,7]. This stability constraint becomes a
contractive constraint that is always feasible for linear-time
invariant (LTI) controllable systems. We use this idea to
guarantee stability in our distributed multi-controller MPC
strategy.

MPC is normally implemented in a centralized fashion. One
controller has the full knowledge about the system and
computes all the control inputs for the system. In large-scale
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distribution systems, traffic systems, etc., such a centralized
control scheme may not suitable or even possible for technical
or commercial reasons. Decentralized or distributed control is
required [14,16].

In this paper, we propose a scheme called distributed model
predictive control with stability constraint (DMPC-SC) in
which controllers coordinate with each other by exchanging
their predictions. There is no centralized coordinator. In our
scheme, the overall control problem is decomposed into several
small ones, each of which is dealt with by a local MPC
controller that uses local state measurements. The controllers
exchange information about their measurements and
predictions and incorporate this information in their local
computations. The SC-MPC idea is used to guarantee the
stability of the system. We show that if the system satisfies a
structural property called a matching condition, the system
controlled using the DMPC-SC policy with one-step delayed
communication will be asymptotically stable.

The paper is organized as follows. Section II presents some
preliminary lemmas for interconnected linear time-invariant
(LTD) systems. Section III introduces the DMPC-SC algorithm
and stability is proved for the local full state feedback and one-
step delayed information exchange case. In section IV, the
DMPC-SC scheme is applied to a two-area load-frequency
control scenario and simulation results are given.

2 Interconnected LTI System

In this paper, we consider an LTI system composed of M
interconnected subsystems described by the following
equation:

2k +1)= Az(k)+ Bulk)+ Ew(k) M
where Z(k)= Zl(k) e R ulk)= lek) c R" (n>m) and
2y (k) 1y (k)
Wl(k) are the state, the control and the
wk)=| * |eR ’
WM(k)

distarbance vectors of the system. The subvectors z(k)e R",

u(k)e R™ and y (k)e R* are the state, control and

. . M
disturbance vectors of the i* subsystem, where 2" —n»
i

i=1
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the following lemma, the control input to one subsystem does
not have direct effect on other subsystems, that is, the coupling
among subsystems is only through state interactions.
Lemma 1: Consider systems in the form of (1). Suppose
(A,.B,) (i= 1,---,M) are controllable and B. is of full rank. If
rank (Bi Ay 0 A, A Ay Ei): m;
(i =1, M ) there exist a similarity transform matrix
P= dlag(Pl,Pz, ;

el (A AT [B TE T

iitl

) where P, e R", such that

_| @)
x| Ay - Ay Jew(k) B, |ufk) E,|w/K)
e 1
where . _ rjl, xle R™ and xle RV
Pz=| : Xi 5
ZI 0 0
-1 _ A _ L=
PAP  =A= 2 i A,; ij
(] £ l) 1"- e R(n s=m; Wn=m; ), A n x Jem; and A; c Rmixmj
; j o e — D O
(i =1 M)- PB=B=| . Bf:{B?}
B, '
E,
2 mpxn; _ — 0
BieR™™- pp=E=| . | E’:[EJ,
E,
El_2 e R"% . The form (2) will be called the decentralized

controllable companion form.
Proof. This lemma follows directly from the controllable form
in [6].

The system discussed in Lemma 1  satisfies
Span(AU)c span(B,) (j#1i) called the maiching condition in

decentralized control literature [15]. This condition on the
structure of the system guarantees that the system can be
stabilized by local state feedback. To design the feedback
matrix for the distributed controller, only the knowledge of the
local structure is needed.

Remark. We note that the similarity transformation in Lemma
1 can be computed and implemented in a distributed fashion.
That is, if each controller is designated to control a subsystem,
the distributed controllers can do the (transformation
individually so that the model of the overall system is
transformed to the decentralized controllable companion form
2).

Lemma 2: Consider a system in decentralized controllable
companion form (2). The state x(k) can be represented in terms

of components of the future states as

I m Onlx(mlxl—nl )

I"M O”MX(”'M Xy} A x}"f (k)

where,

2]
H o

Proof. Equation (3) follows from the definition of controllable
for (A, B)~

if n, is a multiple of m, _

,) otherwise

Lemma 3: Consider a system in decentralized controllable
companion form (2). Suppose the local disturbance , (r) is

measurable by the i* controller. For each sub-system, for any
x; (k) and (< B, <1, there exists y, (k) such that

] _ﬂi”xil(k) i

, where ”i(k) satisfies (4), and

)

u, (k)

Moreover, if u(k) _

iy, (k)
B=min(B,---. B,). then

e+ OF <) - Bl ) ®)
where, x]l.(k) .

sE)=|
(k)

Proof. From the definition of the decentralized controllable
companion form for (4, B),

2

e+ Bl + A,

=
J#

le+1) = x,(k)+Ewlk

2

bt} 4 LBl £l

i

W) + 2[ )+ B )+ Eonk

Substituting this equatlon into (4) yields the following
equivalent inequality

S0+ 47
u,.<k>:(Bf)“{i[ s (6) AT e >]+Efw,.<k>} i

=1

2

=[x}

2

)]+ B (k) + E2w, (k

Obviously,

a feasible solution.
Consider the overall system. When (4) holds,
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Jele+ 1 = S e+ 1)

< S e -6 ]
< Sl 0 - A6 |
= (0 - B )

Feasible solutions of subsystems consist a feasible solution
to (5).

Lemma 3 shows that, when the constraint (5) is applied, the
feasible control set is non-empty. It guarantees that, when
distributed controllers are used to control the system with local
constraint (4), the controls they find are feasible for the overall
system.

3  Distributed Model Predictive Control Strategy

In MPC, control decisions are made at discrete time instants,
which usually represent equally spaced time interevals. At each
decision instant, the controller samples the current state of the
system and then solves an optimization problem to find the
control action. Currently, most applications of MPC are
implemented in a centralized manner. The controller has the
knowledge of the overall system and computes all the control
inputs for the system. When there are multiple controllers, a
distributed MPC scheme must be formulated. In the general
problem formulation being considered, we propose that each
controller follows the standard MPC strategy with some
variation. Each controller must now include the behavior of
other subsystems in its local optimization problem in order to
coordinate with other controllers. So, for controller i, the basic
optimal control problem must be modified as follows.

Performance Index:

where
X (k)={z & +1]k) 2,k + N &)}
U k) ={a (k| k). (k + N =1 &)}
s.t.
Prediction:
8kt J 1K) =E & (k+ 7 o) oy + )9,k + | )k + 7))
(j=0.-N 1)

Constraints:

G.(% (k + 1K), (k+ j [ £)v(k+ 1K) <0

Initial Condition:

& (k | 6)=x,(k)

Here » means the predicted values of the corresponding
variables. The predicted values of the disturbance input have no
effect on the stability of the control. But these predictions can
affect the performance of the system.

In this formulation, the control prediction horizon and the
state prediction horizon are assumed to be the same. We
assume that the state variables x, and the disturbance y, can

be measured or estimated directly by the controller i. The
control variables w; are controller i’s control actions,
ui(k):ﬁi(klk)' The variables y, represent all variables

outside the domain of the controller. In this paper, the system

with the decentralized controllable companion form (2) is

considered so that

SR i) - il Sflerilk)) - kil
This is a one-step delayed prediction exchange. In our

DMPC scheme, the stability constraints (4) are incorporated to

ensure the stability of the system. The input-output constraints

will not be adressed in this paper, but can be incorporated
directly into the local optimization problems.

A. Distributed Model Predictive Control with Stability
Constraint DMPC-SC)

For the i controller, the algorithm is described as follows.

Step 1. Communication: Send out its previous predictions
Xj(k ..1) to other controllers and also receive
information v (k)= {ﬁj(k |k),--~,1?j(k +N-1 [k)}

from other controllers.
Step 2. Initialization: Given measured x; (k) and w, (k) and

I, (k) from the previous iteration (set I (()) to be

an arbitrary number), and (<« B;<1> define

1 (k) = max, (), (6 - B e
Set i_[(k|k):xj(k) and 1’T’j(klk):""j(k)'
Predict the future disturbances

Ww,(k+1]k), - (k+N—1]k). [Note: These

predictions have no influence on the stability

results]
Step 3. Optimization: Solve the following optimal control
problem.
min J /(X ;U7 )
subject to
ki1 =A (k4| 4By e+ ]+ KD (il KB e+ )

(i=01--N-1)
%, (k+1]8) <1,
Step 4. Assignment: let
w, k)=, (& 16) 1,0+ D)=z, +1| &)

7

Step 5. Implementation: Application control (k). Set

k =k +1 and return Step 1 at the next sample time.
End

Remark. When we implement this scheme, it is not necessary
for each controller to communication with all the other
controllers. Controller i needs to send information to controller
j only if the corresponding sub-matrix in the decentralized
controllable companion form is nonzero. If the system is
loosely coupled, the amount of communication will not be
large.

B. Stability of DMPC-SC

When we apply this DMPC-SC scheme, the stability of the

system can be ensured if the coupling among the subsystems
satisfies the condition in the following theorem.
Theorem 4: Consider a system in decentralized controllable
companion form (2). The control is computed at each control
instant using DMPC-SC. The system asymptotically stable if
the following matrix is stable (i.e., has all eigenvalues inside
the unit circle)
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Proof. We first show that the error in the state predicted by
each local controller (due to the delayed prediction information
from the other controllers) goes to zero asymptotically.
According to the DMPC-SC scheme, we have

Fk+1]k)=4 +i1§jfcj(k]k—l)+iw[(k)

j=t
JE

(Ic)+Bu

while the state of the system is

xx(k+1):Ziixi(k)+§iu( ) E ( ) _Wi<k)

X Mg

So the error of the prediction X, (k+1|k>:xi(k+1)_);i(k +1]k) is

x, (k |k—1):§:1§.jxei(k—l|k—2)
y=
x,(k+1[k) = Ax, (k | k1),
A= Z—diag(f_\“,- Ay ) IE A s stable, x (k|k-1)—0.
Consider an eigenvalue A and corresponding eigenvector v,
we have

SO that where

0
2.2
;(At +Aljv/) . ‘? ., ‘,f Vil c Rv™ and Vize R™
A= R
0 Y
Y+ 4]
LM

For non-zero eigenvalue, the corresponding eigenvector
2

- v
satisfies y! = (. We have A4 is an eigenvalue of A and !

2
Vm
is the corresponding eigenvector. So A is stable, which implies
that A is stable. Therefore, x, (k [k —1)—0-

We now show the system is asymptotically stable. By

definition,

§ (k) = maxf, 00 (0 J- B 1)
e k,kl sk -1 -0 - Al
<Jele -0 + |, i =0 = A0

<h(k=1)+x, (k] k-1 H - B! (k H

Suppose, ad absurdum, there exists a subsystem i for which
the state x!(k) does not converge to zero. Then, there must

exist positive number ¢ and an infinite sequence of positive
integers 0<k, <k, <--- such that Hx"l(kfXPa (=12
Since x,(k|k-1)— 0, x, (k | k—1) — 0 must hold. There must
exist K >0 such that ”xe,, (k| k_1)|r <Bot-y foral j>k.
We have

li(kK+s+l) < lz (kkﬂ-)“' .Bxaz e ﬁiaz < li (kK+s>—y < l[ (kK)_ sy

When s> Ji(k, )/y i.(k,,)<0- This contradicts the fact

that iik >0- So x}(k)—)O forall j=1,-.-, M . By Lemma 2, we

have x(k) 0.

4 DMPC-SC Simulation Study

In a power system with two or more independently
controlled areas, the generation within each area has to be
controlled so as to keep the system frequency and maintain the
scheduled power exchange between areas. This function is
commonly referred to as load-frequency control (LFC), in
which centralized control is not practical. Many decentralized
control schemes have been proposed for the LFC problem
[8,9,11,13]. Here we handle the load-frequency control
problem by our DMPC-SC scheme. We assign MPC controllers
to control the generator power output directly. Additional
turbine controllers can be used to control the turbines.
Consequently, each area can be described as one equivalent
generator in series with impedance. These model predictive
controllers coordinate the generator outputs and set them to be
the set points for the turbine controllers. In this paper, the
turbine control is not included. The dynamic equation model of
each area can be expressed as

A8, (1) =27Af, (1) ®)
() KRl K, KAB{1) (9)
T P }] T
where

AS (l) = incremental phase angle deviation of the area bus in

radians;
Af, (t) = incremental frequency deviation in Hz;

(t) incremental change in the generator output in p.u.;

AF,
AP, (1 (t) = load disturbance for the i area in p.u.;
T, = system model time constant in s;

K, = system gain;

Ks,-j — synchronizing coefficient of the tie-line between i™

and j* area.

The object of load-frequency control is to drive the
frequency deviation and the deviation of the power flow
through tie lines to zero following a disturbance (e.g., a step-
change in the system load). The deviation of power flow
between areas is proportional to the difference of phase angle
deviation between areas. So, the local performance index can
be selected as

7+ M
0=1" 300,06 (6)-05 6 + a2 (e)+rarie)a
]#1

. (10)

In the simulation study, a two-area load-frequency scenario
is constructed. Each controller is assumed to know the load
disturbance in its local part. The parameters used in the
simulation are: area #1: T, =25s» K, =112.5: K, =05}

K, =120> K

=p, =10, ¢, =¢g,=100 and
r=r,=10. The constant for the stability comstraints are

area #2: T, =20s> =0.5. Other parameters

for optimization are p,

B, = B, =0.8 . The load disturbance is a load increment of 0.01
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p-u. in each area at time 7=0. The control interval is set to 2
second, a typical sampling period in power systems. The
prediction horizon is selected to be 1 to minimize the amount of
computation and communication. Using an  FEuler
approximation to the continuous-time state equations, a
discrete-time state space model of the system is obtained that
satisfies the matching condition in Lemma 1 and condition (7)
in Theorem 4.
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——— DMPC Scheme (with information exchange and stability constraints)
———- Decentralized MPC (without information exchange and stability constraints)

Figure 1. Response of the LFC system for
DMPC-SC and decentralized MPC without
stability =~ constraints or  information
exchange (simulation of the discrete-time
model).

Figure 1 shows the results of simulating the discrete-time
model for two decentralized control schemes. The solid curves
are system behavior by the DMPC-SC scheme. The frequency

variations go back to zero and each sub-system provides
enough power for their local load increment. The dash curves
are system behavior by MPC in a completely decentralized
fashion without information exchange or stability constraints.
The system is unstable in this case. Centralized MPC with
stability constraints was also tried (not shown in Fig. 1). The
system performance is not much better than that by DMPC-SC.
They are nearly the same. From the simulation we find that the
DMPC-SC scheme can work as well as centralized MPC for
systems with canonical structure. Although the model by Euler
method is only a very rough approximation of the system
dynamics, this simulation example illustrates the potential for
applying DMPC-SC.
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Figure 2. The computation time costed and
the performance achieved by different
prediction horizon. The performance is
evaluated over the whole system. The
computation time is the average time used in
optimization in one agent.
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As we mentioned in the introduction, our method applies
no constraint on the selection of prediction horizon. This
provides more flexibility in selecting the prediction horizon.
Obviously, a short prediction horizon would require a smaller
amount of computation time. But a properly chosen longer
prediction horizon could improve the performance of the
system. As shown in figure 2(a), the average time for
optimization increase exponentially as the prediction horizon
increases. But, in figure 2(b), the performance is improved as
the prediction horizon increases till it reaches 6. We see that
too long prediction can deteriorate the performance because the
errors in the prediction are very large for too long prediction
horizon. These two are conflicting factors. Thus, applying this
distributed model predictive control scheme, one should find a
compromise between the potential improvement in
performance and the prediction errors.

5  Conclusions

In this paper, we present a new distributed MPC scheme in
which the conirollers coordinate their actions by exchanging
their predictions about the future behavior of the local
subsystem. For the full local state measurement and one-step
delayed information exchange case, asymptotic stability is
proved for LTI systems satisfying two structural conditions.
The first condition (Lemma 3) is a common matching condition
in the literature on decentralized control. The second condition
(Theorem 4) requires the interconnection matrix to exhibit a
particular stability property. A simulation example shows that
the system is stable under delayed information exchange for a
case when strictly decentralized MPC cannot stabilize the
system.

Carrently, we are investigating possibilities for relaxing the
sufficient conditions for stability developed in this paper.
Simulation studies have shown that stability can be achieved
when the matching condition is not satisfied exactly (i.e., when
the interaction terms required to be zero in the matching
condition are small). For applications it is important to relax
the requirement that the disturbances be measurable.
Robustness when the model is not known exactly is also an
important issue. Finally, we are interested in extending this
approach to situations where the controllers act
asynchronously, perhaps at different sampling rates. We
believe the stability constraint approach shows promise as a
general technique for dealing with all of these issues since the
constraint is generated online based on the previous real-time
computations, rather than being computed off-line as proposed
in other contraction-based methods for MPC.
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