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Abstract

This paper concerns a distributed model predictive con-
trol (DMPC) strategy in which each controller views
the signals from other subsystems as disturbance in-
puts in its local model. The DMPC controllers ex-
change predictions on the bounds of their state tra-
jectories and incorporate this information into their
local DMPC problems. They also impose their own
predicted state bounds as constraints in subsequent
DMPC iterations to guarantee their subsystem satis-
fies the bounds broadcast to the other controllers. Each
controller solves a local min-max problem on each itera-
tion to optimize performance with respect to worst-case
disturbances. Parameterized state feedback is intro-
duced into the DMPC formulation to obtain less con-
servative solutions and predictions. The paper presents
sufficient conditions for feasibility and stability. The
approach is illustrated with an example.

1 Introduction

For large-scale systems, decentralized or distributed
control is often implemented because a centralized so-
lution is either too complex or impractical. For exam-
ple, in today’s deregulated power systems, there may
be market barriers to implementing centralized control,
since the local operating companies are not interested
in revealing all of their local objectives and constraints.
Nevertheless, there are global objectives of concern to
all the controllers (such as system stability), so it is
useful to introduce some mechanisms for coordinating
the distributed control actions.

In this paper, we assume each controller has a model of
its local dynamics with the influence of other subsys-
tems represented as disturbance inputs to the local sys-
tem. We consider MPC strategies for solving the local
control problems. The motivation for using MPC for
decentralized control is the same as for the centralized
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case: constraints and objectives are explicit in MPC,
making it possible to incorporate important features of
the problem directly into the on-line computations. To
guarantee the local problems remain feasible, we as-
sume the controllers have bounds on the disturbance
inputs (and other uncertainties) and formulate a min-
max optimization problem at each control step. This
is a standard approach taken in the MPC literature to
deal with uncertainties [8]. To avoid the overly conser-
vative solutions generated by the standard open-loop
formulation of the MPC optimization problem, we in-
troduce parameterized feedback policies as proposed in
[2, 10].

The steps performed by the local controllers at each
control instant are illustrated in Figure 1. We con-
sider a scheme where each controller broadcasts infor-
mation about its predicted state trajectories so that
other controllers can use this information to update
the bounds on the disturbances in their local models.
To ensure that such a scheme is viable, each controller
must guarantee that the future behavior of its local
system remains within the bounds it has broadcast to
the other controllers. It is also necessary to show that
the optimization problems for all the controllers remain
feasible indefinitely. Finally, stability of the overall sys-
tem under the distributed control actions needs to be
demonstrated.

Iteration:
Exchange information
with other controllers

Measure the local variables
and update state estimate

Solve the local receding-
horizon control problem

v

Apply the control signal
for the current instant

[

Figure 1: Local steps for distributed MPC with
coordination.

This paper is organized as follows. Section 2 introduces



min-maz feedback with constraint set C (M?F(C)) opti-
mization for controlling systems with bounded uncer-
tainties. Section 3 uses the M2F(C) optimization to
formulate the min-maz feedback DMPC (M2F-DMPC)
problem and discusses the related feasibility and sta-
bility issues. Section 4 illustrates our scheme for an
example of distributed control of an electromechanical
system. The paper concludes with a discussion of fu-
ture research directions.

2 MPC With Bounded Uncertainties

Since each controller handles effects from other sub-
systems as bounded disturbances, rather than coordi-
nating with other controllers to solve the global MPC
problem distributedly, each local control problem is an
MPC problem with bounded disturbances. The effect
of the coordination signals is to introduce time-varying
bounds on the disturbances. In this section we con-
sider the formulation and solution of the resulting MPC
problems with time-varying, bounded uncertainty. Fol-
lowing the approach in [2, 10], we introduce a parame-
terized feedback control law into the MPC optimization
problem given by u = h(z,0), where 6 € E is a pa-
rameter vector subject to the constraint set = C R™.
The purpose of 6 is to obtain less conservative solutions
for the min-max optimization, relative to the open-loop
formulations in standard MPC.

Consider the following constrained discrete-time non-
linear time-invariant system:

z(k+1) = f(x(k),u(k),v (k) (1)
subject to
x(k) € XCR" (2)
v(k) € VR (3)
Gz (k),u(k),v(k) < 0 (4)

where z (k) € ®7, u(k) € R™ and v (k) € R are the
state, the control and the uncertainty of the system,
respectively. The input v represent all kinds of uncer-
tainties in the system, including unknown disturbance
inputs and uncertainties in the model. We assume that
the system state is observable.

In the following, we use a variation of the notion of
control invariant sets [6]. We say 7 C X' is a 6-control
invariant set of the system described by the equations
(1)—(4) if there exists a control parameter #7 € = such
that

T ET:f(a:,h(wﬁT),v) e€T,YveE.

Throughout the remainder of the paper, 7 will denote
a f-control invariant set.

In the formulation of the MPC problem we let N de-
note the prediction horizon and let C denote the set of
constraints on the states and disturbances, that is,

c={x(1), -, X(N-1),V(0), -, V(N-1)},

where X (j) € ®*, j = 1,---,N — 1 are constraints
on the state variables, which are updated from stage
to stage in our framework to ensure that the future
behavior is consistent with the information the con-
troller broadcasted to other controllers, and V (j) C R/,
j=0,...,N —1, are bounds on uncertainties that can
be updated by system identification techniques or by
information sources (which in our case will be bounds
from other controllers).

At each control step k, the controller solves the follow-
ing min-max feedback with constraint set C (M?F(C))
optimization problem:

M?F(C) Optimization Problem
Given the constraint set C,
Performance Index:

Hgn [m‘z}xJ (O, V)]

where

Parameters for Feedback Policy:
0= {907917 T 79N*1}
Uncertainties:
V={v(0),v(1),--
subject to

Initial Condition:
z(0) =z (k)
Prediction:

CE(]+1) = f(:8 (.7) ,U,(j) ,U(j)), Jj=0,1,---,N-1
Feedback Policy:

U(]) = h(j(])aej)a .7 = 07]—7"'7N_1

Parameter Constraints:

0ez=N

State Constraints:

CE(]) € X(]):]: 1725"'7N_1

E(N)eT

Bounds on Uncertainties:

U(]) € V(.])a.] :0717"'7N_]-

Constraints for All Possible Uncertainties:

Vo(5) eV(j),j=0,1,--- )N -1

)= (@) @ ().9) , 5(F)EX (j41), j=01,: - - N-2
#(N)=f (& (N=1),hE(N=1,0x 1) , 5 (N—-T)€T
G(i.(])ah('i.(.])aaj)aﬁ(])) <0,j=0,1,---,N -1

v (N =1}

O is said to be a feasible solution to the M2?F(C)
problem if all constraints are satisfied, and the M2F(C)
problem is said to be feasible if there exists a feasible
solution ®. We are interested in situations where it
is possible to update the state constraints and the
disturbance bounds at each step. The constraint set
at stage k will be denoted by C*, and



Gk* = {95*70{”7"'79?\;—1}

will denote the solution to M2F(Ck). Given ©%*, the
control applied to the system at step k is

u(k) =h(z(k),05).

When there is no uncertainty in the system, the bound
on disturbance becomes a series of known single value
sets V (j) ={v(j)},7=0,1,---, N—1. In other words,
M?2F(C) becomes the conventional MPC optimization
problem. Then, although a time-varying parameterized
state feedback law is obtained, it is equivalent to an
open-loop optimal control sequence because the future
state trajectory is deterministic.

In following, we consider the feasibility of M2F(C)
problem with updated uncertainty bounds and state
constraints that satisfies the following conditions.

Uncertainty Bounds Updates
VO (j)=V,j=0,1,---,N -1, (5)
and for £ > 0
VE()SVF(j+1),j=0,1, - - [N=2, and V¥ N-1)CV (6)

where V is a given initial bound on the disturbances.

State Constraint Updates

X =x,j=1,2,---,N—1, and X°(N) =T (7)
and for k£ > 0

et - DX GCX M (j+1), =12 - - Ndand Y¥ONCT (8)

where A is the given initial state constraints and

X (k4 j|k — 1) are the predicted bounds on the reach-
able states at each stage given by

X (k+jlk) = {zlz=Ff(a',h (2,6 ,v), (9)
o' €X (k+j—1|k),veV* (j—l)},
forall j =1,2,---, N, where
X (k|k) C X (k|k—1). (10)

X% (j) is a conservative approximation of the future
reachable set predicted recursively by the controller at
the control step k — 1 for the time k + j.

In the constraint set C*, V¥ (0),---, V¥ (N —1) are
from identification methods or some information
sources from outside world. Relation (6) imposes re-
quirement on the identification algorithms and the in-
formation sources. The constraints X* (1),---, X'* (N)
are updated by the controller itself. The following
lemma guarantees the feasibility of the condition (8)
during control.

Lemma 2.1 If M2F(Ck) is feasible, then there exist
AR (1), o AR (N) such that

X(k+j+1|k) C YR () CAH(j+1) ,j=1,2,--- N-1. (11)

Proof: That M2F(C’“) is feasible implies that the
optimal solution

(_)k* — {0(1)9*39{1@) L ,9?\;«_1}

exists. From the state constraints in the M2F(C) prob-
lem at the step k,

{ij(j)E‘Xk(j)vj:LQa"'aN_la

and the definition equation (10) for the predicted reach-
able sets,

X (k + jlk) C X% (j)

XL () = XK (j+1), j =1,2,--+,N — 1, is a trivial
selection that satisfies (11). =

Theorem 2.1 If M?F(C°) is feasible, then M?F(C*)
is feasible at all control steps k > 0. And furthermore,

(k) €T k=N,N+1,--.

Proof:  Since M?F(C°) is feasible, there exists the
optimal solution

0™ = {98*79(1)*7 T 70?\?—1}

and the predicted bounds on the future reachable states
satisfy,

X (j|0)CX0(j)=X, j=1,2,--- ,N—1, and X(N|0)CT.
Suppose M?F (C*) is feasible.
Ok = ol 0t 0%}
and
X (k+j|k)CXE(j—1) ,j=1,2, - - N1, and X (k+N|k)CT.

At control stage k + 1, consider the following selection
of the constraint set



CH={X(0) - APH(N-1) VK(1) - VH(N-1) V).
and ©
Ok+1 — {0k, 0k 07}
and the constraint set
CHI={AF(0) - - - APN-1) VK1) - - VHN-1) V]

For any #°+1(0) € X*+1(0) and v*+1(j) € V¥ (j+1), j =
0,1,--+, N — 2, by the definition (10) for the predicted
reachable set,

FFL0) € X (k+1]s)
N (1) € X (k+2|k) C xR (1) _
G (2% (0),h ("1 (0), 67 (k) ,v (0)) <0
(1) € X (k+2k)
FHH1(2) € X (k + 3|k) C Xk (2)
LG (@), R (E(1),65 (k) v (1) <0
P (N=2) € X (k+N—-1|k)
N FFH1(N-1) € X (k+N k) C X*+1 (N-1)

C
GE*+(N=2), bz +1(N=2) 0%, ) ,{ N—2)) <0
(N -1 eT
L (N)eT
= { GEH+1(N=1), b+ 1(N—-1),07 ) o N—1))<0

So, OF1 is a feasible solution to the M2F(CkK+1).

Because the updated uncertainty bounds satisfy the
condition (6), O*! is also a feasible solution to
M2F(C**1). So, M2F(C*) is feasible for all control
steps k£ > 0.

Following the state constraint updating condition (8),
when k£ > N,

z (k)eX (k|k)CX (k|k — 1-1)C---CX (k|k — N)CT.
|

Theorem 2.1 shows that that the stability of the system
(in the sense of remaining in 7') is ensured by updating
the state constraints following the relation (8)—(10).

3 Distributed MPC with communication

We now consider interconnected systems where the
couplings between M subsystems are through the state
variable, i.e.

=fi (z; (k) ,u; (k) ,v; (K)),

T .

where

vi (k) = {21 (k) - wia (B) @i (B) -5 2ar ()}

The bounded uncertainties in the local models are
bounded effects from other subsystems. These bounds
are updated when new information is obtained from
other controllers. Also each controller needs to impose
the bounds it sends to other controllers as constraints
on its own state to assure that its broadcasted bounds
are maintained.

We propose that each controller directly adopts the
MZ2F(C) optimization problem with updated state con-
straints and bound on uncertainties to handle un-
certainties in the information from controllers, which
is called min-maz feedback DMPC (M?>F-DMPC). In
the following discussion, we use the subscript i,7 =
1,2,---, M, where M is the number of controllers in
the system, to denote the problem and the variables
corresponding to the it" controller. Since disturbances
to each subsystem are the effects from other subsys-
tems and the predicted future reachable set is used as
the bound, the uncertainty bound is updated in the
following way,

M
VEG) =] A G)i=1,2,-,N -1
o
and
M
VE(©0) =[] A 0),
l;i

where &y (k|k —1) CXF(0) CXF 1 (1), 1=1,---,i—
1,i+1,---,M, is computed by the same method for
XF (). We assume a one-step delay in the communi-
cation of the constraints.. In min-max optimization,
each controller tries to find a feedback control policy
to optimize the worst case performance. Thus, each
controller should optimizes against the worst possible
case from neighbor controllers’ information about fu-
ture reachable sets. For this purpose, each agent up-
dates state constraints following the equations (8)—(10)
and thus the uncertainty bound updating condition (6)
can naturally be satisfied.

Theorem 3.1 (Feasibility) If M?F-DMPC is feasi-
ble at the first step k = 0, it is feasible at all control
steps k > 0. Furthermore, the state of the whole system
goes into the set Ty X Ta X -+ X Tar.



Proof: This theorem follows from the feasibility re-
sult for the M?F(C) optimization problem with updated
state constraints and bounds on the uncertainties. m

Following the proof for the Theorem 2.1, the MZ?F-
MPC can be feasible even without communication, i.e.
bound updating. When communication is available,
the neighbor information is less conservative and the
controllers can make less conservative decisions.

4 An Example

Consider the spring-mass system, shown as Figure 2,
consisting of four identical springs with spring constant
k. The masses are three identical solenoids with the
mass m, each of which is controlled by an MPC con-
troller.

. . .
hn LY LY
] ] ]

K [ k [ k [ I3
1 1 1

m m m

Figure 2: A solenoid example.

The dynamic equations for the system are:
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where the state variables z;; and x;» are the position
and velocity of the it solenoid, for i = 1,2,3. A zero-
order hold, with sampling time Ts = 0.2s, is used to
obtain the discrete-time model with m = lkg and k =
10N/m. In the following, the prediction horizon is N =
2 and the initial conditions are

=l - e =18

|

We first consider the case where u? (j) = 6% (j), i.e.

using the open-loop MPC formulation,

Performance Index:

min

k k k
[ (02

where

State Prediction:
Control Prediction:

Uzk = {’U’f (0)711'1c (1),,Uf (N_ 1)}

We use the ellipsoidal method of Kurzhanski and
Vélyi [7] to compute approximations of state con-
straint sets. For each reachable set, we compute a
single ellipsoid X; (k +jlk) as an external approx-
imation, which has the minimal sum of squares of
semi-axises. These ellipsoids are also used as X'* (j).
Since the open-loop control sequence can only manip-
ulate the centers of the reachable sets, we move the
centers of all these ellipsoids to the origin so that it
is easy to tell whether or not the MPC problem is
feasible. In Figure 3, the left three plots are X;(1]0)
and the right three plots are X; (2|0), i = 1,2,3. The
solid ellipsoids give the approximate reachable sets and
the dashed ellipsoids form the state constraints. It is
obvious that no matter what controller 2 selects as the
open-loop control sequence, the approximate reachable
set Xy (2|0) cannot satisfy the state constraint.

Figure 3: Feasibility Problem by Open-Loop Policy.



Now, consider a parameterized affine state feedback
control policy, i.e. u¥ (j) = K¥ () x¥ (j)+u? (), where
KF (j) and u¥ (j) are parameters subject to optimiza-
tion, i.e. 6% (j). The Figure 4 shows the simulation
results for 20 steps. The left three plots give the re-
sponses of the three sub-systems. The curves with
crosses are positions and the curves with circles are
velocities of those solenoids. The right three plots are
the predictions of the corresponding controllers which
are used as the dynamic information by the neighbor
controller(s). The largest ellipsoid in each plot is the
state constraint. The solid ellipsoids are the approx-
imate reachable set X; (k + 1|k) and the dashed ellip-
soids are A; (k + 2|k). In this case, M2F(C*) is feasible
for all k, which is to be expected since M2F(C?) is fea-
sible. Each sub-system goes back to the equilibrium
point and the uncertainties in the predictions of the
controllers decrease throughout the simulation.

Response Of The Sub-System 1

eeeeeeee

Figure 4: Simulation results.

5 Discussion

This paper presents a new distributed scheme to
achieve coordination among decentralized MPC con-
trollers with one-step delayed information exchange.
Min-max optimization is used to handle the uncertain-
ties in the disturbances from neighbor controllers and
the feedback policy is introduced to obtain less con-
servative solutions. When the delay in communication
cannot be ignored, the method in [1] can be directly

applied to our scheme. We are currently investigating
conditions for asymptotic stability, extending the re-
sults obtained in [5] for linear systems without uncer-
tainty. We are also investigating set-membership state
estimation [3, 4, 9] to handle uncertainties in the states
and methods for set representation and approximation.
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