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Introduction 

In model predictive control (MPC), also called receding horizon control, the 

control input is obtained by solving a discrete-time optimal control problem over a given 

horizon, producing an optimal open-loop control input sequence. The first control in that 

sequence is applied. At the next sampling instant, a new optimal control problem is 

formulated and solved based on the new measurements. The theory of MPC is well 

developed; nearly all aspects, such as stability, nonlinearity and robustness, have been 

discussed in the literature (see, e.g., [1], [2], [3], [4]).  MPC is very popular in the process 

control industry because the actual control objectives and operating constraints can be 

represented explicitly in the optimization problem that is solved at each control instant. 

Many successful MPC applications have been reported in the last two decades [2], [4].  

Typically, MPC is implemented in a centralized fashion. The complete system is 

modeled and all the control inputs are computed in one optimization problem. In large-

scale applications, such as power systems, water distribution systems, traffic systems, 

manufacturing systems, economic systems, etc., it is useful (sometimes necessary) to 

have distributed or decentralized control schemes, where local control inputs are 

computed using local measurements and reduced-order models of the local dynamics [5], 

[6]. The goal of the research described in this paper is to realize the attractive features of 

MPC (meaningful objective functions and constraints) in a decentralized implementation.  
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Previous work on distributed MPC is reported in [7], [8], [9], [10], [11], [12], 

[13], [14].  In some applications, multiple low-level controllers are simply implemented 

using MPC, just as one might use PID controllers to close local feedback loops [13]. For 

water distribution systems, full-scale centralized MPC computations have been 

decomposed for decentralized computation, using standard coordination techniques (e.g., 

augmented Lagrangian) or estimation and prediction schemes to obtain solutions at each 

control instant [10], [11], [12], [14]. Decentralized team strategies for linear-quadratic 

problems were considered in [8], [9]. This method is suitable for linear time-invariant 

systems. If the optimal control problem is an LQG problem, an analytical solution can be 

found. Some researchers [9] suggest using a neural network to approximate stationary 

controllers for nonlinear systems, but this approach is not suitable for large systems.   

In this paper, we consider situations where the distributed controllers, or agents, 

can exchange information. The objective is to achieve some degree of coordination 

among agents that are solving MPC problems with locally relevant variables, costs and 

constraints, but without solving a centralized MPC problem. Such coordination schemes 

are useful when the local optimization problems are much smaller than a centralized 

problem, as in network control applications where the number of local state and control 

variables for each agent and the number of variables shared with other agents are a small 

fraction of the total number of variables in the system. These schemes are also useful in 

applications where a centralized controller is not appropriate or feasible because, 

although some degree of coordination is desired, the agents cannot divulge all the 

information about their local models and objectives. This is the case, for example, in the 

newly deregulated power markets in the United States. 
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In distributed control, the type of coordination that can be realized is determined 

by the information structure, that is, connectivity and capacity of the inter-agent 

communication network. In this paper we assume that the connectivity of the 

communication network is sufficient for the agents to obtain information regarding all the 

variables that appear in their local problems. Regarding the network capacity, we 

consider two different situations. First, we consider situations where it is possible for the 

agents to exchange information several times while they are solving their local 

optimization problems at each control instant. In this case, we are interested in 

identifying conditions under which the agents can perform multiple iterations to find 

solutions to their local optimization problems that are consistent in the sense that all 

shared variables converge to the same values for all the agents. We also show that when 

convergence is achieved using this type of coordination, the solutions to the local 

problems collectively solve an equivalent, global, multi-objective optimization problem. 

In other words, the coordinated distributed computations solve an equivalent centralized 

MPC problem. This means that properties that can be proved for the equivalent 

centralized MPC problem (e.g., stability) are enjoyed by the solution obtained using the 

coordinated distributed MPC implementation. 

We then consider a situation where the capacity of the communication network 

does not allow the agents to exchange information while they are solving their local 

optimization problems. In particular, we consider the case when the agents can exchange 

information only once after each local MPC optimization problem is solved, while the 

current, local control actions are being applied to the system. Consequently, there is a 

one-step delay in the information available from the other agents when an agent 
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formulates and solves its local MPC optimization problem at each step. For this new 

situation, we focus on the fundamental issue of stability since sufficient conditions from 

the literature for centralized MPC do not apply. For a class of linear time-invariant 

systems, we develop an extension of the stability-constraint method in [17, 21] to the 

distributed MPC problem with one-step communication delays. We present sufficient 

conditions for guaranteeing stability of the closed-loop system and illustrate the approach 

by an example of load-frequency control in a two-area power system. 

Model Predictive Control 

In MPC, control decisions ( )ku  are made at discrete time instants L,2,1,0=k , 

which usually represent equally spaced time intervals. At decision instant k , the 

controller samples the state of the system ( )kx  and then solves an optimization problem 

of the following form to find the control action: 

( ) ( )
( ) ( )( )kUkXJ

kUkX
,min

,,
           (Performance Index) 

where 

( ) ( ) ( ){ }kNkxkkxkX |,,|1 ++= L        (Predicted State Sequence) 

( ) ( ) ( ){ }kNkukkukU |1,,| −+= L    (Predicted Control Sequence) 

s.t.  

( ) ( ) ( )( )kikukikxFkikx |,||1 ++=++   ( )1,,0 −= Ni L       (Prediction) 

( ) ( )( ) 0, ≤kUkXG           (Constraints) 

( ) ( )kxkkx =|              (Initial Condition) 
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In the above formulation, the performance index represents the measure of the 

difference between the predicted behavior and the desired future behavior: the lower the 

value, the better the performance. The variables ( )kikx |+  and ( )kiku |+  are, 

respectively, the predicted state and the predicted control at time ik +  based on the 

information at time k. Predictions are based on the system model ( ) ( ) ( )( )kukxFkx ,1 =+ . 

The constraints represent physical limits in the system and can also be other constraints to 

ensure the stability or robustness of the system. The optimization produces an open-loop 

optimal control sequence in which the first control value is applied to the system, that is, 

( ) ( )kkuku |= . Then, the controller waits until the next control instant and repeats this 

process to find the next control action. 

Distributed Model Predictive Control Problem 

The standard MPC formulation in the previous section can be summarized as a 

series of static optimization problems: { }L,2,1,0| =kSPk , each of the form: 

kSP : ( )SJ
S

min  

            s.t.    ( ) 0≤SG  

                    ( ) 0=SH , 

where S  is the vector of the decision variables, including state variables X  and control 

variables U , over the prediction horizon. The equality constraint in the problem includes 

the prediction model and other equality operation constraints.   

Distributed MPC is a decomposition of kSP  into a set of M subproblems, 

{ }MiSPki ,,2,1| L= , and each sub-problem is assigned to a different agent. The goals of 
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the decomposition are two-fold: first, to ensure that each sub-problem is much smaller 

than the overall problem (that is, to ensure that kiSP  has far fewer decision variables and 

constraints than kSP ), and second, to ensure that kiSP  is coupled to only a few other sub-

problems (that is, kiSP  shares variables with only a few other sub-problems).  

To be more specific, consider the ith sub-problem and the corresponding agent. 

From the ith agent’s point of view, the goals of the decomposition are to partition the set 

of variables S  into three subsets: rem
i

nei
ii SSSS ∪∪= , where, iS , called local variables, 

is the set of decision variables allocated to the ith agent, nei
iS , called neighbor variables, is 

the set of decision variables allocated to agent i’s neighbors  (the agents with which agent 

i can cooperate -- exchange data), and rem
iS , called remote variables, is the set of all other 

decision variables in the system. Problem kiSP  can then be formulated as follows: 

kiSP : ( )nei
iiiS

SSJ
i

,min  

s.t.  ( ) 0, ≤nei
iii SSG  

( ) 0, =nei
iii SSH , 

where iG  and iH  are components of G  and H  related to agent i, and the performance 

index iJ represents the interests of agent i. 

We assume that the network of interactions between the subsystems is sparse, 

which means ( ) ( ) ( )SSS nei
ii dimdimdim < <+ , and require that some agent handles each 

decision variable and constraint, i.e. SSii =U , GGii =U , HH ii =U . Either the 

objective functions sum to a given global objective function, JJ i =∑ , or the global 

problem can be thought of as a multi-objective optimization problem with the vector 
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objective function, [ ]TMJJJ ,,1 K= . We believe that it is possible to develop systematic 

procedures for performing the above decomposition for many, if not most, complex 

networks. 

Cooperative Iteration 

In this section we consider the case when the communication network allows the 

agents to exchange information while they solve their local optimization problems. In 

particular, we consider a scheme in which each agent computes a solution to its local 

problem assuming values for the variables of its neighbors. The agent then broadcasts the 

values of its own variables to its neighbors, and re-solves its optimization problem with 

the updated values for the shared variables. The objective of the coordination is to 

achieve convergence in the values of the variables shared by multiple agents.   

For Mi ,,1K= , let L,,, 210
kikiki sss  be the resulting sequence of the iterative search 

at time k for a solution to subproblem kiSP . Two important questions are: 

1) Under what conditions will these iterations converge to a solution of kiSP ? 

2) Under what conditions will the solutions of kMkk SPSPSP ,,, 21 L  compose a 

solution of the overall problem kSP ? 

The following theorem provides answers to these two questions. 

Theorem 1 [15]. If, for all i: 

1. Σ Ji =J when J is a scalar, and Σ Ji = WT.J when J is a multi-objective vector, 

where W is a vector of non-negative weights; 

2. iJ  and iG  are convex; 
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3. iH  is linear; 

4. The agents within each neighborhood work sequentially; 

5. The equality constraints can be relaxed without emptying the feasible region 

of kSP . In other words, there exists a positive number δ such that:  

                            ( ) ( ){ } ∅≠<< δsHsGs ,0| ; 

6. iJ  is bounded from below in the feasible region; 

7. The starting point is in the interior of the feasible region; 

8. Each agent cooperates with its neighbors in that it broadcasts its latest 

iteration to these neighbors; 

9. Each agent uses the same interior-point-method (barrier method) with the 

same Lagrange multipliers to generate its iterations. 

Then: (a) in the case where J is a single objective, kSP  has a unique solution and 

{ }LU ,2,1,0=lsl
ki  will converge to this solution; (b) in the case where J is a multi-

objective vector, { }LU ,2,1,0=lsl
ki  will converge to a point on the Pareto surface of 

kSP . (When there are multiple, conflicting objectives, the Pareto surface is the set of the 

best possible tradeoffs among these objectives.) 

In essence, this theorem indicates when computational advantages can be 

obtained by tackling a network of subproblems with a network of agents that has the 

same structure. To be more specific, consider two sparse graphs: Γ, whose nodes 

represent subproblems and whose arcs represent couplings between (or variables shared 

by) these subproblems; and 'Γ , whose nodes represent agents and whose arcs represent 

communication channels between these agents. If a large optimization problem can be 
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decomposed into a network of much smaller subproblems represented by Γ, and if 

conditions 1 through 9 are met, then solving the subproblems with agents arranged so that 

Γ=Γ '  provides the following advantages:  locally optimal solutions (those found by the 

agents) are coincident with the globally optimal solution; each agent needs to cooperate 

(exchange data) only with its neighbors (adjacent nodes in 'Γ ); and agents not in the 

same neighborhood may work in parallel. 

However, conditions 2 and 3 are unrealistic (real problems are often non-convex 

and have nonlinear equality constraints), and condition 4 is overly constraining (we 

would like the agents to be able to work asynchronously: all in parallel, each at its own 

speed).  

Experiments on a number of small but prototypical networks [15], [16] indicate 

that conditions 2 and 3 are not necessary, and can often be relaxed to allow for non-

convex problems with nonlinear equality constraints. This suggests that when distributed 

controls are to be designed for a real network, experiments should be conducted to see if 

the network would allow conditions 2 and 3 to be relaxed. 

We do not, as yet, have a procedure for relaxing condition 4 to allow for at least 

some periods of asynchronous work. However, the next section suggests some promising 

directions. 

Heuristics for Asynchronous Work 

Consider the formulation of kiSP , the sub-problem to be solved by the ith agent.  

Two classes of heuristics for tackling this sub-problem asynchronously are: 



CSM Distributed Model Predictive Control  10 

 

• using models to predict the reactions of agent i’s neighbors, so agent i does not have 

to wait to be informed of these reactions, but rather, can proceed with its iterations on 

the basis of  predictions of nei
iS . These models can either be developed from first 

principles or learned from historical records of nei
iS .  

• tightening the constraints on some agents so they leave some maneuvering room for 

other agents. 

Both classes show promise. For instance, the inequality constraints can be 

tightened as follows: 

                                                           ( ) i
nei
iii RSSG −≤, , 

where, the resource margin, 0>iR , can either be fixed, a priori, or adjusted dynamically. 

Figure 1 presents some experimental results for a “forest of pendulums.” This 

forest consists of an array of up to 9 frictionless pendulums [15], [16]. Each pendulum is 

connected to its adjacent pendulums by linear springs, and is controlled by an agent that 

can exert two orthogonal and horizontal forces on the pendulum. At the start of the 

experiment, the pendulums are oscillating in synchronism. Subsequently, they are 

subjected to a set of random disturbances. The objective is to return them to synchronism 

as soon as possible while expending as little control energy as possible [16]. The 

mechanical connections of the pendulums make this optimization problem profoundly 

non-convex with equality constraints that are profoundly nonlinear. Nevertheless, 

asynchronous calculation schemes for the agents produce convergence to solutions not 

very different from the optimal solution, as shown in Figure 1.  
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Figure 1. Typical results of asynchronous iterations with a resource-margin-heuristic. The “C-Net 
Penalty” is the percentage deviation from the optimal solution. The upper curve corresponds to fixed 
and equal resource margins for all pendulums. The lower curve was obtained with resource margins 
that were smaller for the pendulums suffering the greatest deviations from the desired behavior.  

Coordination for Stability 

The coordination scheme in the previous sections allowed the agents to compute a 

set of solutions to the local problems that also solved a global optimization problem, 

thereby making it possible to emulate centralized MPC through distributed computations. 

We now consider a second scenario in which it is only possible for the agents to 

communicate the solutions to their local problems once during each control interval. In 

this case, the collection of local solutions is not equivalent to the solution of a global 

problem because the agents are using information from their neighbors that is delayed by 

one time step. Consequently, the stability results for the centralized MPC cannot be used 

here directly; new conditions for stability are required. In this paper, we study linear 

systems without constraints as the first attempt in this direction for distributed MPC.  
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In the literature, to ensure stability, some constraints or conditions are added to 

the MPC optimization problem. There are two kinds of schemes for applying stability 

constraints [1], [3]. In the dominant scheme, stability constraints are applied to the end 

state in the prediction. The prediction horizon must then be set long enough so that a 

feasible solution exists. This method is not suitable for distributed MPC because when 

only the local information is used, it is unclear how long the prediction horizon should 

be.  

The second method is a recently proposed scheme by Cheng and Krogh, called 

stability-constrained model predictive control (SC-MPC) [17], [18], [19], [20], [21]. In 

this approach, a contractive constraint computed on-line (rather than off-line, as in most 

previous schemes) is imposed on the first state in the prediction. The selection of the 

prediction horizon does not affect the stability of the system.   

In this section, we apply the SC-MPC approach to our distributed MPC scheme. 

We present sufficient conditions for closed-loop system stability using distributed MPC 

with contractive stability constraints, called stability-constrained distributed model 

predictive control (SC-DMPC).  

A distributed linear time-invariant system with each subsystem controllable and 

coupling only in state variables can be modeled as: 

( )

( )

( )

( )

( )

( )

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


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

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+
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ku

B
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kx

kx
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M

M

MOM
L

MOM
L

M
111

1

1111

1

1
,   (1) 

where in
i Rx ∈  and im

i Ru ∈  are the state vector and the control vector of the ith 

subsystem, respectively. For a system of this type, we propose the following scheme to 

achieve coordination among agents. During each step, each agent only broadcasts its 
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solution of the local MPC problem after it applies its control action to the local 

subsystem. In the computation, the agents use the information they get from neighbor 

agents to estimate the effect from neighbor subsystems, which means that each agent uses 

the predictions of neighbor agents at the previous step to estimate the effect from 

neighbor subsystems. For the jth agent, we denote the information from the other agents 

by the vector ( ) ( ) ( ) ( ) ( )[ ]TT
M

T
j

T
j

T
j kikxkikxkikxkikxkikv 1|1|1|1|| 111 −+−+−+−+=+ +− LL , where 

( )1| −+ kikxs  is the state prediction by the agent s at the control step 1−k . The agent j 

uses the following model to predict the future states of the local part: 

( ) ( ) ( ) ( )

( ) ( ) ( )kikvKkikuBkikxA

kikxAkikuBkikxAkikx

jjjjjjj

M

js
s

sjsjjjjjj

|||

1||||1
1

+++++=

−+++++=++ ∑
≠
= , 

where [ ]Mjjjjjjj AAAAK ,1,1,1 LL +−= . The SC-DMPC algorithm is based on the following 

lemmas. Proofs of all the results in this section can be found in [22]. 

Lemma 1: Consider a system in (1). Suppose ( )iii BA ,  ( )Mi ,,1 L=  are 

controllable and iB  is of full rank. If the system 

satisfies ( ) iiMiiiiii mAAAABrank =+− ][ 111 LL , there exists a similarity 

transform matrix ( )MPPPdiagP ,,, 21 L=  such that the system can be represented in the 

controllable companion form given by 

( )
( )

( )
( )

( )
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( )
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where 




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( ) ( )iiii mnmn
ii RI −×−∈ , ji mm

ij RA ×∈1 and ( )jji mnm
ij RA −×∈2 ,  
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, ii mm
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Lemma 2: Consider a system in controllable companion form (2). Suppose states 

are measurable. To each subsystem, for any ( )kxi  and 10 << iβ , there exists ( )kui  such 

that 

( ) ( ) ( ) 21221 kxkxkx iiii β−≤+ . (3) 

Moreover, if ( )
( )

( )














=

ku

ku
ku

M

M
1

, where ( )kui  satisfies (3), and ( )Mβββ ,,min 1 L= , then  

( ) ( ) ( ) 21221 kxkxkx β−≤+ , 

where ( )
( )

( )














=

kx

kx
kx

M
1

1
1

1 M .  

To ensure the stability of the system, each agent also adds a contractive constraint 

into its local MPC problem. For the jth agent, the algorithm is described as follows. 
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SC-DMPC Algorithm: 

Step 1. Communication: Send out its previous predictions ( )1−kX j  to other controllers 

and also get information ( ) ( ) ( ){ }kNkvkkvkV jjj |1,,| −+= L  from other 

controllers. 

Step 2. Initialization: Given the measured ( )kx j  and ( )kl j  from the previous iteration 

(set ( )0jl  to be an arbitrary number), and 10 ≤< jβ , define 

( ) ( ) ( ){ } ( ) 212
, maxˆ kxkxklkl jjjjj β−= . 

Set ( ) ( )kxkkx jj =|ˆ .  

Step 3. Optimization: Solve the following optimal control problem. 

( ) ( )
( ) ( )( )kUkXJ jjjkUkX jj

,min
,

 

subject to 

( ) ( ) ( ) ( )kikvKkikuBkikxAkikx jjjjjjjj ||||1 +++++=++ , ( )1,,1,0 −= Ni L  

( ) ( )klkkx jj
ˆ|1

2 ≤+ . 

Step 4. Assignment: Let 

( ) ( )kkuku jj |= , ( ) ( ) 2
|11 kkxkl jj +=+ . 

Step 5. Implementation: Apply the control ( )ku . Set 1+= kk  and return to step 1 at 

the next sample time. 

Note that each controller does not need to communicate with all the other 

controllers. Controllers i and j would communicate with each other only if the subsystems 

i and j have direct interaction with each other. If the system is loosely coupled, the 

amount of communication is not that great.  
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Lemma 2 shows that when the contractive constraint ( ) ( )klkkx jj
ˆ|1

2 ≤+  is 

added, the feasible control set is still non-empty. It also guarantees that, at each step, the 

collection of solutions for the local problems comprises a feasible solution for the overall 

system. The following theorem gives a sufficient condition for stability of the closed-loop 

system. 

Theorem 2: Consider a system in the controllable companion form (2). The 

control is computed at each control instant using SC-DMPC. The system is 

asymptotically stable if the following matrix is stable 
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A Power System Application 

In a power system with two or more independently controlled areas, the 

generation within each area must be controlled so as to maintain the system frequency 

and the scheduled power exchange. This function is commonly referred to as load-

frequency control (LFC), for which centralized control is not practical. Many 

decentralized control schemes have been proposed for the LFC problem [23], [24], [25]. 

Here we handle the LFC problem by using SC-DMPC scheme. We assign MPC 

controllers to control the generator power output directly. Additional turbine controllers 

can be used to control the turbines. Thus, each area can be described as one equivalent 

generator in series with impedance, as shown in Figure 2.  

The dynamic equation model of each area can be expressed as 
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where 

( ) =∆ tiδ  incremental phase angle deviation of the area bus in rad; 

( ) =∆ tf i  incremental frequency deviation in Hz; 

( ) =∆ tP
ig incremental change in the generator output in p.u.; 

( ) =∆ tP
id  load disturbance for the ith area in p.u.; 

=
iPT system model time constant in s; 

=
iPK  system gain; 

=
ijSK  synchronizing coefficient of the tie-line between ith and jth area. 

Figure 2. A simplified description of a power system for studying load frequency control (LFC). 

The distributed MPC controllers coordinate the generator outputs by providing set 

points to the turbine controllers. Here, the dynamics of turbines will not be included. The 

objective of LFC is to keep the frequency deviation of the system at zero and to maintain 

the deviation of the power flow through the tie-line at zero. The deviation of power flow 
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between areas is proportional to the difference of phase angle deviation between areas. 

Thus, the local performance index can be selected as 

( ) ( ) ( )( ) ( ) ( )∫ ∑+

≠
= 











∆+∆+∆−∆=
Tt

t giii

M

ij
j

jiiji dPrfqptJ
i

ττττδτδ 22

1

2 . 

In the simulation study, a two-area LFC scenario is constructed. Each controller is 

assumed to know the load disturbance in its local area. The parameters used in the 

simulation are: area #1: sTP 25
1

= , 5.112
1

=PK , 5.0
12

=SK ; area #2: sTP 20
2

= , 

120
2

=PK , 5.0
21

=SK . Other parameters for optimization are 102112 == pp , 

10021 == qq  and 1021 == rr . The constants for stability constraints are 8.021 == ββ . 

The load disturbance is 0.01 p.u. load increment in each area at time 0. The control 

interval is set to be 2.0 sec.. The prediction horizon is selected to be 1 to minimize the 

amount of computation and communication. By the Euler method, a discrete-time state 

space model of the system can be obtained. The model satisfies the condition for stability 

in theorem 2. 

Figure 3 shows the simulation results. The blue curves are system behavior by the 

SC-DMPC algorithm. The frequency variations go to zero and each subsystem can 

provide enough power for its local load increment. The red curves are system behavior by 

MPC in a decentralized fashion, but there is no information exchange among the 

controllers and no stability constraint either. The system is unstable under the 

disturbance. Centralized MPC with stability constraints is also tried. The system 

performance is not much better than that using SC-DMPC. They are nearly the same. 

From the simulation we find that SC-DMPC can work as well as centralized MPC for 

systems with canonical structure. Although the model using the Euler method is only a 
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very rough approximation of the real system, this example provides some understanding 

about how the distributed MPC scheme performs. 

Another notable point of this scheme is that, for interconnected LTI systems 

satisfying the conditions of Lemma 1 and Theorem 2, the scheme imposes no constraint 

on the selection of prediction horizon, providing more flexibility in selecting this value. 

Obviously, a short prediction horizon would require a smaller amount of computation 

time, but a properly chosen longer prediction horizon could improve the performance of 

the system. As shown in Figure 4(a), the average time for optimization increases 

exponentially as the prediction horizon increases. But, as shown in Figure 4(b), the 

performance is improved as the prediction horizon increases until it reaches six. We see 

that too long a prediction horizon can degrade the performance because the errors in the 

prediction are very large. Thus, by applying this distributed MPC scheme, one should 

obtain a compromise between the potential improvement in performance and the 

prediction errors. 

Conclusion 

This paper presents new results for distributed model predictive control, focusing 

on (i) the coordination of the optimization computations using iterative exchange of 

information and (ii) the stability of the closed-loop system when information is 

exchanged only after each iteration. Current research is focusing on general methods for 

decomposing large-scale problems for distributed MPC and methods for guaranteeing 

stability when multiple agents are controlling systems subject to abrupt changes.  
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Figure 3. Response of the LFC system for SC-DMPC and decentralized MPC without stability 
constraints or information exchange (simulation of the discrete-time model). 
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(a)                 (b) 

Figure 4. The computation time and the performance achieved by different prediction horizons. The 
performance is evaluated over the simulation time. The computation time is the average time used in 
optimization in one agent. 
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