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Introduction

In model predictive control (MPC), also called receding horizon control, the
control input is obtained by solving a discrete-time optimal control problem over a given
horizon, producing an optimal open-loop control input sequence. The first control in that
sequence is applied. At the next sampling instant, a new optimal control problem is
formulated and solved based on the new measurements. The theory of MPC is well
developed; nearly all aspects, such as stability, nonlinearity and robustness, have been
discussed in the literature (see, e.g., [1], [2], [3], [4]). MPC isvery popular in the process
control industry because the actual control objectives and operating constraints can be
represented explicitly in the optimization problem that is solved at each control instant.
Many successful MPC applications have been reported in the last two decades[2], [4].

Typicaly, MPC is implemented in a centralized fashion. The complete system is
modeled and all the control inputs are computed in one optimization problem. In large-
scale applications, such as power systems, water distribution systems, traffic systems,
manufacturing systems, economic systems, etc., it is useful (sometimes necessary) to
have distributed or decentralized control schemes, where local control inputs are
computed using local measurements and reduced-order models of the local dynamics [5],
[6]. The goal of the research described in this paper is to realize the attractive features of

MPC (meaningful objective functions and constraints) in a decentralized implementation.
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Previous work on distributed MPC is reported in [7], [8], [9], [10], [11], [12],
[13], [14]. In some applications, multiple low-level controllers are simply implemented
using MPC, just as one might use PID controllers to close local feedback loops [13]. For
water distribution systems, full-scale centralized MPC computations have been
decomposed for decentralized computation, using standard coordination techniques (e.g.,
augmented Lagrangian) or estimation and prediction schemes to obtain solutions at each
control instant [10], [11], [12], [14]. Decentralized team strategies for linear-quadratic
problems were considered in [8], [9]. This method is suitable for linear time-invariant
systems. If the optimal control problem is an LQG problem, an analytical solution can be
found. Some researchers [9] suggest using a neural network to approximate stationary
controllers for nonlinear systems, but this approach is not suitable for large systems.

In this paper, we consider situations where the distributed controllers, or agents,
can exchange information. The objective is to achieve some degree of coordination
among agents that are solving MPC problems with locally relevant variables, costs and
constraints, but without solving a centralized MPC problem. Such coordination schemes
are useful when the local optimization problems are much smaller than a centralized
problem, as in network control applications where the number of local state and control
variables for each agent and the number of variables shared with other agents are a small
fraction of the total number of variables in the system. These schemes are also useful in
applications where a centralized controller is not appropriate or feasible because,
although some degree of coordination is desired, the agents cannot divulge all the
information about their local models and objectives. Thisis the case, for example, in the

newly deregulated power markets in the United States.
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In distributed control, the type of coordination that can be realized is determined
by the information structure, that is, connectivity and capacity of the inter-agent
communication network. In this paper we assume that the connectivity of the
communication network is sufficient for the agents to obtain information regarding all the
variables that appear in their local problems. Regarding the network capacity, we
consider two different situations. First, we consider situations where it is possible for the
agents to exchange information several times while they are solving their local
optimization problems at each control instant. In this case, we are interested in
identifying conditions under which the agents can perform multiple iterations to find
solutions to their local optimization problems that are consistent in the sense that all
shared variables converge to the same values for all the agents. We also show that when
convergence is achieved using this type of coordination, the solutions to the local
problems collectively solve an equivalent, global, multi-objective optimization problem.
In other words, the coordinated distributed computations solve an equivalent centralized
MPC problem. This means that properties that can be proved for the equivalent
centralized MPC problem (e.g., stability) are enjoyed by the solution obtained using the
coordinated distributed MPC implementation.

We then consider a situation where the capacity of the communication network
does not alow the agents to exchange information while they are solving their local
optimization problems. In particular, we consider the case when the agents can exchange
information only once after each local MPC optimization problem is solved, while the
current, local control actions are being applied to the system. Consequently, there is a

one-step delay in the information available from the other agents when an agent
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formulates and solves its local MPC optimization problem at each step. For this new
situation, we focus on the fundamental issue of stability since sufficient conditions from
the literature for centralized MPC do not apply. For a class of linear time-invariant
systems, we develop an extension of the stability-constraint method in [17, 21] to the
distributed MPC problem with one-step communication delays. We present sufficient
conditions for guaranteeing stability of the closed-loop system and illustrate the approach

by an example of load-frequency control in atwo-area power system.

Model Predictive Control

In MPC, control decisions u(k) are made at discrete time instants k =012, -,
which usually represent equally spaced time intervals. At decision instant k, the
controller samples the state of the system x(k) and then solves an optimization problem

of the following form to find the control action:

i 3 (X (k),u (k)) (Performance Index)
where

X (k) ={x(k +1|k), -, x(k + N [K)} (Predicted State Sequence)
U(k)={u(k |k),---,u(k + N - 1]k)} (Predicted Control Sequence)
St

x(k+i+1|k)= F(x(k +i |k)u(k +i|k)) (i=0,--,N-1) (Prediction)
G(x(k)uU(k))£0 (Constraints)

x(k | k) = x(k) (Initial Condition)
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In the above formulation, the performance index represents the measure of the
difference between the predicted behavior and the desired future behavior: the lower the
value, the better the performance. The variables x(k+i|k) and u(k+i|k) are,
respectively, the predicted state and the predicted control at time k+i based on the
information at time k. Predictions are based on the system model x(k +1) = F(x(k),u(k)) .
The constraints represent physical limitsin the system and can also be other constraints to
ensure the stability or robustness of the system. The optimization produces an open-loop
optimal control sequence in which the first control value is applied to the system, that is,
u(k) = u(k | k). Then, the controller waits until the next control instant and repeats this

process to find the next control action.

Distributed Model Predictive Control Problem

The standard MPC formulation in the previous section can be summarized as a

series of static optimization problems: {SR, |k =01,2,--}, each of the form:

SR min J(s)
st. G(S)£0
H(S)=0,

where S is the vector of the decision variables, including state variables X and control
variables U , over the prediction horizon. The equality constraint in the problem includes
the prediction modd and other equality operation constraints.

Distributed MPC is a decomposition of SR, into a set of M subproblems,

{sk, ]i =1,2,---,M}, and each sub-problem is assigned to a different agent. The goals of
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the decomposition are two-fold: first, to ensure that each sub-problem is much smaller

than the overall problem (that is, to ensure that SP, has far fewer decision variables and
constraints than SR, ), and second, to ensure that SP,; is coupled to only afew other sub-
problems (that is, SR, shares variables with only afew other sub-problems).

To be more specific, consider the i sub-problem and the corresponding agent.

From the i™ agent’s point of view, the goals of the decomposition are to partition the set
of variables S into three subsets: S=S E S™ E S, where, S, called local variables,
is the set of decision variables allocated to the i™ agent, S™, called neighbor variables, is
the set of decision variables allocated to agent i’ s neighbors (the agents with which agent

i can cooperate -- exchange data), and §°", called remote variables, is the set of all other
decision variables in the system. Problem SP,; can then be formulated as follows:

S, min 3,(s.5™)

st.  G(s.,5%)£0
Hi(S’Snd):O’
where G, and H, are components of G and H related to agent i, and the performance
index J, represents the interests of agent i.
We assume that the network of interactions between the subsystems is sparse,

which means dim(S)+dim(S™ )<< dim(S), and require that some agent handles each
decision variable and congraint, i.e. U, S=S, U, G =G, U, H, =H . Either the
objective functions sum to a given global objective function, é J, =J, or the global

problem can be thought of as a multi-objective optimization problem with the vector




CsM Distributed Model Predictive Control 7

objective function, J = [Jl,...,JM ]T . We believe that it is possible to develop systematic

procedures for performing the above decomposition for many, if not most, complex

networks.

Cooperative Iteration

In this section we consider the case when the communication network allows the
agents to exchange information while they solve their local optimization problems. In
particular, we consider a scheme in which each agent computes a solution to its local
problem assuming values for the variables of its neighbors. The agent then broadcasts the
values of its own variables to its neighbors, and re-solves its optimization problem with
the updated values for the shared variables. The objective of the coordination is to

achieve convergence in the values of the variables shared by multiple agents.

Fori=1...,M,let §7,s.,55, - be the resulting sequence of the iterative search
at timek for a solution to subproblem SB; . Two important questions are:
1) Under what conditions will these iterations converge to a solution of SB; ?
2) Under what conditions will the solutions of SR, SR.,,:--,SR,, compose a
solution of the overall problem SR, ?
The following theorem provides answers to these two questions.

Theorem 1[15]. If, for all i:

1 SJi =Jwhen Jisa scalar, and SJi = W'.J when J is a multi-objective vector,

where Wis a vector of hon-negative weights;

2. J, and G, areconvex;
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3. H, islinear;

4. The agents within each neighborhood work sequentially;

5. The equality constraints can be relaxed without emptying the feasible region
of SP, . In other words, there exists a positive number d such that:

fslos) <o (o) <a} /£

6. J, isbounded from below in the feasible region;

7. Thestarting point isin theinterior of the feasible region;

8. Each agent cooperates with its neighbors in that it broadcasts its latest
iteration to these neighbors,

9. Each agent uses the same interior-point-method (barrier method) with the
same Lagrange multipliersto generate itsiterations.

Then: (a) in the case where J is a single objective, SB, has a unique solution and

{USHI =O,12,---} will converge to this solution; (b) in the case where J is a multi-

objective vector, {Us'Ki‘I = O,J,2,~-~} will converge to a point on the Pareto surface of

B, . (When there are multiple, conflicting objectives, the Pareto surface is the set of the

best possible tradeoffs among these objectives.)

In essence, this theorem indicates when computational advantages can be
obtained by tackling a network of subproblems with a network of agents that has the
same structure. To be more specific, consider two sparse graphs. G, whose nodes
represent subproblems and whose arcs represent couplings between (or variables shared
by) these subproblems; and C', whose nodes represent agents and whose arcs represent

communication channels between these agents. If a large optimization problem can be
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decomposed into a network of much smaller subproblems represented by G and if
conditions 1 through 9 are met, then solving the subproblems with agents arranged so that
C'= C provides the following advantages. locally optimal solutions (those found by the
agents) are coincident with the globally optimal solution; each agent needs to cooperate
(exchange data) only with its neighbors (adjacent nodes in C'); and agents not in the
same neighborhood may work in parall€l.

However, conditions 2 and 3 are unrealistic (real problems are often non-convex
and have nonlinear equality constraints), and condition 4 is overly constraining (we
would like the agents to be able to work asynchronoudly: all in parallé, each at its own
Speed).

Experiments on a number of small but prototypical networks [15], [16] indicate
that conditions 2 and 3 are not necessary, and can often be relaxed to alow for non-
convex problems with nonlinear equality constraints. This suggests that when distributed
controls are to be designed for a real network, experiments should be conducted to see if
the network would allow conditions 2 and 3 to be relaxed.

We do not, as yet, have a procedure for relaxing condition 4 to allow for at |east
some periods of asynchronous work. However, the next section suggests some promising

directions.

Heuristics for Asynchronous Work

Consider the formulation of SB;, the sub-problem to be solved by the i™ agent.

Two classes of heuristics for tackling this sub-problem asynchronoudly are:
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using models to predict the reactions of agent i’s neighbors, so agent i does not have

to wait to be informed of these reactions, but rather, can proceed with its iterations on

the basis of predictions of ™. These models can either be developed from first
principles or learned from historical records of §™ .

tightening the constraints on some agents so they leave some maneuvering room for
other agents.
Both classes show promise. For instance, the inequality constraints can be

tightened as follows:
G(s.5%)£-R,
where, the resource margin, R >0, can either befixed, a priori, or adjusted dynamically.

Figure 1 presents some experimental results for a “forest of pendulums.” This
forest consists of an array of up to 9 frictionless pendulums [15], [16]. Each pendulum is
connected to its adjacent pendulums by linear springs, and is controlled by an agent that
can exert two orthogona and horizontal forces on the pendulum. At the start of the
experiment, the pendulums are oscillating in synchronism. Subsequently, they are
subjected to a set of random disturbances. The objective is to return them to synchronism
as soon as possible while expending as little control energy as possible [16]. The
mechanical connections of the pendulums make this optimization problem profoundly
non-convex with equality constraints that are profoundly nonlinear. Nevertheless,
asynchronous calculation schemes for the agents produce convergence to solutions not

very different from the optimal solution, as shown in Figure 1.
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Figure 1. Typical results of asynchronous iterations with a resource-margin-heuristic. The “ C-Net
Penalty” isthe percentage deviation from the optimal solution. The upper curve correspondsto fixed
and equal resource marginsfor all pendulums. The lower curve was obtained with resour ce margins
that were smaller for the pendulums suffering the greatest deviations from the desired behavior.

Coordination for Stability

The coordination scheme in the previous sections allowed the agents to compute a
set of solutions to the local problems that also solved a global optimization problem,
thereby making it possible to emulate centralized MPC through distributed computations.
We now consider a second scenario in which it is only possible for the agents to
communicate the solutions to their local problems once during each control interval. In
this case, the collection of local solutions is not equivalent to the solution of a global
problem because the agents are using information from their neighbors that is delayed by
one time step. Consequently, the stability results for the centralized MPC cannot be used
here directly; new conditions for stability are required. In this paper, we study linear

systems without constraints as the first attempt in this direction for distributed MPC.
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In the literature, to ensure stability, some constraints or conditions are added to
the MPC optimization problem. There are two kinds of schemes for applying stability
constraints [1], [3]. In the dominant scheme, stability constraints are applied to the end
state in the prediction. The prediction horizon must then be set long enough so that a
feasible solution exists. This method is not suitable for distributed MPC because when
only the local information is used, it is unclear how long the prediction horizon should
be.

The second method is a recently proposed scheme by Cheng and Krogh, called
stability-constrained model predictive control (SC-MPC) [17], [18], [19], [20], [21]. In
this approach, a contractive constraint computed on-line (rather than off-line, as in most
previous schemes) is imposed on the first state in the prediction. The selection of the
prediction horizon does not affect the stability of the system.

In this section, we apply the SC-MPC approach to our distributed MPC scheme.
We present sufficient conditions for closed-loop system stability using distributed MPC
with contractive stability constraints, called stability-constrained distributed model
predictive control (SC-DMPC).

A distributed linear time-invariant system with each subsystem controllable and

coupling only in state variables can be modeled as.

éx(k+)u eA, - A, wxk)u é seu, (k) o
e . ou_é. - .. aé - @ . 0 (q)
e o wger o e
ex, (k+1)g eAn - Awmbexa(k)g & B, béu, (k)g

where x T R* and ul R™ are the state vector and the control vector of the i™

subsystem, respectively. For a system of this type, we propose the following scheme to

achieve coordination among agents. During each step, each agent only broadcasts its
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solution of the local MPC problem after it applies its control action to the local
subsystem. In the computation, the agents use the information they get from neighbor
agents to estimate the effect from neighbor subsystems, which means that each agent uses
the predictions of neighbor agents at the previous step to estimate the effect from
neighbor subsystems. For the | agent, we denote the information from the other agents
by the vector v;(k+i (=X (k#i k-1 - X (kilk-1 Kylktilk- - Xk k-], where
xs(k +ilk- 1) IS the state prediction by the agent s at the control step k - 1. The agent |
uses the following model to predict the future states of the local part:
b +11K) = A+ I+ B i 19+ 8 A kv k-3
& ,
= A X (k+i |K)+Bu (k+i [K)+K.v; (k+i [K)
where K; :l'Ah o Ay A AYM]. The SC-DMPC agorithm is based on the following
lemmas. Proofs of all the resultsin this section can be found in [22].
Lemma 1. Consider a system in (1). Suppose (Ai : Bi) (i =L---,M) are
controllable and B is of full rank. If the system

satisfiesrank([B, Al A Aa e AM])=m, there exists a similarity

transform matrix P = diag(Pl, R, PM) such that the system can be represented in the

controllable companion form given by

ed(k+u 60 1, -~ 0 0 éx(Ju 60 - 0

gxf(kﬂ)g gAlll A121 AllM AJ.ZM £X12(k)3 ng Ogg,ul(k)g (2)
é  u=eé: o : Y - R (o R -

a ., 18 A A -6 a

o (krty g0 0 0 (g g0 - 0 (kg

& (k+0H 8 Al Am Aw BB (K 80 By
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éx; U €0 Iy 0 0u
gxfﬂ gpgl 21 AfM AJ.ZMH
where Px=@: g x1TR" and x’T R*™™, PAP*=¢&: 1 " L0,
ng/IH éAlvll Amlel AlVIM A\ZAMH
é0 0
w0
1,1 RO em) ALp RV ™ and 421 RV pp =g : G, 821 R
g0 0
go By H

Lemma 2: Consider a system in controllable companion form (2). Suppose states

are measurable. To each subsystem, for any x (k) and 0< b, <1, there exists u, (k) such

that
I (+ 2 £ % () - oK) @
éu, (k)
Moreover, if y(k)=§ : Y, where y (k) satisfies (3), and b = min(b,,---,b,, ), then
& (kg
Ix(+ I £ x(k)* - b (k)]
éxi(k)u
where x'(k)=§ { g
& (k)

To ensure the stability of the system, each agent also adds a contractive constraint

into itslocal MPC problem. For thej™ agent, the algorithm is described as follows.
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SC-DMPC Algorithm:

Step 1. Communication: Send out its previous predictions X (k - 1) to other controllers
and aso get information V,(k)={v,(k|k),v,(k+N-1|k)} from other
controllers.

Step 2. Initialization: Given the measured x, (k) and I, (k) from the previous iteration
(set 1,(0) to be an arbitrary number), and 0< b, £1, define
0 =mad (5} o e
Set %;(k |k)=x;(k).

Step 3. Optimization: Solve the following optimal control problem.

subject to
. (k-+i +1{K)= A x (k+ [K)+B, (k+i [K)+K,v, (k+i[K), (i=01:-,N-1)
Ix (k+2 k) £T; (k).
Step 4. Assignment: Let
u; (k) =u;(k k), 1, (k +2) =[x, (k + 1] K)[ -

Step 5. Implementation: Apply the control u(k). Set k=k+1 and return to step 1 at
the next sample time.

Note that each controller does not need to communicate with all the other

controllers. Controllersi and j would communicate with each other only if the subsystems

i and | have direct interaction with each other. If the system is loosely coupled, the

amount of communication is not that great.
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Lemma 2 shows that when the contractive constraint |, (k +1| k)H2 £1,(k) is

added, the feasible control set is still non-empty. It also guarantees that, at each step, the
collection of solutions for the local problems comprises a feasible solution for the overall
system. The following theorem gives a sufficient condition for stability of the closed-loop
system.

Theorem 2. Consider a system in the controllable companion form (2). The
control is computed at each control instant using SC-DMPC. The system is

asymptotically stable if the following matrix is stable

7 2 2 AY
go A12 ALMH

2 2
~:éAz1 0 Azrvllj
e : : a
€. 2 u
A1 Az 0 g

A Power System Application

In a power system with two or more independently controlled areas, the
generation within each area must be controlled so as to maintain the system frequency
and the scheduled power exchange. This function is commonly referred to as load-
frequency control (LFC), for which centralized control is not practica. Many
decentralized control schemes have been proposed for the LFC problem [23], [24], [25].
Here we handle the LFC problem by using SC-DMPC scheme. We assign MPC
controllers to control the generator power output directly. Additional turbine controllers
can be used to control the turbines. Thus, each area can be described as one equivalent
generator in series with impedance, as shown in Figure 2.

The dynamic equation model of each area can be expressed as
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] 32 1), Kpi$:gi (t) 2*;% % K [Dd; (t)- Dd, (1)

where

Dd. (t) = incremental phase angle deviation of the area busin rad;
Df, (t) = incremental frequency deviation in Hz,

DP, (t) =incremental change in the generator output in p.u.;

DP, (t) = load disturbance for thei"” areain p.u.;

T, =system model time constant in s,

Ky = system gain;

K, = synchronizing coefficient of the tie-line between i"" and " area.

Pij
Area #i 0000 Area#j
)((iqI
———
CISHRE: i O
— XT“ —

Figure 2. A smplified description of a power system for studying load frequency control (LFC).
The distributed MPC controllers coordinate the generator outputs by providing set

points to the turbine controllers. Here, the dynamics of turbines will not be included. The
objective of LFC isto keep the frequency deviation of the system at zero and to maintain

the deviation of the power flow through the tie-line at zero. The deviation of power flow
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between areas is proportional to the difference of phase angle deviation between areas.

Thus, the local performance index can be selected as

| u
T | M |
30)=¢ 1 p,(0d ) oo, )f +aDi()+roR:E )yt .
o b
In the simulation study, atwo-area LFC scenario is constructed. Each controller is
assumed to know the load disturbance in its local area. The parameters used in the

smulation are: area #1: T, =25s, K, =1125, Ky =05; area #2: T, =20s,
Kp =120, Kg =05. Other parameters for optimization are p, =p, =10,

g, =0, =100 and r, =r, =10. The constants for stability constraints are b, =b, =0.8.

The load disturbance is 0.01 p.u. load increment in each area at time 0. The control
interval is set to be 2.0 sec.. The prediction horizon is selected to be 1 to minimize the
amount of computation and communication. By the Euler method, a discrete-time state
space model of the system can be obtained. The modd satisfies the condition for stability
in theorem 2.

Figure 3 shows the ssmulation results. The blue curves are system behavior by the
SC-DMPC adgorithm. The frequency variations go to zero and each subsystem can
provide enough power for itslocal load increment. The red curves are system behavior by
MPC in a decentralized fashion, but there is no information exchange among the
controllers and no stability constraint either. The system is unstable under the
disturbance. Centralized MPC with stability constraints is also tried. The system
performance is not much better than that using SC-DMPC. They are nearly the same.
From the ssimulation we find that SC-DMPC can work as well as centralized MPC for

systems with canonical structure. Although the model using the Euler method is only a
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very rough approximation of the real system, this example provides some understanding
about how the distributed MPC scheme performs.

Another notable point of this scheme is that, for interconnected LTI systems
satisfying the conditions of Lemma 1 and Theorem 2, the scheme impaoses no constraint
on the selection of prediction horizon, providing more flexibility in selecting this value.
Obvioudly, a short prediction horizon would require a smaller amount of computation
time, but a properly chosen longer prediction horizon could improve the performance of
the system. As shown in Figure 4(a), the average time for optimization increases
exponentially as the prediction horizon increases. But, as shown in Figure 4(b), the
performance is improved as the prediction horizon increases until it reaches six. We see
that too long a prediction horizon can degrade the performance because the errors in the
prediction are very large. Thus, by applying this distributed MPC scheme, one should
obtain a compromise between the potential improvement in performance and the

prediction errors.

Conclusion

This paper presents new results for distributed model predictive control, focusing
on (i) the coordination of the optimization computations using iterative exchange of
information and (ii) the stability of the closed-loop system when information is
exchanged only after each iteration. Current research is focusing on general methods for
decomposing large-scale problems for distributed MPC and methods for guaranteeing

stability when multiple agents are controlling systems subject to abrupt changes.
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Figure 3. Response of the LFC system for SC-DM PC and decentralized M PC without stability
constraints or information exchange (ssmulation of the discrete-time model).
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Figure 4. The computation time and the performance achieved by different prediction horizons. The
performanceis evaluated over the smulation time. The computation timeisthe averagetime used in
optimization in one agent.
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