
Checking Concurrent Typestate with Access
Permissions in Plural: A Retrospective

Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich

Abstract Objects often define usage protocols that clients must follow in order for
these objects to work properly. In the presence of aliasing, however, it is difficult
to check whether all the aliases of an object properly coordinate to enforce the pro-
tocol. Plural is a type-based system that can soundly enforce challenging protocols
even in concurrent programs. In this paper, we discuss how Plural supports natural
idioms for reasoning about programs, leveraging access permissions that express
the programmer’s design intent within the code. We trace the predecessors of the
design intent idioms used in Plural, discuss how we have found different forms of
design intent to be complimentary, and outline remaining challenges and directions
for future work in the area.

1 Introduction

Many libraries and components define usage protocols: constraints on the order in
which clients may invoke their operations. For example, in Java one must first call
connect on a Socket, after which data may be read or written to the socket.
Once close is called, reading and writing is no longer permitted.

A recent corpus study of protocols in Java libraries showed that protocol defi-
nition is relatively common (in about 7% of types) and protocol use even more so
(about 13% of classes) [2]. By comparison, only 2.5% of the types in the Java library
define type parameters; thus, the commonality of protocol definition compares well

Kevin Bierhoff
Two Sigma Investments, e-mail: kevin.bierhoff@cs.cmu.edu

Nels E. Beckman
Google Pittsburgh, e-mail: nbeckman@cs.cmu.edu

Jonathan Aldrich
Carnegie Mellon University, e-mail: jonathan.aldrich@cs.cmu.edu

1

2 Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich

to the use of an important Java language feature. Protocols also cause problems for
developers in practice: Jaspan found that almost 20% of the understandable postings
in an ASP.NET help forum were related to protocol constraints [10].

Over the past 6 years, we have been developing Plural, a type-based system for
specifying and enforcing correct protocol usage. The primary goal of Plural is to
make modular protocol checking practical for realistic object-oriented programs.
Preliminary evidence suggests that we have made substantial progress towards this
goal: Plural has been applied to multiple open source programs totaling 100kloc+,
assuring hundreds of protocol uses and finding many protocol errors and race con-
ditions in well-tested code [4, 2].

In this paper, we reflect on the key design characteristics that have enabled Plu-
ral to effectively verify realistic software. Many real program designs use substan-
tial aliasing, which provides many design benefits, but which also makes reasoning
about protocols difficult, as the multiple clients of an abstraction must coordinate
to obey the protocol. Central to the success of our approach was drawing inspira-
tion from how software developers naturally reason about protocols in the presence
of aliasing. In order to provide scalability and modularity, our approach also pro-
vides natural ways for developers to express their design intent when specifying and
verifying protocol usage.

In the next section, we will look at the historical development of protocol check-
ing ideas, with a particular focus on design intent and developer reasoning. Section
3 describes how we further developed these ideas, reviewing the design of the Plu-
ral tool from earlier work. Section 4 reflects on our experience with Plural, both in
terms of our successes in verifying usage protocols in challenging contexts, and in
terms of the limitations we have observed in the methodology. We close in section
5 with a discussion of future research directions that may enable protocol checking
to become a routine part of software development practice.

2 Historical Context

The idea that checking sequences of events is important in software reliability has a
long history. Fosdick and Osterweil [13] were the first to suggest applying program
analysis techniques to address the challenges of software reliability. Their Dave sys-
tem used data flow analysis to detect “data flow anomalies” that are symptomatic
of programming errors. These anomalies, such as dead stores to variables or uses of
undefined variables, were expressed as problematic sequences of access to a vari-
able: e.g. a read after creation, or two writes with no intervening read. Of course,
an anomaly is not necessarily an error; Fosdick and Osterweil state that “a knowl-
edge of the intent of the programmer is necessary to identify the error.” Given the
context, Fortran programming in the 1970s, it was “unreasonable to assume that the
programmer will provide” that design intent. Still, the remark foreshadowed sub-
sequent work that focused on how to make descriptions of limited design intent
practical.

Checking Concurrent Typestate with Access Permissions in Plural: A Retrospective 3

A major step in the direction of providing design intent regarding protocols came
a decade later, when Strom and Yemini [26] proposed a typestate abstraction for en-
forcing protocol constraints. Their programming language, NIL, allowed the grad-
ual initialization of data structures to be tracked statically. In order to make analysis
modular, they proposed that programmers declare a simple form of design intent,
specifying the initialization state of these data structures at procedure boundaries.

Olender and Osterweil [24] observed that it is insufficient to only track fixed
properties like data initialization, saying “a flexible sequence analysis tool was
needed.” Their Cecil specification system allowed the analyst to define which events
he or she wishes to reason about, to correlate those events to program statements,
and then to specify a regular expression that describes a valid sequence of events.
The Cesar analysis tool could then verify that the program obeyed the Cecil specifi-
cation.

Because of the frequent aliasing in object-oriented programs, an application of
typestate or sequence analysis in that context required significant advances in speci-
fying and reasoning about aliases. The Turing language included an annotation (now
commonly called unique) specifying that a particular argument to a function may not
be aliased [16], meaning that program analysis tools need not worry about interfer-
ence when tracking the state of an object. Hogg proposed the idea of borrowed
arguments, which may not be stored in fields, and thus help to maintain uniqueness.
In addition to borrowing, Hogg proposed read-only method arguments (which we
call pure), which allow tools to assume that a method does not change the state of the
passed-in object [15]. Noble et al. proposed immutable as a stronger version of pure,
specifying that the referenced object cannot be changed through any reference in the
program [23]. Following others, we use share to indicate an unrestricted reference,
which may be aliased arbitrarily.

These three ideas—a programmer-defined sequence of events, an expression of
sequencing design intent via typestate, and an expression of aliasing intent via alias
annotations—first came together in DeLine and Fähndrich’s Vault [11] project for
verifying low-level software. Their later Fugue system [12] adapted protocol check-
ing to the object-oriented setting, developing a methodology for modular typestate
checking in the presence of inheritance. Despite these advances, however, Fugue
was limited to reasoning about the state of unique objects; it was not able to help de-
velopers in the relatively common case of aliased objects with typestate. Our work
was motivated by the need to overcome this limitation.

3 Typestate Protocols with Access Permissions

The goal of Plural is to modularly check protocols in realistic object-oriented pro-
grams. Checking realistic programs means that we need some way of reasoning
about the aliasing that occurs in these designs. Modular checking means we would
like to check code one method at a time, using only the specifications of other ob-
jects; this requires us to describe the protocol and aliasing state of objects at method

4 Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich

is_closed() / return true

OPEN

CLOSING

CLOSED

STILLOPEN enqueue(o)

dequeue()

dequeue()

enqueue_final_item(o)close()

is_closed() / return false

Fig. 1 Simplified Blocking_queue protocol. Rounded rectangles denote states refining another
state. Arches represent method calls, optionally with return values.

boundaries. We accomplish both tasks using access permissions [6], which we have
implemented in Plural [7], an automated tool for checking permission-based types-
tate protocols in Java. This section is a review of previously published work [6, 3, 7].

3.1 Access Permissions

Our static, modular approach to checking API protocols is based on access permis-
sions (“permissions” for short). Permissions are predicates associated with program
references describing the abstract state of that reference and the ways in which it
may be aliased.

In our approach, developers start by specifying their protocol. Figure 1 shows a
simplified protocol for a concurrent blocking queue Blocking_queue.1 Its pro-
tocol is modeled as a Statechart [14]. Blocking queues can be used to hand work
items from one producer thread to multiple consumer threads. We will use this pro-
tocol as a running example.

We allow developers to associate objects with a hierarchy of typestates, simi-
lar to Statecharts [14]. For example, OPEN and CLOSING (no more items can be
enqueued) can be summarized into STILLOPEN, which is the state needed for con-
sumer threads to dequeue an item (figure 1). Hierarchy serves to naturally encode
design intent regarding the structure of the state space; we have found it to be es-
sential for expressing complex protocols compactly [5].

Methods correspond to state transitions and are specified with access permissions
that describe not only the state required and ensured by a method but also how the
method will access the references passed into the method. We distinguish exclusive
(unique), exclusive modifying (full), read-only (pure), immutable, and shared access
(table 1). Furthermore, permissions include a state guarantee, a state that the method
promises not to leave [6].

1 We greatly appreciate Allen Holub for use of this example.

Checking Concurrent Typestate with Access Permissions in Plural: A Retrospective 5

Access through Current permission has . . .
other permissions Read/write access Read-only access

None unique unique
Read-only full immutable
Read/write share pure

Table 1 Access permission taxonomy

Permissions are associated with object references and govern how objects can
be accessed through a given reference [6]. They can be seen as rely-guarantee con-
tracts [18] between the current reference and all other references to the same object:
permissions provide guarantees about object accesses through other references and
restrict the current reference to not violate other permissions’ assumptions. Thus
our permissions encode a natural form of reasoning that has been used in concurrent
systems, but adapt it to reason in the context of aliasing in addition to concurrency.
Permissions capture three kinds of design intent:

1. What kinds of references exist? Our system distinguishes read-only and modify-
ing access, both through the current reference and (if applicable) other references.
The resulting 5 permissions (shown in Table 1) cover the space of possibilities in
a more systematic way than previously described permission systems, and enable
natural reasoning based on who is in control of a protocol.

2. What state is guaranteed? A guaranteed state supports natural reasoning about
agreements ensuring that the multiple clients of an object do not interfere with
each other. A client can rely on this guaranteed state even if the referenced object
may be modified by other clients.

3. What do we know about the current state of the object? Every operation per-
formed on the referenced object can change the object’s state. In order to enforce
protocols, we ultimately need to keep track of what state the referenced object is
currently in.

Permissions can only co-exist if they do not violate each other’s assumptions.
Thus, the following aliasing situations can occur for a given object: a single refer-
ence (unique); a distinguished writer reference (full) with many readers (pure); many
writers (share) with many readers (pure); and only readers (immutable and pure) with
no writers.

Permissions are linear in order to preserve this invariant. But unlike linear type
systems [27], they allow aliasing. This is because permissions can be split when
aliases are introduced. For example, we can split a unique permission into a full and
a pure permission, written unique V full⊗pure, to introduce a read-only alias. Using
fractions [9] we can also merge previously split permissions when aliases disappear
(e.g., when a method returns). This allows us to recover a more powerful permission.
For example, full V 1

2 · share⊗ 1
2 · share V full.

6 Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich

3.2 Plural: Access permissions for Java

Our tool, Plural2, is a plug-in to the Eclipse IDE that implements a previously devel-
oped type system [6, 3] as a static dataflow analysis for Java [7]. In the remainder of
this section we show example annotations and explain how permissions are tracked
and API implementations are verified.

Developer annotations. Developers use Java 5 annotations to specify method
pre- and post-conditions with access permissions. Figure 2 shows the
Blocking_queue specification with Plural annotations (compare to figure 1).
We use @States to declare two parallel state dimensions, protocol and structure,
which represent orthogonal parts of object state (the need for two dimensions in
this example will be explained in the next section). Permission-named annotations
on methods specify borrowed permissions for the receiver. Borrowed permissions
are returned to the caller when the method returns. The optional attribute “value”
specifies the dimension which the permission gives access to. For example, close
borrows a full permission to operate only on the protocol dimension. Additionally, a
required (or ensured) state must hold when the method is called (or returns), as illus-
trated by close. Boolean state tests such as is_closed can additionally be anno-
tated with the state implied by each return value. Finally, we use @Perm annotations
to declare permissions required and ensured by a method separately, such as in the
constructor (which “produces” a receiver permission) or enqueue_last_item
(which “consumes” a permission).

Permission tracking and local permission inference. Figure 3 shows a simple
consumer thread that pulls items of a blocking queue. Plural is able to check whether
this code respects the protocol declared for the Blocking_queue interface in fig-
ure 2. This program is buggy! Plural complains that the blocking queue referenced
by q is not STILLOPEN when dequeue is called. The program seemingly just
established that fact when entering the while loop, but because only a pure per-
mission is used for testing the queue’s state, Plural rightly assumes that other threads
could have closed the queue in between the two calls to q in figure 2. Plural will no
longer issue a warning after the addition of a synchronized block.

Notice that we use the same annotations for annotating method parameters in
client code that we used for declaring API protocols in the previous section. Plu-
ral applies intra-procedural analysis and uses these annotations to track permissions
across method calls. Conversely, Plural needs no annotations inside method bod-
ies: based on the annotations provided, Plural infers how permissions flow through
method bodies fully automatically. Since Plural is based on a dataflow analysis, it
computes the fixed point of a loop without requiring the programmer to write a loop
invariant. Local variables, variables of primitive type, and method parameters whose
protocols we do not wish to check need not be annotated at all.

API implementation checking. Plural not only checks whether a client of an API
follows the protocol required by that API, it can also check that the implementation

2 http://code.google.com/p/pluralism

Checking Concurrent Typestate with Access Permissions in Plural: A Retrospective 7

@Refine({
@States(dim="structure", value={"STRUCTURESTATE"}),
@States(dim="protocol", value={"CLOSED", "STILLOPEN"}),
@States(value={"OPEN", "CLOSING"}, refined="STILLOPEN") })

class Blocking_queue {
// fields omitted
@Perm(ensures="unique(this) in OPEN,STRUCTURESTATE")
Blocking_queue() { ... }

@Share(value="structure")
@Full(value="protocol", requires="OPEN", ensures="OPEN")
void enqueue(Object o) { ... }

@Share(value="structure")
@Perm(requires="full(this, structure) in OPEN")
void enqueue_final_item(Object o) { ... }

@Share(value="structure")
@Pure(value="protocol", requires="STILLOPEN")
Object dequeue() { ... }

@Pure(value="protocol")
@TrueIndicates("CLOSED") @FalseIndicates("STILLOPEN")
boolean is_closed() { ... }

@Full(value="protocol", ensures="CLOSED")
void close() { ... }

}

Fig. 2 Simplified Blocking_queue specification in Plural (using the typestates from figure 1)

public void consumerThread(
@Share("structure") @Pure("protocol") Blocking_queue<String> q)

{
while (!q.is_closed()) {
String s = q.dequeue(); // Error! q may have been closed
System.out.println("I received the message " + s);

}
// Thread continues...

}

Fig. 3 Simple Blocking_queue client with concurrency bug that is detected by Plural

of the protocol is consistent with its specification. The key abstraction for this is the
state invariant, which we adapted from Fugue [12]. A state invariant associates a
typestate of a class with a predicate over the fields of that class. In our approach,
these predicates usually consist of access permissions for fields and look similar to
the contents of @Perm annotations (see figure 2).

8 Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich

4 Reflections on Permissions

After six years of verifying object protocols with access permissions, we can reflect
on Plural’s position in the larger design space of typestate checkers, some of the
ways in which the approach is successful, and other ways in which it is not. In this
section we will reflect upon some of the more interesting things we have noticed
during our experience using Plural.

4.1 Design Space

Typestate checking with Plural represents a compromise between many conflicting
goals including expressiveness, the amount of developer input required, and the
precision and scale at which Plural is able to perform typestate checking.

• Expressiveness here means the ability to express the rules that API designers
would like API clients to follow. Plural specifications are by design not as ex-
pressive as behavioral specification languages like the JML [19], to keep devel-
oper input low and performance at a level acceptable for interactive use. On the
other hand, we were repeatedly surprised that access permissions let us encode
protocols we didn’t think could be encoded with finite state machines. In partic-
ular, we found that Plural can express protocols involving multiple objects such
as collections and iterators over them [6] which were previously not expressible
in modular typestate checkers [22].

• Developer input is the amount of help Plural needs to do its job. Plural limits
developer input to Java annotations for method parameters and instance fields
(and infers permissions inside methods). We empirically found that about 2 an-
notations per method are sufficient [4]. This is far less than what full-fledged
program verification requires [19]. On the other hand, we decided not to make
Plural an inter-procedural analysis (like [22]). That allows Plural to check indi-
vidual source files quickly, improves analysis precision (in particular for chal-
lenging protocols like iterators over collections), and lets Plural check library
code for compliance to its advertised protocols [4].

• Analysis precision is the amount of false positives (spurious protocol violation
warnings) and false negatives (missed actual protocol violations) reported by
Plural. Plural is envisioned to work like a typechecker and hence sound [6, 3]
so false negatives cannot occur. Empirically we found Plural’s false positive rate
to be less than 6 false positives per kloc in sample open-source programs [7].

• Scalability refers to Plural’s ability to produce verification results for large pro-
grams. Plural performs an intra-procedural dataflow analysis, which can suffer in
performance for large methods. On the other hand, dataflow analysis allows Plu-
ral to reduce developer input by inferring loop invariants etc. In practice, Plural
checked sample open-source programs in less than 200 ms per method (with a

Checking Concurrent Typestate with Access Permissions in Plural: A Retrospective 9

3.2 GHz CPU and 2 GM of RAM) [4]. Since methods are checked individually,
Plural scales to programs with arbitrarily many methods.

As suggested above, typestate checking involves compromises. The following
subsections explore some of the difficulties and benefits of our approach.

4.2 Difficulties

Even with the introduction of flexible aliasing permissions, the fact remains that
verification in the face of aliasing can be quite difficult. One interesting, if unsur-
prising, observation is that the difficulty associated with verifying a piece of code
is directly proportional to the permission types that are used. Code using immutable
permissions is almost trivial to verify, as such objects do not change state, and their
permissions can be freely duplicated. This nicely lines up with the statements made
by those in the functional programming community, who have long argued that
effect-free programs are easier to reason about. Our system provides such benefits,
while still making the verification of imperative code possible when necessary. Next,
unique permissions are quite easy to verify when the relevant objects are unaliased.
Permissions give us the freedom to reason about these objects locally, even as side-
effecting methods are called. At the other end of the spectrum are share and pure
permissions. They can be quite difficult to use because of their limited guarantees.
Both essentially say, “all bets are off,” with respect to the behavior of an object.

In fact, the share permission is worthy of particular discussion since it was widely
used throughout our case studies. In practice, typical methods in an object-oriented
program consist of a series of method calls, and often little else! Unfortunately, such
methods are poorly suited for verifying share permissions. In the Plural methodol-
ogy, at any call-site, what we know about states of all the share permissions in the
static context must be “forgotten,” downgraded to the guaranteed state. This is be-
cause of the potential that such objects are modified through a different alias. In
a method with numerous call sites, this means that the state of an object of share
permission may not persist from the line where it is established to the line where it
must be used. As discussed in the next section, state guarantees serve to make share
and pure permissions more powerful, but when a state cannot be guaranteed, these
permissions can be quite difficult to use.

It was intriguing to see that fractions, one of the most technically interesting
pieces of our approach, were not needed terribly often. Fractions are useful for re-
assembling weak permission pieces together in order to recreate stronger permis-
sions. However, in our experience, most objects in an object-oriented program are
either designed to be aliased or unaliased. After initialization, their level of aliased-
ness does not typically change much, and if it does, correct performance of the
program does not depend on reestablishing stronger permissions. One of the most
important use cases for fractional permissions is in concurrent programs, where a
number of threads take reference to a shared object, read from the object in par-
allel and then join together, so that the single remaining thread has unique permis-

10 Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich

sion. However, with the exception of a few scientific-style applications, such thread
forking and joining is not typical in object-oriented programs. In our experience,
programs rarely depend on all other references being dropped. This has important
implications, because the theoretical and engineering machinery necessary to make
fractions work is vast. Doing away with such machinery would leave a system that
is more practicable.

4.3 Surprising Power

Fortunately, despite some of the issues we encountered, we found the access permis-
sions approach to be quite powerful, including in some ways we found surprising.
First, and as previously mentioned, we got an extraordinary amount of leverage out
of state guarantees. Guarantees make the even the weakest permissions useful. Such
a feature does not exist in other verification systems, in which very little can be done
with arbitrarily aliased objects. Often, such permissions will be completely outside
of the verification methodology, as in Fugue [12]. Such guarantees are only useful
because of state hierarchies, a feature that is novel to our typechecking approach.
Hierarchies allow simultaneous references to the same object with varrying levels
of precision.

A recurring theme in our case studies was an interplay between states and permis-
sions in verification. In our initial conception, we developed a hierarchical system
of states expressive enough to model many of the most intricate protocols we ob-
served in the Java standard library. Then, in order to verify such models in the face
of aliasing, the system of access permissions was developed. In other words, the
specification of protocols and aliasing were conceived as two orthogonal issues. But
in practice, there was an interesting interplay between the two. Features designed
for the specification of state machines helped in alias-control, and vice-versa.

As an example, consider the specification of the blocking queue in Figure 2. This
class is specified with a structure dimension, into which the underlying linked list
is mapped. This allows both producer and consumer threads, each of which have a
share permission to this dimension, to modify the linked list, while at the same time,
only the producer thread has modifying rights to the protocol dimension, which
contains the queue’s actual protocol. Dimensions were initially conceived for use
in classes that define multiple orthogonal state machines. In this case, however, the
structure dimension defines a protocol that is completely uninteresting; it consists
of a single state. It is, rather, because we can map fields into dimensions, and hand
out permissions to those dimensions independently, that the queue is given a second
dimension at all! Thus, in this example, dimensions serve to naturally encode the
intuition that anyone can modify the queue, but the producer is in charge of deter-
mining when it can be closed; without dimensions, verifying the queue would be
impossible in our system.

Dimensions have proved themselves to be quite a powerful abstraction. In numer-
ous cases we found it useful to store a permission to an object inside the object itself.

Checking Concurrent Typestate with Access Permissions in Plural: A Retrospective 11

In order to do this, a permission to one dimension is stored inside another dimen-
sion. Consider the enqueue_final_item method of the Blocking_queue
class. When this method is called, the producer is conceptually stating that no fur-
ther items will be enqueued, but that the consumers are free to dequeue all of the
items waiting in the queue. When the last item is dequeued, that consumer is re-
sponsible for actually closing the queue. The question arises, “how can a consumer
thread call the close method when it requires full permission and consumers have
only pure?” The answer is that when the producer calls the method to enqueue the
final item, it must forfeit its full permission. This permission is then stored in the
structure dimension, and is used by the consumer thread when the last item is de-
queued. This idiom can be thought of as encoding the intuition that permission to
do something—closing the queue in this case—is carried through the queue from
the producer to the consumer along with the last element.

As another example of the interplay between permissions and states, consider
that programs often may pass through various “phases” of aliasing. For example,
in one phase an object may be completely unaliased as it is being initialized. Later
on, aliases may be created in an unrestricted fashion. Such phases do not exist by
coincidence. Developers use these phases to reason about their own programs, to
tell themselves what must be true at any given point in the program. It turns out that
these phases nicely correspond to abstract states in an object protocol, and permis-
sions can be used in a natural way to express design intent and to aid in verification
even in situations where objects do not define protocols in the typical sense. Many
times we used such a pattern: an object referencing one or more fields would be con-
structed in an “uninitialized” state. The invariants associated with this state indicate
that the fields are unaliased, perhaps also in their own initialization states. Later on,
after all fields have been set up, and the object is in the “initialized,” it is legal to
call its getter methods, which return aliases to the internal objects.

5 Conclusion and Ongoing Research

Verifying protocols is important due to their ubiquity in modern software develop-
ment, yet it is difficult in the presence of aliasing. The Plural system has achieved
some success by leveraging access permissions, which express design intent with
respect to how an object is aliased and how it is used through those aliases. The dif-
ferent features of access permissions were designed to capture the natural forms of
reasoning that engineers are using anyway to think about protocols. We have found
that the concepts in access permissions are complementary in surprising ways, al-
lowing fairly simple mechanisms to verify quite complex examples.

A number of current research projects have been inspired by Plural and related
permissions systems. These projects build on the themes of natural reasoning and
design intent, and promise to increase the impact of permissions and extend their
benefits into new application areas:

12 Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich

Permission-Based Type Systems. What benefits might there be from designing
the type system of a programming language around Plural-like permissions? The
Plaid language is an attempt to explore this research question [1]. In Plaid, not only
can the interface of an object change (as in typestate), but the representation (fields)
and behavior (method implementations) can change as well. Closer integration into
the language appears to smooth over some rough edges of Plural (such as syntax
and the handling of inheritance) while reducing functionality overlaps (such as du-
plicate parameterization mechanisms for permissions and Java types). It also opens
intriguing new possibilities, such as the ability to test permissions with a run-time
cast that can verify, for example, that a reference to an object is really unique.

In looking at permission-based type systems, we have also begun to explore the
idea of merging the permission kind and typestate parts of a specification into a
single abstraction, and providing customized rules for how different permission ab-
stractions can be split and merged [21]. This design may eventually provide more
flexibility compared to the 5 fixed permission kinds in Plural.

Impact Analysis. An innovative use of Plural that does not involve API protocols
at all is impact analysis [25], where it can be used to understand implicit state depen-
dencies between components (in contrast to dependencies due to explicit messages
being passed between components). When changing a component that has read-only
access to shared state then the change cannot impact other component with access
to the same state. Plural’s distinction between read-only and read-write references
allows making this determination, increasing impact analysis precision.

Program Verification. Plural employs fractional permissions [9] specifically for
typestate reasoning. But fractions are more broadly useful for reasoning about pro-
gram behavior under aliasing [8]. More expressive program verification tools that
incorporate fractional permissions have since been developed [17, 20]. Plural and
these tools show that fractional permissions—which were originally proposed for
reasoning about data races—are not only useful for reasoning about concurrent pro-
grams but also well-suited for reasoning about sequential programs. In particular,
permissions provide new ways to express how different objects collaborate [6].

Acknowledgements We would like to thank the many people who have given us feedback and
encouragement over the years, including John Boyland, Frank Pfenning, and Ciera Jaspan. We are
also very thankful to Matthew Dwyer for giving us the opportunity to present this article. This work
was supported in part by DARPA grant #HR0011-0710019 and NSF grant CCF-0811592. While
at Carnegie Mellon University, the second author was supported by a National Science Foundation
Graduate Research Fellowship (DGE-0234630).

References

1. J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks. Typestate-oriented programming. In Onward!,
2009.

Checking Concurrent Typestate with Access Permissions in Plural: A Retrospective 13

2. N. E. Beckman. Types for Correct Concurrent API Usage. PhD thesis, technical report CMU-
ISR-10-131. Carnegie Mellon University, Dec. 2010.

3. N. E. Beckman, K. Bierhoff, and J. Aldrich. Verifying correct usage of atomic blocks and
typestate. In Object-Oriented Programming, Systems, Languages & Applications, Oct. 2008.

4. K. Bierhoff. API Protocol Compliance in Object-Oriented Software. PhD thesis, technical
report CMU-ISR-09-108. Carnegie Mellon University, Apr. 2009.

5. K. Bierhoff and J. Aldrich. Lightweight object specification with typestates. In Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, Sept. 2005.

6. K. Bierhoff and J. Aldrich. Modular typestate checking of aliased objects. In Object-Oriented
Programming, Systems, Languages & Applications, Oct. 2007.

7. K. Bierhoff, N. E. Beckman, and J. Aldrich. Practical API protocol checking with access
permissions. In European Conference on Object-Oriented Programming, July 2009.

8. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in separation
logic. In Principles of Programming Languages, Jan. 2005.

9. J. Boyland. Checking interference with fractional permissions. In International Symposium
on Static Analysis, 2003.

10. C. Jaspan. Proper Plugin Protocols, 2010. Carnegie Mellon University Thesis Proposal.
11. R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-level software. In Pro-

gramming Language Design and Implementation, 2001.
12. R. DeLine and M. Fähndrich. Typestates for objects. In European Conference on Object-

Oriented Programming, 2004.
13. L. D. Fosdick and L. J. Osterweil. Data flow analysis in software reliability. ACM Computing

Surveys, 8(3):305–330, Sept. 1976.
14. D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Pro-

gramming, 8(3):231–274, 1987.
15. J. Hogg. Islands: Aliasing Protection in Object-Oriented Languages. In Object-Oriented

Programming, Systems, Languages & Applications, 1991.
16. R. C. Holt, P. A. Matthews, J. A. Rosselet, and J. R. Cordy. The Turing Language: Design and

Definition. Prentice-Hall, 1988.
17. B. Jacobs and F. Piessens. The VeriFast program verifier. Technical Report CW-520, Depart-

ment of Computer Science, Katholieke Universiteit Leuven, Aug. 2008.
18. C. B. Jones. Tentative steps toward a development method for interfering programs. ACM

Trans. Programming Languages and Systems, 5(4):596–619, 1983.
19. G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for detailed design. In H. Kilov,

B. Rumpe, and I. Simmonds, editors, Behavioral Specifications of Businesses and Systems,
pages 175–188. Kluwer Academic Publishers, Boston, 1999.

20. K. R. M. Leino and P. Müller. A basis for verifying multi-threaded programs. In European
Symposium on Programming, Mar. 2009.

21. F. Militão, J. Aldrich, and L. Caires. Aliasing control with view-based typestate. In Formal
Techniques for Java-like Programs, 2010.

22. N. Naeem and O. Lhoták. Typestate-like analysis of multiple interacting objects. In Object-
Oriented Programming, Systems, Languages & Applications, Oct. 2008.

23. J. Noble, J. Vitek, and J. Potter. Flexible Alias Protection. In European Conference on Object-
Oriented Programming, 1998.

24. K. M. Olender and L. J. Osterweil. Cecil: A sequencing constraint language for automatic
static analysis generation. IEEE Trans. Software Engineering, 16(3):268–280, Mar. 1990.

25. D. Popescu, J. Garcia, K. Bierhoff, and N. Medvidovic. Helios: Impact analysis for event-
based systems. Technical Report USC-CSSE-2009-517, University of Southern California,
Nov. 2009.

26. R. E. Strom and S. Yemini. Typestate: A programming language concept for enhancing soft-
ware reliability. IEEE Trans. on Software Engineering, 12(1):157–171, 1986.

27. P. Wadler. Linear types can change the world! In Programming Concepts and Methods, 1990.

