
PLURAL: Checking Protocol Compliance under Aliasing

Kevin Bierhoff
Institute for Software Research

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213, USA
kevin.bierhoff @ cs.cmu.edu

Jonathan Aldrich
Institute for Software Research

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213, USA
jonathan.aldrich @ cs.cmu.edu

ABSTRACT
Enforcing compliance to API usage protocols is notoriously
hard due to possible aliasing of objects through multiple
references. In previous work we proposed a sound, modular
approach to checking protocol compliance based on types-
tates that offers a great deal of flexibility in aliasing [1]. In
our approach, API protocols are defined based on typestates.
Every reference is associated with a permission, and reason-
ing about permissions is appropriately conservative for the
“degree” of possible aliasing admitted by a permission.

This paper describes Plural, a tool to automatically en-
force typestate-based protocols using permissions in Java.
API developers can specify protocols with simple annota-
tions on methods and method parameters. A static flow
analysis tracks permissions in code that uses specified APIs
and issues warnings for possible protocol violations.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Object-oriented programming ; D.2.4 [Software En-
gineering]: Software/Program Verification

General Terms
Design, Verification, Languages, Reliability

1. INTRODUCTION
Modern software development is highly reliant on re-use.

The use of third-party libraries and in particular the enor-
mous “standard” libraries included with most programming
languages is abundant. Such APIs often define usage pro-
tocols that API clients must follow in order for API imple-
mentations to work correctly. A usage protocol is concerned
with temporal ordering of events: loosely speaking, they de-
fine legal sequences of method calls on objects. For example,
a file object can be opened (once), then read multiple times,
and finally closed, but it cannot be read after it was closed
or before it was opened.

This paper presents Plural, an automated tool that gives
developers comprehensive help in following API protocols
statically, without executing their code. Plural uses types-
tates [4] to express protocols, such as the file protocol dis-
cussed above, as finite state machines. Plural is based on

Copyright is held by the author/owner(s).
ICSE’08,May 10–18, 2008, Leipzig, Germany.
ACM 978-1-60558-079-1/08/05.

our previous work on using permissions [2] for sound (no er-
rors missed) and modular (every method checked separately)
protocol checking while allowing a great deal of flexibility in
aliasing objects [1]. Our work is influenced by Fugue, the
first typestate checker for an object-oriented language [3].

The following section summarizes permissions. Afterwards,
we describe the functionality implemented in Plural and
illustrate the tool with two examples protocols for input
streams and iterators.

2. PERMISSIONS
Permissions are associated with object references and gov-

ern how objects can be accessed through a given reference
[1]. They can be seen as rely-guarantee contracts between
the current reference and all other references to the same
object: they provide guarantees about other references and
restrict the current reference to not violate others’ assump-
tions. Permissions capture three kinds of information:

1. What kinds of references exist? We distinguish read-
only and modifying references, leading to the five dif-
ferent kinds of permissions shown in figure 1.

2. What state is guaranteed? A guaranteed state can-
not be left by any reference. References can rely on
the guaranteed state even if the referenced object was
modified by other modifying references.

3. What do we know about the current state of the object?
Every operation performed on the referenced object
can change the object’s state. In order to enforce pro-
tocols, we ultimately need to keep track of what state
the referenced object is currently in.

Permissions can be split when aliases are introduced. For
example, we can split the initial unique permission for an
object (that is usually returned from a constructor call) into
a full and a pure permission to introduce a read-only alias.

Access through Current permission has . . .
other permissions Read/write access Read-only access

None unique –
Read-only full immutable

Read/write share pure

Figure 1: Access permission taxonomy



Figure 2: Plural screenshot with stream protocol (right), stream client (left) and generated warnings (below).

3. PLURAL BY EXAMPLE
The Plural tool verifies protocol compliance based on per-

missions in Java. This goal motivates the tool’s name: “Per-
missions Let Us Reason about ALiases”.

Plural is implemented as a static flow analysis that checks
conventional Java source code. For every program variable
(the method receiver this, method parameters, and local
variables), Plural determines the available permission at ev-
ery program point. Every constructor or method call poten-
tially affects the permissions associated with the program
variables. These changes are governed by the specifications
of the called constructors and methods.

We use JSR-175 annotations to specify protocols with per-
missions. Plural is a plug-in to the Eclipse IDE and indicates
protocol violations using Eclipse’s problems view (figure 2).

Input Stream Specification. Java input streams al-
low applications to read character sequences from various
sources including files and devices. The input stream pro-
tocol can be modeled with two states open and closed. The
read method can only be called on an open stream. In fact,
read guarantees the the open state. The close method can
also only be called in state open, but it transitions the stream
to the closed state, forbidding further calls to either read or
close (figure 2, right).

Checking a Stream Client. With this specification,
Plural will flag protocol violations such as the ones displayed
in figure 2 (bottom). (1) A share permission does not sat-
isfy read’s specification which requires a full permission. (2)
Calling read after closing s causes an error because the ref-
erenced stream is in the wrong state. (3) The unique per-
mission available for s cannot be split into a full and a share
permission (see section 2).

Branch-sensitivity for iterators. Iterators provide a
method next to retrieve objects contained in a collection one

by one. It is an error to call next if all objects were already
retrieved. The dynamic state test method hasNext can be
used to test if another object is available or not. In order
to take such tests into account, Plural performs a branch-
sensitive flow analysis: the analysis is aware of conditions
known to be true inside of if statements or loops.

4. CONCLUSIONS
This paper presents Plural, a protocol conformance check-

ing tool for protocols specified with typestates and permis-
sions. Plural uses Java annotations to declare protocols and
plugs into the Eclipse IDE. We show how Plural supports
verifying clients of an input stream and an iterator interface.

Acknowledgements
This work was supported in part by NSF grant CCF-0546550, the
Army Research Office grant number DAAD19-02-1-0389 entitled
“Perpetually Available and Secure Information Systems”, DARPA
contract HR00110710019, the U.S. Department of Defense, and
the Software Industry Center at Carnegie Mellon University and
its sponsors, especially the Alfred P. Sloan Foundation.

5. REFERENCES
[1] K. Bierhoff and J. Aldrich. Modular typestate checking of

aliased objects. In ACM Conference on Object-Oriented
Programming, Systems, Languages & Applications, pages
301–320, Oct. 2007.

[2] J. Boyland. Checking interference with fractional
permissions. In International Symposium on Static Analysis,
pages 55–72. Springer, 2003.

[3] R. DeLine and M. Fähndrich. Typestates for objects. In
European Conference on Object-Oriented Programming,
pages 465–490. Springer, 2004.

[4] R. E. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliability. IEEE
Transactions on Software Engineering, 12:157–171, 1986.


