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Abstract

A stochastic turn-taking (STT) model is a per-frame predic-

tor of incipient speech activity. Its ability to make predictions

at any instant in time makes it particularly well-suited to the

analysis and synthesis of interactive conversation. At the cur-

rent time, however, STT models are limited by their inability

to accept features which may frequently be undefined. Rather

than attempting to impute such features, this work proposes and

evaluates a mechanism which implicitly conditions Gaussian-

distributed features on Bernoulli-distributed indicator features,

making prior imputation unnecessary. Experiments indicate

that the proposed mechanisms achieve predictive parity with

standard model structures, while at the same time offering more

direct interpretability and the desired insensitivity to missing

feature values.

Index Terms: Turn-taking, neural networks, prediction, radial

basis functions, imputation.

1. Introduction

A stochastic turn-taking (STT) model [1] predicts the probabil-

ity that a specific conversant will be speaking (versus not speak-

ing) at an instant t, given their and their interolocutors’ speech

activity history prior to t. Since their inception [2, 3, 4, 1], these

models have come a long way in terms of number of modeled

speakers [5], online adaptation [6], and duration of modeled his-

tory [7]. Their main strength is the ability to make predictions at

every instant of a conversation. This renders them suitable for

the analysis of truly interactive human behavior in unlabeled —

and therefore vast — amounts of conversational data.

One application of STT models is the quantitative study of

the role of prosody in shaping the timing of participation to dia-

logue. The probability that a conversant speaks at instant t may

be conditioned not only on past (discrete) speech activity, but

also on continuous-valued frame-level features. This was done

in [8], where the heretofore standard N -gram model was re-

placed by a neural network with tanh activation functions in the

hidden layer. A problem that arises organically in this case is

that a number of allegedly interesting articulatory-acoustic and

prosodic features may — although continuous-valued — be un-

defined for individual frames or intervals of frames. Examples

are pitch or formant bandwidth. Currently, before a regressor

such as a neural network can be applied, undefined values must

be “filled in”, or imputed [9], as depicted in Figure 1.

One solution is to simply replace “missing values” by a

default numerical value, such as in the case of pitch trackers

which return zero for unvoiced frames. This can be problem-

atic as it disturbs the dynamics and statistics of the analyzed

feature. A more principled approach is to impute values using
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Figure 1: Three alternatives for performing regression using a

feature vector which potentially contains undefined values; al-

ternative “3” is the subject of the current article.

extrapolation or model matching, imposing continuity; this in

turn prevents regressors from exploiting the fact that the val-

ues were actually undefined to begin with. Both approaches

(depicted as “1” and “2” in Figure 1, respectively) embody an

extra imputation step in processing, whose implementation re-

quires additional expertise and effort and whose execution re-

quires additional computing cycles. The goal of the current

work is to sidestep the need for this extra step, by rendering

a neural-network regressor capable of auto-imputing its input

space as necessary, while retaining the prediction performance

of the manually imputed alternative.

The article begins by reviewing the STT methodology, and

then defines a feature with potentially missing values for the

purposes of demonstration. As a baseline, a method for man-

ually imputing the missing values is borrowed from [8]. Two

novel hidden-layer activation functions for neural-network STT

models are then proposed: a Bernoulli radial basis function

(BRBF) for binary-valued input, and a joint radial basis func-

tion (JRBF) which combines the BRBF with a gated form of the

more standard Gaussian radial basis function (GRBF). Speaker-

independent results on held-out conversations drawn from a

large telephony dialogue corpus indicate that the proposed auto-

imputing neural networks, which use JRBF units, provide pre-

diction performance parity with a standard neural network im-

plementation requiring prior manual imputation. It is argued

that the new method provides a means for quantitatively study-

ing vast amounts of conversational material, for which only a

reference speech/non-speech segmentation is required.
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2. Methods

2.1. Turn-Taking Framework

The essential elements of the turn-taking framework (cf. [2, 3,

4, 1, 6, 7]) are shown in Figure 2. The goal is to predict the

binary speech activity qt [k] ∈ {◻,∎} for a speaker engaged in

dialogue (K ≡ 2) at an instant t; k ∈ {1, . . . ,K} identifies the

party for whom the prediction is being made, referred to as the

target speaker.
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Figure 2: A stochastic turn-taking model predicts the binary

speech activity (marked with a “?”) at an arbitrary instant t for

a target speaker. Squares and circles denote past speech activity

for the target speaker and their interlocutor, respectively.

In the current work, all predictions are conditioned on a his-

tory consisting of the 10 most recent frames; the frame step is

100 ms. Predictions may be conditioned on past speech activ-

ity qt−1
t−10 [k] ∈ {◻,∎}1×10 of only the target speaker (squares in

Figure 2), implying an unconditionally independent (UI) model.

They may alternately be conditioned on past speech activity

qt−1
t−10 ∈ {◻,∎}2×10 of both parties (squares and circles in Fig-

ure 2), implying a conditionally independent (CI) model. The

qt are the columns of a speech activity matrix Q, of 2 rows and

T columns, with T giving the number of frames.

Like a language model in speech recognition, an STT

model provides the prior probability of conversant speech activ-

ity states at instant t, before any acoustic data for instant t has

been observed. STT models are therefore trained using refer-

ence state sequences, in this case factored speech activity states

(as depicted in Figure 2) rather than words 1. Because Q is

discrete, STT models have most commonly been implemented

as smoothed N -gram models [5]. By mapping ◻ (non-speech)

and ∎ (speech) to zero and unity, respectively, non-categorical-

input regressors can also be used; [8] showed that a standard

one-hidden-layer neural network, with tanh activations in the

hidden layer, achieves prediction parity with an N -gram model,

with far fewer parameters but far longer training times.

2.2. A Continuous-Valued Feature with Missing Values

To assess the performance of an auto-imputing STT model, the

current work explores loudness, whose per-frame values are

collected in F, a matrix of dimensions identical to Q. For sim-

plicity, each value of F is defined as

ft [k] = { et [k] if qt [k] = ∎
undefined otherwise

(1)

where et [k] is the signal energy as defined in [8]. The contrast

with performance achieved by manually imputing features will

use F̃, the imputed form of F, whose entries are given by

f̃t [k] = { 5 + (ft [k] − μ) /σ if ft [k] defined

0 otherwise
(2)

1When coupled with a suitable acoustic model of observations at
instant t, an STT model could form part of a speech activity detector. In
the current work, STT models are studied independently of detection,
to learn the “grammar” of interaction sequences.

This Z-normalizes ft [k] using statistics μ and σ obtained from

all of the speech frames in row k of F, first shifting the mean

upwards by five standard deviations, leaving all speech frames

with positive f̃t [k] values. The non-speech frames are then

assigned to a “loudness” of zero. This formula was proposed

in [8]; it is noteworthy that while predictions using F̃ remain

causal, the normalization relies on global (and therefore future)

values of F. This actually makes this baseline unfairly strong

in the present context 2.

2.3. Neural Network Architecture and Training

The application of neural networks to stochastic turn-taking

models is a relatively new development; prior to [8], turn-taking

models were implemented as N -grams, owing to the discrete

enumerability of conditioning histories, which contained only

binary speech activity features. In the current work, as in [8],

the probability that pariticipant k speaks at instant t is given by

the single output unit of a two-layer feed-forward neural net-

work. Accordingly, the output activation function is the sig-

moid, and the error function is the cross entropy error [10].

Training is accomplished using scaled conjugate gradient search

(SCG) [11], a second-order technique.

To further accelerate the learning process, networks are

trained using SCG for up to 100 iterations using every 1024th

exemplar, then for up to 100 iterations using every 512th ex-

emplar, etc., and finally for up to 1000 iterations using ev-

ery exemplar. For each experiment, a network with J ∈
{2,4,8,16,32,64} hidden units is trained using TRAINSET;

the best J is selected by minimizing the cross entropy error on

DEVSET (cf. Section 3 for a description of data sets). Only that

network is applied to TESTSET.

2.4. Hidden-Layer Activation Functions

The baseline neural network architecture consists of hidden

units whose activation function is the standard [10]

hj = tanh zj (3)

zj = bj + I∑
i=1

wji ⋅ xi . (4)

Each exemplar x ≡ {xi} leads to updates of the first-layer bi-

ases bj and first-layer weights wji. This function is unsuitable

for feature vectors x which may contain undefined values.

As will be shown, auto-imputation can be achieved by ex-

tending a type of activation function known as a radial basis

function (RBF) [12, 13]. The most commonly used form is

hj = exp (−zj) (5)

zj = I∑
i=1

bji ⋅ (wji − xi)2 . (6)

This formulation assumes that the feature density is a weighted

sum of diagonal Gaussians, and will henceforth be denoted by

“GRBF” 3. To ensure that zj remain strictly non-negative during

training, Equation 6 was replaced with

zj = r (bj) ⋅ I∑
i=1

(wji − xi)2 . (7)

2To see that this is so, note that row 4 in Figure 3 is identical to row
32 in Figure 2 of [8]. In the latter, it had been shown that not using
Z-normalization results in a hit of approximately 0.01 bits per 100 ms
(row 23 in Figure 2 of [8]).

3Spherical Gaussian RBFs were also explored, and are a specialized
form of the diagonal case in which bji = bi for all j.
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This permits implicating a barrier (cf. [14]); for example, the

adopted r (b) ≐ b2min + b2 is positive and analytic ∀b ∈ R.

bmin = 0.0001 was selected empirically, by observing the evo-

lution of the error for a subset of TRAINSET. These modifica-

tions allow for SCG training to proceed without intervention4.

Gaussian RBFs are appropriate for feature vectors whose

elements are continuous-valued, but may be inappropriate for

binary-valued elements such as those of Q. For such features,

the current work proposes a corresponding Bernoulli radial ba-

sis function (BRBF),

hj = I
√
zj (8)

zj = I∏
i=1

(wji)(xi) (1 −wji)(1−xi) . (9)

Neural networks with this activation function are closely related

to Bernoulli mixture models (BMMs) [15], and in fact RBF

neural networks are often trained in two stages; the first stage

is an unsupervised maximization of the likelihood of the train-

ing data, while the second stage adapts only the second-layer

weights. When both sets of weights are adapted in a single

stage, as in this work, the first-layer effectively learns “traits”

[16]. Since the weights wji must lie on the unit interval, Equa-

tion 9 was replaced with

zj = I∏
i=1

(s (wji))(xi) (1 − s (wji))(1−xi) , (10)

where s (w) ≐ 1/ (1 + exp (−β (w − 1

2
))).

Neither the GRBF nor the BRBF are applicable for feature

vectors with potentially undefined values. To extend their op-

eration into auto-imputing territory, each potentially undefined

continuous-valued-feature value (such as xi ≡ ft [k]) must be

accompanied by a defined binary-valued-feature value (such as

ξi ≡ qt [k]). Feature xi is conceived of as being gated by the

feature ξi. The proposed Joint Radial Basis Function (JRBF)

contains elements of both the GRBF and the BRBF:

hj = I
√
zj (11)

zj = I∏
i=1

(s (uji))(ξi) (1 − s (uji))(1−ξi) (12)

⋅ (exp (−r (bj) ⋅ (wji − xi)2))(ξi) ,

where the uji are the weights applied to feature ξ and the wji

are the weights applied to feature x as gated by feature ξ. As

can be seen, the jth hidden unit is sensitive to both values of ξi
(zero or unity) — as in the BRBF — but is sensitive to xi (in a

way borrowed from the GRBF) only if ξi is unity, as desired.

3. Data

Experiments were conducted using the Switchboard-1 Corpus,

as re-released in 1997 [17]. It consists of 2435 telephone con-

versations, each approximately 10 minutes in duration. The cor-

pus was divided into three speaker-disjoint sets in [7], such that

TRAINSET, DEVSET, and TESTSET consist of 762, 227, and

199 conversations, respectively. During that process, it was not

possible to allocate 1247 conversations because their two speak-

ers had already been placed in different sets. In summary, the

4Ad-hoc intervention would otherwise be necessary to ensure that
bj > 0 in Equation 6. At each training epoch requiring such interven-
tion, the conjugate gradient direction would need to be reset to the true
gradient, undermining the fast convergence of the SCG algorithm.

numbers of exemplars were 2.6M for TRAINSET, 0.9M for DE-

VSET, and 0.8M for TESTSET.

Reference speech/non-speech segmentations were used, as

elsewhere in speech technology when training prior probabil-

ity models. Q was constructed using the forced-alignment-

mediated references [18]. E was computed from channel-

separated audio files, as described in Subsection 2.2.

4. Results

4.1. Replacement of DOT-TANH by RBFs for Everywhere-

defined Binary-Valued Features

In a first experiment, the DOT-TANH activation function is re-

placed by several alternative RBF functions. This was done to

determine whether the RBF formalism, present also in the JRBF

context, leads to any reduction in predictive power for feature

vectors which do not contain undefined values. The results are

shown in rows 1 through 3 of Figure 3, where the feature space

consists entirely of past binary-valued speech activity.
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{Q, F̃}
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Figure 3: DEVSET cross entropy rates (in bits per 100 ms, along

the horizontal axis) for speech activity (Q), imputed loudness

(F̃ ), and loudness containing undefined values (F ), using sev-

eral types of hidden unit activation functions. White and black

bars denote UI and CI models, respectively. “SPH” depicts

“spherical covariance” while “DIA” depicts “diagonal covari-

ance”; all other acronyms as in the text.

As can be seen, the spherical GRBF exhibits identical per-

formance to the DOT-TANH baseline from [8], and diagonal

covariances are not necessary. More importantly, the BRBF

— more appropriate for binary-valued features — also achieves

predictive parity with the DOT-TANH network. These findings

are somewhat surprising, since DOT-TANH units can form ar-

bitrary linear combinations of the input feature vector elements,

while RBF units cannot. Evidently, the large number of hid-

den units (J = 64) compensates for this lack; it is expected that

when J is smaller, DOT-TANH-based neural networks would

outperform RBF-based systems, unless difference features (for

example) were explicitly included in the input space.

4.2. Application of Neural Networks to Manually-Imputed

Continuous-Valued Features

Rows 4 through 6 in Figure 3 depict the performance of

neural-network STT models whose input space consists of both

everywhere-defined binary-valued features Q and everywhere-

defined continuous-valued features F̃. The latter were produced

by manually imputing the F features with potentially undefined

values, using Equation 2. It can be seen that while the spheri-
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cal GRBF does not achieve parity with the DOT-TANH activa-

tion function when applied to the concatenated feature vectors,

the diagonal GRBF does. Together with the observations from

the previous section, it appears that dimension-specific preci-

sion values bji (cf. Equation 6) are necessary to fully exploit

the information contained in continuous-valued features.

4.3. Application of Auto-Imputing Neural Networks to

Unimputed Continuous-Valued Features

Finally, the last experiment — depicted in row 7 of Fig-

ure 3 — applied the auto-imputing JRBF activation function

to the everywhere-defined binary-valued features Q and the

continuous-valued features F with potentially undefined val-

ues. The latter were not previously manually imputed, as in

the preceding section. Nevertheless, the achieved UI value of

0.2681 bits per 100-ms is negligibly different from the value of

0.2668 bits per 100-ms, obtained using DOT-TANH functions

after manual imputation (row 4). Similarly, the achieved CI

value of 0.2533 bits per 100-ms is also negligibly different from

the value of 0.2534 bits per 100-ms. In numerical terms, the

perturbation is +0.5% and −0.04% for the UI and CI models,

respectively. This demonstrates that auto-imputing STT mod-

els achieve predictive parity with standard neural network STT

models, without the need for manual imputation (which in this

case relies on acausally available information, cf. Equation 2).

5. Discussion

5.1. Generalization to Unseen Data

The three sets of experiments described in the precedings sec-

tions for DEVSET, using which the number of hidden units was

optimized, were repeated for the completely unseen TESTSET.

The results are depicted in Figure 4.
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Figure 4: TESTSET cross entropy rates (in bits per 100-ms,

along the horizontal axis). Symbols as for Figure 3.

As can be seen, the trends for TESTSET in Figure 4 are

very similar to those for DEVSET in Figure 3. The auto-

imputing models yield cross-entropy perturbations from their

standard non-imputing neural network counterparts of +0.4%
and +0.2%, for the UI and CI variants, respectively. This sug-

gests that the predictive parity achieved by auto-imputing neural

networks can be expected for other also-unseen data sets.

5.2. Potential Impact

The gating implicit in the proposed JRBF activation function

appears to have negligible impact on prediction entropies. This

suggests that it is suitable for the large-scale analysis of the im-

pact of any feature with missing values on speech activity pre-

diction, and therefore on turn-taking as implied by STTs. The

current work has relied on a feature which is relatively easy

to manually impute — it is meaningful to state that non-speech

frames have a loudness of zero, provided that care is taken to en-

sure that speech frames exhibit larger values. This makes loud-

ness an appropriate feature for which to compare unimputed and

auto-imputing behavior; for a feature such as pitch, which is ar-

guably more interesting, the comparison cannot be made since

an unimputed baseline cannot be formulated (e.g. what values

of pitch should be assigned to long stretches of non-speech?).

The value of the proposed approach lies in its rendering such

features possible to evaluate at all. As such, it opens up STT

analysis to previously untreatable features.

5.3. Interpretability

In contrast to the standard DOT-TANH activation function,

which can arbitrarily rotate feature vectors, diagonal-covariance

JRBF activation functions facilitate exploratory data analysis.

The parameter values have spatial meaning relative to the ge-

ometry of the matrix Q. Each hidden layer therefore repre-

sents a pattern, against which the actual history during every

prediction is matched; the proposed RBFs are a formalization

of non-linear factor analysis [16]. Hidden layer parameter val-

ues can therefore be inspected visually, with much greater ease

than provided by Hinton diagrams [19], facilitating the study

of prosodic cues to speakers’ decisions to speak. The precision

parameters (bji in Equation 6) also implicitly yield a form of

automatic relevance determination [20].

6. Conclusions

This article has explored radial basis functions (RBFs) as the

hidden-unit activations in neural-network implementations of

stochastic turn-taking models. It was shown that spherical

Gaussian RBFs and the novel Bernoulli RBFs provide perfor-

mance which is equivalent to DOT-TANH units when the in-

put space consists of everywhere-defined binary-valued fea-

ture vectors. These RBFs were then extended to also accept

continuous-valued feature vectors which may contain missing

values, yielding the novel Joint RBF (JRBF) activations. Exper-

iments revealed that for input vectors with potentially missing

values, JRBFs achieve prediction cross entropies which only

negligibly deviate from those achieved by standard neural net-

works preceded by prior manual imputation. Neural networks

using JRBFs can therefore be justifiably referred to as “auto-

imputing”. It is reasonable to assume that they will be instru-

mental in the efficient, large-scale analysis of the impact on var-

ious features — including those with potentially missing values

— on human conversational behavior.
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