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Abstract.  The unpredictability of spoken responses by young children (6-7 

years old) makes them problematic for automatic speech recognizers.  Aist and 

Mostow proposed predictable response training to improve automatic 

recognition of children’s free-form spoken responses.  We apply this approach 

in the context of Project LISTEN’s Reading Tutor to the task of teaching 

children an important reading comprehension strategy, namely to make up their 

own questions about text while reading it.  We show how to use knowledge 

about strategy instruction and the story text to generate a language model that 

predicts questions spoken by children during comprehension instruction. We 

evaluated this model on a previously unseen test set of 18 utterances totaling 

137 words spoken by 11 second grade children in response to prompts the 

Reading Tutor inserted as they read.  Compared to using a baseline trigram 

language model that does not incorporate this knowledge, speech recognition 

using the generated language model achieved concept recall 5 times higher – so 

much that the difference was statistically significant despite small sample size. 

Keywords:  children’s free-form spoken responses, predictable response 

training, automatic speech recognition, language model, self-questioning 
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1 Introduction 

Speech is a natural way for humans to communicate.  Intelligent tutoring system 

developers have started to treat automatic speech recognition (ASR) as a desirable 

way to enhance human-computer interaction [1-3].  Compared to typing [4], verbal 

input is especially convenient for children in the early years of elementary schools 

(i.e., first and second grades, roughly ages 6-7).  Unlike older students, young 
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children have trouble typing accurately or quickly.  Compared to multiple choice 

interfaces, a speech interface is less distracting, and it allows a broader range of input.   

However, recognizing children’s free-form speech is a tricky problem [5, 6].  

Acoustic parameters of children’s speech, such as formants, are harder to capture and 

more variable than those of adult speech [7].  Besides, children are creative in  

syntactic-lexical use of language, and their speech can be ungrammatical [8], which 

increases the unpredictability of the speech. 

To reduce this unpredictability, we apply predictable response training [9].  We 

then exploit knowledge of predictable responses in the language model of a speech 

recognizer.  We develop this approach in a Reading Tutor that teaches young children 

to generate questions about story texts (also known as “self-questioning”). Teaching 

this strategy has been shown to improve children’s reading comprehension [10, 11].   

The rest of this paper is organized as follows.  Section 2 introduces predictable 

response training for self-questioning. Section 3 and 4 respectively describe how to 

generate and improve a language model that exploits such training.  Section 5 reports 

results.  Section 6 summarizes contributions, limitations, and future work.  

2 Predictable Response Training in Self-questioning Instruction 

Our self-questioning instruction [12] attempts to teach a young child to wonder about 

text while reading it aloud to Project LISTEN’s Reading Tutor [13].  In a self-

questioning activity, the Reading Tutor prompts the child now and then to ask a 

question out loud about the text, and records the free-form spoken responses. 

Unpublished data from a previous study [14] found considerable variation in 

children’s responses to self-questioning prompts such as What else are you wondering 

about rainbows? Ask a question out loud. Out of 23 recorded responses, only one 

response was a grammatical question relevant to the text (Does a rainbow come out 

when it snows?).  The rest contained only classroom background noise, did not take a 

question form (e.g. Nothing, Thank god I could make a promise about rainbow), were 

ungrammatical (e.g., How they get the colors where they come from yada yada I'm 

done), or were irrelevant to the text (Why do you ask so many questions).  

To reduce the unpredictability of children’s responses in self-questioning, we built 

predictable response training into the instruction.  We train three types of questions, 

namely Why, How, and What.  Our instruction guides students to compose questions 

in multiple steps, so as to elicit predictable segments.  We decompose a question 

about a fictional text into a question stem (e.g., Why was), a character to ask about 

(e.g., the country mouse), and a question completer (e.g., surprised).  We follow an 

instructional model that gradually transfers responsibility from tutor to student [15]:    

(1) Describe the strategy:  the tutor introduces the strategy of self-questioning and 

explains an important component of a question, namely the question stem: 

Tutor3:  I'm going to tell you about a reading strategy called QUESTIONING. 

     QUESTIONING means you ask YOURSELF questions WHILE you read.   
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     Asking yourself questions while you read can help you understand better.  A good way to 

start a question is with a question word. These are some good question words:  why, who, 

where, when, what, and how. 

(2) Model the strategy:  the tutor models the strategy with an example question. 

Tutor:  This part of the story makes me think of this question:   

  “Why was the country mouse surprised?” 

[Student reads more text] 

(3) Scaffold the strategy:  To help the child make a question, the tutor provides 

multiple choices for all or some question segments. 

Tutor: Let’s make a question about ___ (the town mouse; the country mouse; the man of 

the house; the cat).  

Student: [In the on-screen menu of 4 choices, the student clicks on the country mouse.] 

Tutor: Let’s ask a ___ (what; why; how) question. 

Student:    [The student chooses why.] 

Tutor: Let’s complete your question: Why did the country mouse___ (decide to send the 

cat; try to taste everything before his tummy was full; run)? 

Student: [The student chooses decide to send the cat.] 

* Tutor: Ok, now I want you to read your question out loud before you continue the story.   

Student reads aloud: Why did the country mouse decide to send the cat? 

[Student reads more text] 

After the child chooses a character to ask about and a question type, the tutor asks him 

or her to complete the question by saying the whole question out loud. 

Student:    [The student chooses the cat and how.] 

* Tutor:  Now finish your question by saying the whole thing out loud, and completing the rest. 

Student:  How did the cat see the mice? 

[Student reads more text] 

(4) Prompt the use of the strategy:  the tutor prompts the child to ask a question 

without assistance. 

* Tutor: Think of a question to ask about the story, and say it out loud. 

Student: Why did the two mice come out? 

The inserted tutor prompts typically total around 1 minute of instruction. 



 

3 Core Language Model 

Speech recognition uses an acoustic model of how sounds represent words, and a 

language model of how words are combined into utterances.  Generally, the better the 

acoustic model captures how users pronounce words, and the better the language 

model captures how users construct utterances out of words, the better the 

recognition.  Thus, researchers seeking to improve speech recognition performance 

typically focus on improving the acoustic model, the language model, or both.  

Researchers also seek to improve audio quality and reduce the range of likely ways to 

say things within the user’s task.  This paper focuses on language modeling 

approaches that exploit knowledge of a constrained range of likely utterances. 

To exploit predictable response training, we build into the language model 

questions generated automatically from the text.  Our question generator [12] 

combines a question stem with two other segments it extracts from the text – a 

character to ask about, and a question completer.  Our language model generator then 

compiles the resulting questions into a finite state grammar (FSG).  Fig.  1 shows an 

example language model that incorporates the questions from step (3) in Section 2.   

 

Fig.  1.  Example language model. 

 

Fig.  2.  A fragment of core language model with disfluency modeling.                              

Dotted arrows represent repetition; dashed arrows represent early termination. 

Modeling disfluency.  Disfluency, a common phenomenon in children’s speech [6],   

includes hesitations, filled pauses (e.g., uh, um), repetition (e.g., How did how did the 

cat see the mice?), and early termination (e.g., Why did the cat).  To model hesitations 



 

and filled pauses, we exploit the recognizer’s ability to insert silences and noises 

between words, using a noise dictionary including every phoneme.  To model 

repetition, we add transition arcs from segment boundaries to previous segment 

boundaries.  To model early termination, we add transition arcs from segment 

junctions to the end state.  Fig.  2 shows part of the resulting “core language model.” 

4 Enhancing Robustness of the Language Model 

For guidance to help us improve the core language model, we used a 168-word corpus 
from a spring 2009 pilot test of self-questioning instruction generated for Aesop’s 
fable “The Country Mouse and the Town Mouse.” This corpus consists of 12 
responses by 7 second graders to self-questioning prompts starred with * in Section 2. 

In principle, we could train a language model directly from questions spoken by 

trained students, but practically speaking we’d need a substantially larger corpus.  For 

the related task of recognizing children’s spontaneous summarization, Hagen et al. [1] 

trained language models from 10 stories and different numbers of students’ 

summaries.  They reported needing at least 40 summaries to achieve better 

recognition than the initial language model trained from 10 stories. 

The language model predicts both the content of the questions and their form.  

Predictable response training mainly elicits the form of children’s questions, with 

limited possibilities for the question stem and character, but the question completer 

segment is more open-ended both in the words it can use and the order they can occur. 

Expanding the vocabulary with story words and common words.  There is a 

tradeoff between the coverage and precision of the language model.  As ASR 

vocabulary grows, coverage of children’s speech increases, but so does the risk of 

misrecognition.  Hence we want only words likely to appear in children’s responses. 

Children’s questions can reach beyond vocabulary output by our question generator:  

the core language model vocabulary covers only 38% of the 60 word types in our 

168-word pilot corpus.  To improve coverage, we add the Dolch list [16] of 220 

words common in children’s books. We expect children’s questions to be about story 

text, so we add all the story words.  We further expand the resulting vocabulary by 

using a morphology generator to add all inflections of each verb.   

Interpolating the language model with more general language models.  To boost 

robustness, we tried interpolating the core language model with broader models:  a 

unigram model, a part of speech (POS) bigram model, and a trigram model. 

We trained the unigram model on 158,079 words in 673 children’s stories from 

Project LISTEN.  We incorporated it by inserting a self-looping state in the core FSG 

to allow any sequence of words after the character segment, using the unigram 

probability for each word.  We give the transition into this state a low weight (.0001) 

as a penalty so as to give such sequences lower probabilities than generated questions. 

Our POS-bigram language model approximates bigram probability P(w2 | w1) as 

P(POS(w2) | POS(w1)), e.g. P(mice | the) as P(NNS | DT), where NNS means a plural 

noun, and DT means a determiner. We tagged all 673 stories using the Stanford POS 

tagger, and trained a bigram model on the resulting POS sequences using the SRILM 



 

language modeling toolkit [17].  To incorporate this model in the FSG, we added a 

state for each POS tag.  We assigned the transition from the character segment to the 

VB (verb) state the probability .0001, and transitions between POS states their POS 

bigram probabilities.  We tagged each word with its most frequent POS. Thus this 

model approximates P(find the mice) as .0001 * P(DT | VB) * P(NNS | DT). 

To construct a trigram language model, we first extracted from the 976,992,639 

Google 3-grams [18] the 727,348 consisting solely of the 477 words in predicted 

questions, the story, and the Dolch list.  Next, we approximated our FSG in trigram 

form by enumerating predicted questions and a subset of their disfluent forms 

(restricting repetition to 2 times) and collecting their trigram counts.  We multiplied 

them by 1000 to weight them more heavily, added them to the Google n-gram counts, 

and used the combined counts to train our interpolated trigram language model. 

5 Evaluation and Results 

We conducted ASR experiments to evaluate predictable response training by 

comparing language models that exploit such training against a baseline that does not.     

5.1 Evaluation Metrics 

To evaluate how many words our model correctly recognizes, we report word 

accuracy (WA), measured as the number of correctly recognized words divided by the 

total number of words in the human transcript.  WA penalizes substitutions and 

deletions by the ASR; word error rate (WER) additionally penalizes insertions.  

Concept coverage.  From an application point of view, WA is not the ultimate 

objective function.  The more important goal is to extract spoken meaning, not to 

transcribe the exact words spoken, especially function words such as the and of.  We 

therefore ignore function words, and measure precision and recall of concepts, which 

we operationalize as word classes defined by word stems – i.e., two words denote the 

same concept if they share the same stem.  If a child says the same thing twice and the 

speech recognizer hears it only once, concept precision and recall are unaffected. 

Upper bound of a language model.  Given the acoustic model, how well can a 

language model possibly do in terms of ASR accuracy?  To obtain a rough upper 

bound on ASR accuracy, we did a “cheating experiment” using a FSG language 

model consisting of just the 12 transcribed word sequences from our pilot set. 

5.2 Evaluation Results on Pilot Data 

Table 1 shows results for the various language models described in Sections 3 and 4.  
As a baseline, we trained a trigram language model on the same 673 stories, but 
restricted its vocabulary to the words from “The Country Mouse and the Town 
Mouse.”  Exploiting predictable response training increased WA from 8.9% (WER 
118%) for the baseline model to as high as 73.2% (WER 57.1%) for the core language 



 

model interpolated with a POS bigram model.  To evaluate how well the speech 
recognizer performs with different vocabularies, we report recall of concepts from the 
core language model, from the story, and from all transcribed responses.  The core 
LM + POS-bigram model achieved the highest all-concept recall – significantly 
higher (despite the small sample size) than the baseline model that did not exploit this 
training (n = 12 responses, p < 0.001 on a paired T-test, Cohen’s d = 1.362).  To our 
surprise, it actually beat the cheating model on 2 of the 3 recall measures, presumably 
due to greater flexibility in recognizing speech atypical of the acoustic models. 

Table 1.  ASR results on pilot data (168 words).  The baseline model is a trigram LM trained 

on children’s stories. The Core LM covers automatically generated questions and disfluency.  

The next three models interpolate it with n-gram models to cover question completers better.   

This and subsequent tables show the highest non-cheating value(s) in each column in boldface. 

Language Model Word Accuracy 

Recall 

Precision Core LM 

concepts 

Story 

concepts 

All 

concepts 

Baseline (3-gram) 8.9% 16.7% 17.6% 11.7% 81.8% 

Core Language Model 67.9% 92.6% 80.4% 64.9% 65.8% 

Core LM + unigram 68.5% 92.6% 80.4% 64.9% 69.4% 

Core LM + POS-bigram 73.2% 88.9% 88.2% 68.9% 57.0% 

Core LM + Google 3gram 42.3% 59.3% 56.9% 42.9% 57.9% 

Cheating Experiment 89.3% 87.0% 86.3% 84.4% 87.8% 

5.3 Improving Precision by Reducing Insertions 

Most ASR errors were insertions caused by background speech and noise.  To 

improve precision, we tried two approaches:  (1) post-processing ASR output to filter 

out low-confidence words; (2) tightening search by lexicalizing question segments.  

Table 2 shows their effects on the output of the Core LM+POS-bigram model. 

Table 2.  Improving precision on pilot data (168 words) 

Configuration Word Accuracy 

Recall 
Precision 

 Core LM 

concepts 

Story 

concepts 

All 

concepts 

Core LM+POS-bigram 73.2% 88.9% 88.2% 68.9% 57.0% 

Confidence thresholding 64.3% 79.6% 82.3% 62.3% 72.7% 

HMM filter 57.2% 74.1% 70.6% 57.1% 75.9% 

Lexicalized model 47.5% 94.4% 78.4% 66.2% 76.1% 

Confidence thresholding.  The speech recognizer we used assigns each hypothesized 

word a confidence score between 0 and 1 to indicate how likely it was recognized 

correctly.  To separate correctly recognized words from misrecognized words with 

maximum accuracy, we chose a threshold on the confidence score that minimized the 

sum of false positive rate plus false negative rate. 



 

Training an HMM sequential model for filtering.  The confidence score rates each 

hypothesis word independent of its context.  However, misrecognized words tend to 

appear in a row, and so do correctly recognized words.  A sequential model, such as a 

Hidden Markov Model (HMM), can capture this characteristic. 

Our HMM filter combines the confidence score with an intensity threshold to filter 

out background speech and noise, which typically have a lower intensity than student 

speech into a close-talking headset microphone.  Since the speech recognizer may 

have trouble distinguishing background speech or noise from user speech, a threshold 

on intensity can help indicate which regions of the signal to ignore.  Most of our 

recordings start with silence and speech by the Reading Tutor.  Thus, to set an 

intensity threshold, the first 0.5 seconds of speech is assumed to be a silence or noise 

region.  Then the threshold is set to be the average intensity of this noise region plus 

20 times its standard deviation.  We classify regions that exceed the intensity 

threshold as foreground speech.  We used this classification and the confidence score 

for each hypothesis word as feature vectors to train an HMM with two states (each 

with a 2-dimensional Gaussian emission distribution and diagonal covariance matrix).  

We expect these two states to represent correct and incorrect recognition.

Lexicalizing the language model.  User-testing showed that children often paused 

between question segments and within question completers, but not within question 

stem and character segments, as in Why did … the man of the house … try to hurt 

things, um, the mice? These pauses suggest a high cognitive load [19] when starting a 

new segment or thinking up a question completer. 

To exclude unlikely pauses from the language model, we lexicalized question 

stems and character segments.  Thus the stem Why did mapped to a single lexical item 

why-did, and the character segment the man of the house to the-man-of-the-house.  

5.4 Results on Unseen Test Data 

Table 3 shows results on 18 self-questioning responses by 11 students, collected after 
the analyses reported above.  Even with so little data, the difference between all-
concept recall for Core LM+POS-bigram and the baseline was again sufficiently 
dramatic (5x) to be statistically significant (n = 18, p < 0.0001, Cohen’s d = 1.364).  
The baseline and POS-bigram models had WER 93.4% and 64.2%, respectively. 

Table 3.  Results on unseen test data (137 words) 

Configuration Word Accuracy 

Recall 
Precision 

 Core LM 

concepts 

Story 

concepts 

All 

concepts 

Baseline 6.6% 14.0% 17.5% 10.3% 46.7% 

Core LM 60.6% 80.0% 77.5% 58.8% 50.6% 

Core LM+POS-bigram 40.9% 68.0% 65.0% 50.0% 54.8% 

Confidence filter 38.5% 64.0% 57.5% 49.7% 84.4% 

HMM filter 31.2% 50.0% 50.0% 43.4% 75.6% 

Lexicalized model 54.7% 78.0% 75.0% 57.4% 73.6% 



 

Both overall and story-concept recall on unseen data were encouraging, but lower 
than on the pilot data we used to tune the language model weight, repetition weight, 
vocabulary, filler word penalty, silence penalty, and filter model parameters.  This 
tuning likely overfit the small amount of pilot data we used for development. 

6 Contributions, Limitations, and Future work 

This paper describes a 2-part approach to improve ASR of children’s free-form 

spoken responses.  One part trains children to make more predictable responses.  

Ideally we could evaluate this part by comparing speech with versus without 

predictable response training as the only manipulation, but the training is inextricably 

interwoven with the strategy instruction itself, and ASR performance reported earlier 

on free-form responses elicited by different instruction [14] was very low. 

The other part generates language models to exploit this predictability by 

integrating constraints on expected content and form, not just interpolating n-gram 

models from different sources [20].  We constrain content by limiting vocabulary to 

the story, questions generated from it, common words, and verb inflections.  We 

constrain form based on the instruction and on word order in the story and other text. 

We demonstrated ASR accuracy 5-fold higher than for a baseline language model, 

tested various methods to improve precision and recall, and compared their effects. 

Future work includes generalizing to other text, and to tasks besides self-questioning. 

As a reviewer of this paper pointed out, predictable response training may itself 

have educational benefits.  A direct benefit to the student comes from the schema that 

gives rise to the predictability:  the same scaffold that makes responses predictable 

also makes them easier for the student to generate, and hence to learn.  An indirect 

benefit is to facilitate assessment:  predictable responses are easier to score.  This 

paper has shown how to exploit predictable response training in ASR, paving the way 

to realize this benefit in intelligent tutors that listen to children not just read but talk. 
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