
Viewing and Analyzing Multimodal Human-computer Tutorial Dialogue:
A Database Approach

Jack Mostow, Joseph Beck, Raghu Chalasani, Andrew Cuneo, and Peng Jia

Project LISTEN, Carnegie Mellon University, Pittsburgh, USA
email: {mostow, raghu, acuneo, pengj}@cs.cmu.edu; joseph.beck@cmu.edu

Abstract
It is easier to record logs of multimodal human-computer
tutorial dialogue than to make sense of them. In the
2000-2001 school year, we logged the interactions of
approximately 400 students who used Project LISTEN’s
Reading Tutor and who read aloud over 2.4 million
words. This paper discusses some difficulties we
encountered converting the logs into a more easily
understandable database. It is faster to write SQL
queries to answer research questions than to analyze
complex log files each time. The database also permits us
to construct a viewer to examine individual Reading
Tutor-student interactions. This combination of queries
and viewable data has turned out to be very powerful,
and we discuss how we have combined them to answer
research questions.

1. Introduction

It is easier to record logs of multimodal human-
computer tutorial dialogue than to make sense of them.
We discuss this problem in the context of Project
LISTEN’s Reading Tutor, which listens to children read,
and helps them [1]. The resulting multimodal dialogue
includes mouse clicks and speech as student input, and
spoken and graphical assistance as tutor output. In the
2000-2001 school year, hundreds of students used the
Reading Tutor daily at three elementary schools, reading
over 2.4 million words. How can we analyze so much
data? The Reading Tutors logged thousands of sessions,
but the logs are too detailed to see the forest for the trees.

An alternate way to capture detailed tutorial
interactions in human-viewable form is to videotape
them, as we have done in a number of studies [2]. Video
has obvious advantages, but many drawbacks. It is
laborious to record at schools, invades privacy, can distort
student behavior, captures only one level of externally
observable detail, omits internal events and tutorial
decision processes, and is tedious to analyze. To avoid
these drawbacks, we describe a database approach we

developed to view and analyze logs of children’s
interactions with Project LISTEN’s Reading Tutor.

A Reading Tutor session consists of logging in
followed by a series of stories, which the student and
Reading Tutor take turns picking. Each story is a
sequence of a few types of steps: assisted reading,
writing, listening, and picking. The Reading Tutor may
insert a preview activity beforehand, and/or a review
afterward, also built out of the same types of steps.

The Reading Tutor’s output is textual, graphical, and
audio. It displays text on the computer screen, sentence
by sentence, for the child to read aloud. It gives help on a
word or sentence by playing human or synthesized
speech, with graphical cues such as highlighting words.

The Reading Tutor inputs the student’s speech, mouse
clicks, and keyboard presses. It uses a less than perfectly
accurate speech recognizer to produce a time-aligned
transcript of each student utterance.

2. Data recorded by the Reading Tutor

The Reading Tutor logs information in various forms.
Although other multimodal dialogue systems may be
organized very differently, we suspect that they may
encounter some of the same problems we identify, such as
proliferation of log entry types, the need to identify a few
key control points, and the need to identify the
appropriate level(s) of detail and aggregation at which to
represent and analyze tutorial interactions.

The .wav file for each utterance contains the digitized
speech. Its “hypothesis” file contains the speech
recognizer’s time-aligned transcript, one word per line,
showing its start and end time as offsets in centiseconds
from the beginning of the utterance:

BY 227 249
11 250 278

Utterance files are a simple representation, both
human-readable and conducive to automated analysis,
especially since this representation has remained stable
for years. However, they are incomplete, capturing only
what students said and what the recognizer “heard,” not

what else the student or Reading Tutor did. The
“sentence” file shows the alignment of this hypothesis
against the sentence text, using –1 to indicate that a
sentence word had no hypothesis word aligned against it:

121 -1 -1
divided -1 -1
by 227 249
11 250 278
is -1 -1
11 -1 -1

The Reading Tutor records tutorial interactions in logs,
starting a new log each time it is launched. Log files are
tens of megabytes in size and thousands of lines long.
Each line is generated by a “logprint” function that
records a sequential event number, a severity level, a
timestamp, the number of digitized speech samples
recorded so far, the name of the function that logged this
event, and an event description whose form and content
depend on the type of event logged and is often much
longer than in the examples, which were chosen for their
brevity. For example, this pair of lines in the log
indicates that an utterance has ended and been captured:
16466, Notice, "Tue Apr 10 12:30:20.387

2001", 10763200,
"CListener::FinalizeUtterance",

 "EndUtterance"

16467, Notice, "Tue Apr 10 12:30:20.417

2001", 10763200,
"CCapture::WriteWaveFile(int)",

 "Wrote File: d:\\listen\\cd\\Tue-Sep-
19-23-44-58.093-2000\\Capture\\fAT6-6-
1994-08-01\\dec-fAT6-6-1994-08-01-
Apr10-01-12-30-14-902.wav"

Over years of development, the Reading Tutor code
has accumulated over a thousand calls to logprint for
various purposes, including debugging and performance
tuning. These calls record not only externally observable
events, but also internal decisions at various levels of
control. For example, suppose the student clicks on the
word “cat.” The Reading Tutor first computes the types
of help it can give on this word, such as speaking the
word, sounding it out phoneme by phoneme, and so forth.
From this set it chooses to give, say, a rhyming hint.
From its table of rhymes, it randomly chooses the word
“bat,” and verifies that it has a recording of “bat.” Then it
queues a sequence of audio and graphical actions to say
“rhymes with,” display the word “bat” beneath the word
“cat,” and say “bat.” The log file records this sequence of
actions as separate events, but does not explicitly link
them together as a single abstract event of the form “give
help of type h on word w from time t1 to t2.” One reason
for this omission is the difficulty in logging intervals
rather than single events. Obviously a log message
cannot be generated at time t1 that also provides the end
time. Logging the event at time t2 would destroy the
chronological ordering of the log files. Since the log
files were designed to be human-readable, this ordering is
an important property.

Although a detailed record can be useful for
debugging, it is impractical to write scripts to parse and
analyze a thousand different types of log entries. We also
experimented with the Reading Tutor generating html
summaries of students’ interactions [3]. Although they
were more human-readable than logs, their fixed level of
detail did not support subsequent changes to form or
content, or more powerful analysis than simple browsing.

3. A database approach

A July 2000 talk by Dr. Alex Rudnicky on his session
browser for the Communicator system [4], coupled with
our desire to understand how students were using the
Reading Tutor at schools, inspired the vision of a log
viewer to display Reading Tutor interactions at multiple
levels of detail. We report on work in progress toward
this vision – bugs and all.

Our approach parses utterance and log files into a
database, enabling us to answer research questions by
writing concise database queries instead of complex perl
scripts. The log viewer uses stored queries to generate
views at different levels dynamically, allowing us to
modify the view form and content. We now explain how
we represent, populate, query, and view the database.

3.1. Database schema for Reading Tutor data

Figure 1 summarizes our schema (simplified due to
space limitations) to model data for the 2000-2001 school
year from hundreds of students at three elementary
schools. Database schemas are important to get right, and
ours took weeks to finalize.

Figure 1: Abridged database schema of Reading
Tutor interactions

The entities modeled in the schema range in grain size
from schools down to individual word encounters.
Arrows encode many-to-one relations. For example, a
school had multiple students; students had multiple
sessions with the Reading Tutor.

We faced a challenge in figuring out how to model the
elements of a session. One choice was to model a session

Step Session

Student

Story Story Encounter

Sentence Encounter Sentence

School

as a sequence of story encounters, a story encounter as a
sequence of sentence encounters, and a sentence
encounter as a sequence of student utterances. This
model matched a useful simplified view of a session as
consisting of picking a series of stories to read, and it
used appropriately different fields to describe stories,
sentences, and utterances. For example, story tables had a
field for the difficulty level of the story; sentence
encounter tables had a field for when the student began
reading this sentence; and utterance tables had a field for
the name of the wav file that contained the student’s
speech. However, this structure did not match the reality
that stories were multi-step activities, that the Reading
Tutor often inserted a teaching activity before a story
and/or a review afterwards, and that the Reading Tutor
architecture treated each session as a uniform tree
structure of such steps. Such a step tree would be easy to
represent recursively in the schema, but would omit bona
fide distinctions among stories, sentences, and utterances.
To reconcile these two models, we decided to encode
both in parallel, relating them by linking each sentence
encounter to the step during which it occurred.

We used separate tables to represent mouse clicks,
graphical actions, and Reading Tutor audio output
because they had different fields. However, it is not very
useful to view them separately, so we generated merged
tables that combined them into a unified sequential view.

We did not model the Reading Tutor’s decision
processes, only its interactions with students. We decided
to model feedback as occurring either before the student
began to read the sentence, after the Reading Tutor
detected a mistake, as backchanneling (active listening
such as “uh huh”), or as praise.

3.2. Populating the database

To populate the database, a perl script parsed through
individual log files in a single forward pass.

When the parser generated a record, it called a filer
function to handle the communication with the database
and create the necessary records in dependent tables, such
as Sentence for a sentence encounter record. The filer
returned an internal id from the database so that future
related records, such as audio output within a sentence
encounter, could refer to it.

For example, this line marked the start of a sentence
encounter with the text “Dividing By 11”:
15023, Notice, "Tue Apr 10 12:27:13.648

2001", 7776000,
"CParagraph::SetSentence", "Dividing By
11"

Accordingly, the script created a Sentence Encounter
record with 12:27:13.648 as its start time, “Dividing By
11” as its text, and (based on state maintained from
parsing previous lines) the internal (database) ids of the
launch, session, story encounter, and step. 740 lines later,

the script found a “coach_goes_forward” event, which
enabled it to fill in the end time of the Sentence
Encounter as 12:28:35.386.

Similarly, the parser started an Utterance record when
it encountered a “user_begins_turn” event, and completed
the record when it encountered a pair of lines in the log
showing that an utterance ended and was captured.

3.3. Multi-level log viewer implementation

Given the database, the viewer was straightforward to
implement. We used MySQL Database-Server to serve
the database, perl DBI packages to interface to the
database, perl and CGI scripts to generate the views, and
Apache Web-Server to serve the views. All of these
packages are free to download. To save time, we adopted
a uniform tabular style rather than craft more specialized,
aesthetic views, as we would if they were intended for
teachers and not just ourselves.

A link to a view is encoded as a call to the script that
generates that view. For example, clicking the link
http://logviewer.cmu.edu:9876/cgibin/storyList.pl?session
_id=8562 calls the script storyList.pl to list the story
encounters for session number 8562. The script executes
a database query to retrieve them:
select story.story_id, title, level,
 file_path, story_encounter_id,
 start_time, end_time, type_desc,
 student_level, byte_offset,
 event_number, initiative, sms, ems
from type_description, story,
 story_encounter
where story_encounter.story_id =
 story.story_id and
 story_encounter.session_id =
 $sessionid and
 type_description.type_id =
 story_encounter.exit_through
order by start_time, sms

The script outputs an HTML table with a row for each

record returned, embedding any links to other views.

3.4. Views: what the browser shows

In general, the log viewer generates a view as a list of
records in an HTML table, with one row per value, and
column headers at the top. One or more fields in each
row may contain clickable links to more detailed views.
To protect student anonymity, we restrict access and omit
or alter names in our examples.

The highest-level view lists the (three in this database)
values of School, with columns for school name, location,
number of Reading Tutors, and number of students.
Clicking on a school name brings up a table of Reading
Tutors at that school, with columns for machine name,
description, and number of launches. Clicking on a
machine name brings up a chronologically ordered table

with one row for each launch of the Reading Tutor on that
machine. Each row includes the date and time of the
launch, which version of the Reading Tutor was launched,
the number of sessions during that launch, and a link to
the log file for the launch. Clicking on a session count
links to the list of sessions, and so on.

Clicking on a session’s story count, step count, or
student name brings up a table of stories read, session
steps, or student information, respectively. For example,
Figure 2 lists the stories read in one session. Each row
shows the story encounter’s start time, number of
sentences read, number of sentences in the story, title, and
how the encounter ended. Information about time spent
on the story, reader level, story level, and who picked the
story has been omitted here to save space.

This example revealed two problems. A bug in the
populating script inflated the number of sentences in the
story by including previews and reviews. Second, the
“select_response” value for how the last story encounter
ended indicates that the log was missing expected
information. As these examples illustrate, a database
populated from log files not designed for that purpose can
be informative, but buggy or incomplete.

Start
Time

NumSent
Encount

NumSe
ntences

Title
Exit

Throug
h

04-05-2001
12:24:25

6 40

How to Make
Cookies by

Emily
Mostow.

end_of_
activity

04-05-2001
12:28:14

14 56 One, two,
end_of_
activity

04-05-2001
12:31:34

5 112
Pretty Mouse

by Maud
Keary

select_re
sponse

Figure 2: Table of activies for a session

Following the sentence encounters link in the first

story listed, “How to Make Cookies by Emily Mostow,”
brings up Figure 3. The first two records come from
preview activities that introduced the words “oven” and
“batter,” which the student was encountering for the first
time in the Reading Tutor. The fifth record shows that the
sentence “Then put it in the oven” took 33 seconds, with
2 utterances and 3 other actions, totaling 5 – few enough
to list here, which is why we chose this example.

Figure 4 shows what happened during this encounter.
First the Reading Tutor decided to give some preemptive
assistance, though exactly what is not specified. 9
seconds later it prompted the student by saying “to get
help click, on a word.” The two utterances turned out to
consist of the words “then put,” followed by off-task

speech. Finally the student clicked the Go button to go on
to the next sentence.

Start
Time Duration

Num
Actio

ns

Num
Utter
ances

SentenceStr

04-05-2001
12:24:25

00:00:01 3 0 OVEN

04-05-2001
12:24:27

00:00:01 3 0 BATTER

04-05-2001
12:24:28

00:00:44 47 4
First get the

batter

04-05-2001
12:25:12

00:00:24 20 4
Next put all the
ingredients in

04-05-2001
12:25:37

00:00:33 3 2
Then put it in

the oven

04-05-2001
12:26:11

00:00:40 3 3 Last eat them

Figure 3: Table of sentence encounters for the
story “How to Make Cookies by Emily Mostow”

Besides starting at the list of schools and browsing
downward to more detailed views, we wanted to view
specific entities found by queries. We therefore provided
a more direct form of access by inputting the entity’s
database id. The same integer represents different ids in
different tables, so the user must also select the type of
table – of schools, Reading Tutors, launches, sessions,
story encounters, sentence encounters, or utterances.

Start Time End Time Action Description

04-05-2001
12:25:38

00-00-0000
00:00:00.0

Abstract
Response

preemptive
help

04-05-2001
12:25:47

00-00-0000
00:00:00.-1

Audio NONE

04-05-2001
12:25:48

04-05-2001
12:26:00

Utterance NONE

04-05-2001
12:26:01

04-05-2001
12:26:11

Utterance NONE

04-05-2001
12:26:11

00-00-0000
00:00:00.-1

Click
user_goes_fo

rward

Figure 4: Table of actions and utterances for the
sentence encounter “Then put it in the oven”

4. Answering questions with the database

We are using the database both to replicate previous
studies [5] and to answer new research questions [6],
thanks to the (relative) ease of constructing queries and

validating their correctness. For statistical analysis we
use SPSS’s ability to import from the database and our
SQL client (urSQL)’s ability to export results into Excel.

4.1. Constructing queries

To answer a research question, we formulate it as an
SQL query. As a simple example, were students likelier
to back out of a story if the Reading Tutor chose it than if
they did? This query counts how often students backed
out of stories, disaggregated by who chose:
select se.initiative, count(*)

from student_click sc, story_encounter se,
sentence_encounter sen

where
 sc.start_time = se.end_time and
 sc.type_id=8 and
sc.sentence_encounter_id =
 sen.sentence_encounter_id and

 sen.story_encounter_id =
 se.story_encounter_id
group by se.initiative

The basic logic (in the where condition) is to find

story encounters that ended when the student clicked
Back (click type 8) out of a sentence and this click occurs
at the same time a story ended. One problem could arise
if a student clicked back at the same time someone else
finished a story on a different computer. This case should
not count as backing out of a story. To avoid this
miscount, the where clause also specifies that the click
must occur in a particular sentence in the story that ends
at the same time as the click. The first line specifies what
data to collect – the initiative (who chose the story) and
how many items met the condition.

The query results in Table 1 (based on about 400
students) support a Yes answer to the research question:
the Reading Tutor chose the story in 2457 cases where the
student backed out, the student chose in 703, and who
chose was not specified in 140 cases. Null values may be
deliberate for introductory tutorial “stories” presented
automatically to newly enrolled students, or may be
caused by bugs in generating or parsing the logs. They
seem inevitable in a large database, but if rare enough do
not prevent analysis, as this example illustrates.

Table 1: Results of query to determine when
students backed out of stories

Item Initiative count(*)
1 (null) 140
2 student_initiative 703
3 tutor_initiative 2457

4.2. Using the viewer to debug queries

Queries are excellent tools for generating summary
results, but are less powerful for examining individual
cases. Queries therefore complement the browser, whose
strength is its ability to display individual cases. For

example, to analyze how much time students spent
waiting for the Reading Tutor to respond, we developed a
query to compute the delay from the last word a student
says in a sentence to the first word s/he says in the next
sentence. This query is 75 lines long because it requires
several steps: finding the last word of a sentence and the
time it was uttered, finding the time the student uttered
the first word of the next sentence, ensuring that both
sentences are in the same story, etc. After debugging
each step, we ran the full query. By sorting the resulting
delays, we found some too long to be believable. The
table of results identified the story encounters where they
occurred. By using the viewer to browse these story
encounters, we found the bug: between some sentence
encounters were activities where students were supposed
to write, which the query erroneously included as part of
the delay. It is important to note that it is not necessary to
create a new view for each research question. For
example, the view shown in Figure 3 was used to find the
flaws in the query to compute how long students were
waiting. However, this view was designed before we
knew that we would be conducting this analysis, and
could be used to verify other queries.

An additional benefit of the log viewer is that by
presenting student-computer interactions in a more
understandable form, it helps people with incomplete
knowledge of the project to take part in data analysis.
Our project had a near perfect split between those people
who understood how the Reading Tutor worked and those
people who could write SQL queries. The viewer
allowed those unfamiliar with the tutor to perform sanity
checks on their queries (as in the case of student writing
activities, mentioned above). People who were less
familiar with SQL used the viewer to examine unlikely
query results and to find glitches in the database. This
dichotomy of project members’ knowledge is not unique
to Project LISTEN; finding some means to work around
this gap is very helpful.

4.3. Benefits of using a database

One benefit of using the database is the ease of
extracting summary information. We have had project
meetings where questions were raised and immediately
addressed by a quickly written query (e.g. “How many
times did the Reading Tutor provide each type of help?”).
Although is it slower to get detailed information about
each student, rather than a summary, from the database, it
is comparable to or better than the prior technique of
using perl scripts. The comparison of SQL vs. perl is not
quite a fair one, as the difference in ease of use has less to
do with the languages than with the data each of them
processes. SQL queries manipulate a structured database
that we took time to set up, while the perl scripts had to
work with low-level log files. To create the database, we

had to debug a set of perl scripts. This task was time
intensive, but only had to be done once. Its constant cost
is amortized over all of the analyses performed. So for
investigating a small set of research questions a database
might not be worth the cost of setting up, but for more
open-ended investigations it is.

5. Conclusions

We have described a database approach to view and
analyze multimodal tutorial dialogue, and how we applied
it to Reading Tutor data. We now summarize its caveats,
then its benefits.

It was hard to develop a good schema and useful
views, especially for pre-existing logs that lack some
desired information, at least in easy-to-extract form. We
now make the Reading Tutor generate the database
records in real time. Deriving a schema ahead of time is
simpler in some ways, but could result in critical
information being lost if the schema is poorly designed.

The database must be robust to tutor crashes and bugs.
For example, when a crash ends a log prematurely, the
end time of events in progress must be filled in. Parsing
the logs exposed some Reading Tutor bugs, such as
assigning the same filename to two utterances, which
must not be allowed to corrupt the database.

Populating the database took weeks for our data, with
2.4 million word encounters. In the 2000-2001 school
year, 33 Reading Tutors each recorded hundreds of logs,
typically tens of megabytes long, with thousands of
utterance files. To avoid duplicating data, a long
populating process must be robust to stops and restarts.

Although the database takes long to design and
construct, it pays off in queries much shorter than perl
scripts, because they are expressed more declaratively.
Database technology absorbs much of the complexity of
searching and assembling data. When necessary, we
speed up queries by adding appropriate indices, but that
type of optimization is easier and less bug-prone than
rewriting conventional procedures to speed them up.

Views package specific queries in an understandable
form, easier to use than querying the database directly –
especially for views that integrate multiple tables, and for
users more fluent at clicking on links than at formulating
SQL queries. It is hard to design views both concise and
detailed enough to be useful. Views should summarize
lower-level details in informative aggregate form, for
example, durations and counts of utterances and actions
in a sentence encounter. Queries make such aggregation
easier, less bug-prone, and more flexible than in
procedural tutor code.

We use queries both to answer statistical questions by
aggregating over lots of data, and to find examples of
particular phenomena, such as outlier values. We use the
viewer to inspect such examples in detail, finding bugs or

unexpected cases that refine the question. Finally, simply
browsing our data at multiple levels often exposes
interesting phenomena.

Acknowledgements

This paper is a revised and abbreviated version of [3],
whose reviewers we thank for their helpful comments.
We also thank other members of Project LISTEN who
contributed to this work; mySQL’s developers; and the
students and educators at the schools where Reading
Tutors recorded data.

This work was supported by the National Science
Foundation under Grant Number REC-9979894. Any
opinions, findings, conclusions, or recommendations
expressed in this publication are those of the authors and
do not necessarily reflect the views of the National
Science Foundation or the official policies, either
expressed or implied, of the sponsors or of the United
States Government.

References (also see www.cs.cmu.edu/~listen)

1. Mostow, J. and G. Aist. Evaluating tutors that listen:
An overview of Project LISTEN. In K. Forbus and P. Feltovich,
Editors, Smart Machines in Education, 169-234. MIT/AAAI
Press: Menlo Park, CA, 2001.

2. Mostow, J., C. Huang, and B. Tobin. Pause the Video:
Quick but quantitative expert evaluation of tutorial choices in a
Reading Tutor that listens. In J.D. Moore, C.L. Redfield, and
W.L. Johnson, Editors, Artificial Intelligence in Education: AI-
ED in the Wired and Wireless Future, 343-353. Amsterdam:
IOS Press: San Antonio, Texas, 2001.

3. Mostow, J., J. Beck, R. Chalasani, A. Cuneo, and P.
Jia. Viewing and Analyzing Multimodal Human-computer
Tutorial Dialogue: A Database Approach. Proceedings of the
ITS 2002 Workshop on Empirical Methods for Tutorial
Dialogue Systems, 75-84. 2002. San Sebastian, Spain.

4. Bennett, C. and A.I. Rudnicky. The Carnegie Mellon
Communicator Corpus. 7th International Conference on Spoken
Language Processing (ICSLP2002) 2002. Denver, Colorado.

5. Mostow, J. and G. Aist. The Sounds of Silence:
Towards Automated Evaluation of Student Learning in a
Reading Tutor that Listens. Fourteenth National Conference on
Artificial Intelligence (AAAI-97), 355-361. 1997. Providence,
RI: American Association for Artificial Intelligence.

6. Mostow, J., G. Aist, J. Beck, R. Chalasani, A. Cuneo,
P. Jia, and K. Kadaru. A La Recherche du Temps Perdu, or As
Time Goes By: Where does the time go in a Reading Tutor that
listens? Proceedings of the Sixth International Conference on
Intelligent Tutoring Systems (ITS’2002), 320-329. 2002.
Biarritz, France: Springer.

