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Abstract 
It is easier to record logs of multimodal human-computer 
tutorial dialogue than to make sense of them.  In the 
2000-2001 school year, we logged the interactions of 
approximately 400 students who used Project LISTEN’s 
Reading Tutor and who read aloud over 2.4 million 
words.  This paper discusses some difficulties we 
encountered converting the logs into a more easily 
understandable database.  It is faster to write SQL 
queries to answer research questions than to analyze 
complex log files each time.  The database also permits us 
to construct a viewer to examine individual Reading 
Tutor-student interactions.  This combination of queries 
and viewable data has turned out to be very powerful, 
and we discuss how we have combined them to answer 
research questions.   
 

1. Introduction 

It is easier to record logs of multimodal human-
computer tutorial dialogue than to make sense of them.  
We discuss this problem in the context of Project 
LISTEN’s Reading Tutor, which listens to children read, 
and helps them [1].  The resulting multimodal dialogue 
includes mouse clicks and speech as student input, and 
spoken and graphical assistance as tutor output.  In the 
2000-2001 school year, hundreds of students used the 
Reading Tutor daily at three elementary schools, reading 
over 2.4 million words. How can we analyze so much 
data?  The Reading Tutors logged thousands of sessions, 
but the logs are too detailed to see the forest for the trees.   

An alternate way to capture detailed tutorial 
interactions in human-viewable form is to videotape 
them, as we have done in a number of studies [2].  Video 
has obvious advantages, but many drawbacks.  It is 
laborious to record at schools, invades privacy, can distort 
student behavior, captures only one level of externally 
observable detail, omits internal events and tutorial 
decision processes, and is tedious to analyze.  To avoid 
these drawbacks, we describe a database approach we 

developed to view and analyze logs of children’s 
interactions with Project LISTEN’s Reading Tutor.   

A Reading Tutor session consists of logging in 
followed by a series of stories, which the student and 
Reading Tutor take turns picking.  Each story is a 
sequence of a few types of steps:  assisted reading, 
writing, listening, and picking.  The Reading Tutor may 
insert a preview activity beforehand, and/or a review 
afterward, also built out of the same types of steps. 

The Reading Tutor’s output is textual, graphical, and 
audio.  It displays text on the computer screen, sentence 
by sentence, for the child to read aloud.  It gives help on a 
word or sentence by playing human or synthesized 
speech, with graphical cues such as highlighting words. 

The Reading Tutor inputs the student’s speech, mouse 
clicks, and keyboard presses.  It uses a less than perfectly 
accurate speech recognizer to produce a time-aligned 
transcript of each student utterance. 

2. Data recorded by the Reading Tutor 

The Reading Tutor logs information in various forms.  
Although other multimodal dialogue systems may be 
organized very differently, we suspect that they may 
encounter some of the same problems we identify, such as 
proliferation of log entry types, the need to identify a few 
key control points, and the need to identify the 
appropriate level(s) of detail and aggregation at which to 
represent and analyze tutorial interactions. 

The .wav file for each utterance contains the digitized 
speech.  Its “hypothesis” file contains the speech 
recognizer’s time-aligned transcript, one word per line, 
showing its start and end time as offsets in centiseconds 
from the beginning of the utterance: 

BY 227 249 
11 250 278 

Utterance files are a simple representation, both 
human-readable and conducive to automated analysis, 
especially since this representation has remained stable 
for years.  However, they are incomplete, capturing only 
what students said and what the recognizer “heard,” not 



what else the student or Reading Tutor did.  The 
“sentence” file shows the alignment of this hypothesis 
against the sentence text, using –1 to indicate that a 
sentence word had no hypothesis word aligned against it: 

121     -1      -1 
divided -1      -1 
by      227     249 
11      250     278 
is      -1      -1 
11      -1      -1 

The Reading Tutor records tutorial interactions in logs, 
starting a new log each time it is launched.  Log files are 
tens of megabytes in size and thousands of lines long.  
Each line is generated by a “logprint” function that 
records a sequential event number, a severity level, a 
timestamp, the number of digitized speech samples 
recorded so far, the name of the function that logged this 
event, and an event description whose form and content 
depend on the type of event logged and is often much 
longer than in the examples, which were chosen for their 
brevity.  For example, this pair of lines in the log 
indicates that an utterance has ended and been captured: 
16466, Notice, "Tue Apr 10 12:30:20.387 

2001", 10763200, 
"CListener::FinalizeUtterance", 

  "EndUtterance" 
 
16467, Notice, "Tue Apr 10 12:30:20.417 

2001", 10763200, 
"CCapture::WriteWaveFile(int)", 

  "Wrote File:  d:\\listen\\cd\\Tue-Sep-
19-23-44-58.093-2000\\Capture\\fAT6-6-
1994-08-01\\dec-fAT6-6-1994-08-01-
Apr10-01-12-30-14-902.wav" 

Over years of development, the Reading Tutor code 
has accumulated over a thousand calls to logprint for 
various purposes, including debugging and performance 
tuning. These calls record not only externally observable 
events, but also internal decisions at various levels of 
control. For example, suppose the student clicks on the 
word “cat.”  The Reading Tutor first computes the types 
of help it can give on this word, such as speaking the 
word, sounding it out phoneme by phoneme, and so forth.  
From this set it chooses to give, say, a rhyming hint.  
From its table of rhymes, it randomly chooses the word 
“bat,” and verifies that it has a recording of “bat.”  Then it 
queues a sequence of audio and graphical actions to say 
“rhymes with,” display the word “bat” beneath the word 
“cat,” and say “bat.”  The log file records this sequence of 
actions as separate events, but does not explicitly link 
them together as a single abstract event of the form “give 
help of type h on word w from time t1 to t2.”  One reason 
for this omission is the difficulty in logging intervals 
rather than single events.  Obviously a log message 
cannot be generated at time t1 that also provides the end 
time.  Logging the event at time t2 would destroy the 
chronological ordering of the log files.   Since the log 
files were designed to be human-readable, this ordering is 
an important property.    

Although a detailed record can be useful for 
debugging, it is impractical to write scripts to parse and 
analyze a thousand different types of log entries.  We also 
experimented with the Reading Tutor generating html 
summaries of students’ interactions [3].  Although they 
were more human-readable than logs, their fixed level of 
detail did not support subsequent changes to form or 
content, or more powerful analysis than simple browsing. 

3. A database approach 

A July 2000 talk by Dr. Alex Rudnicky on his session 
browser for the Communicator system [4], coupled with 
our desire to understand how students were using the 
Reading Tutor at schools, inspired the vision of a log 
viewer to display Reading Tutor interactions at multiple 
levels of detail.  We report on work in progress toward 
this vision – bugs and all.  

Our approach parses utterance and log files into a 
database, enabling us to answer research questions by 
writing concise database queries instead of complex perl 
scripts.  The log viewer uses stored queries to generate 
views at different levels dynamically, allowing us to 
modify the view form and content.  We now explain how 
we represent, populate, query, and view the database. 

3.1. Database schema for Reading Tutor data 

Figure 1 summarizes our schema (simplified due to 
space limitations) to model data for the 2000-2001 school 
year from hundreds of students at three elementary 
schools.  Database schemas are important to get right, and 
ours took weeks to finalize.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Abridged database schema of Reading 
Tutor interactions 

The entities modeled in the schema range in grain size 
from schools down to individual word encounters.  
Arrows encode many-to-one relations.  For example, a 
school had multiple students; students had multiple 
sessions with the Reading Tutor.    

We faced a challenge in figuring out how to model the 
elements of a session.  One choice was to model a session 

Step Session 

Student 

Story Story Encounter 

Sentence Encounter Sentence 

School 



as a sequence of story encounters, a story encounter as a 
sequence of sentence encounters, and a sentence 
encounter as a sequence of student utterances.  This 
model matched a useful simplified view of a session as 
consisting of picking a series of stories to read, and it 
used appropriately different fields to describe stories, 
sentences, and utterances.  For example, story tables had a 
field for the difficulty level of the story; sentence 
encounter tables had a field for when the student began 
reading this sentence; and utterance tables had a field for 
the name of the wav file that contained the student’s 
speech.  However, this structure did not match the reality 
that stories were multi-step activities, that the Reading 
Tutor often inserted a teaching activity before a story 
and/or a review afterwards, and that the Reading Tutor 
architecture treated each session as a uniform tree 
structure of such steps.  Such a step tree would be easy to 
represent recursively in the schema, but would omit bona 
fide distinctions among stories, sentences, and utterances.  
To reconcile these two models, we decided to encode 
both in parallel, relating them by linking each sentence 
encounter to the step during which it occurred. 

We used separate tables to represent mouse clicks, 
graphical actions, and Reading Tutor audio output 
because they had different fields.  However, it is not very 
useful to view them separately, so we generated merged 
tables that combined them into a unified sequential view. 

We did not model the Reading Tutor’s decision 
processes, only its interactions with students.  We decided 
to model feedback as occurring either before the student 
began to read the sentence, after the Reading Tutor 
detected a mistake, as backchanneling (active listening 
such as “uh huh”), or as praise.   

3.2. Populating the database 

To populate the database, a perl script parsed through 
individual log files in a single forward pass.   

When the parser generated a record, it called a filer 
function to handle the communication with the database 
and create the necessary records in dependent tables, such 
as Sentence for a sentence encounter record.  The filer 
returned an internal id from the database so that future 
related records, such as audio output within a sentence 
encounter, could refer to it. 

For example, this line marked the start of a sentence 
encounter with the text “Dividing By 11”: 
15023, Notice, "Tue Apr 10 12:27:13.648 

2001", 7776000, 
"CParagraph::SetSentence", "Dividing By 
11" 

Accordingly, the script created a Sentence Encounter 
record with 12:27:13.648 as its start time, “Dividing By 
11” as its text, and (based on state maintained from 
parsing previous lines) the internal (database) ids of the 
launch, session, story encounter, and step.  740 lines later, 

the script found a “coach_goes_forward” event, which 
enabled it to fill in the end time of the Sentence 
Encounter as 12:28:35.386. 

Similarly, the parser started an Utterance record when 
it encountered a “user_begins_turn” event, and completed 
the record when it encountered a pair of lines in the log 
showing that an utterance ended and was captured.   

3.3. Multi-level log viewer implementation 

Given the database, the viewer was straightforward to 
implement.  We used MySQL Database-Server to serve 
the database, perl DBI packages to interface to the 
database, perl and CGI scripts to generate the views, and 
Apache Web-Server to serve the views.  All of these 
packages are free to download.  To save time, we adopted 
a uniform tabular style rather than craft more specialized, 
aesthetic views, as we would if they were intended for 
teachers and not just ourselves. 

A link to a view is encoded as a call to the script that 
generates that view.  For example, clicking the link 
http://logviewer.cmu.edu:9876/cgibin/storyList.pl?session
_id=8562 calls the script storyList.pl to list the story 
encounters for session number 8562.  The script executes 
a database query to retrieve them: 
select story.story_id, title, level, 
  file_path, story_encounter_id,         
  start_time, end_time, type_desc,    
  student_level, byte_offset,  
  event_number, initiative, sms, ems 
from type_description, story,  
  story_encounter    
where story_encounter.story_id =  
    story.story_id and 
  story_encounter.session_id =         
    $sessionid and 
  type_description.type_id =    
    story_encounter.exit_through 
order by start_time, sms 
 
The script outputs an HTML table with a row for each 

record returned, embedding any links to other views. 

3.4. Views:  what the browser shows 

In general, the log viewer generates a view as a list of 
records in an HTML table, with one row per value, and 
column headers at the top.  One or more fields in each 
row may contain clickable links to more detailed views.  
To protect student anonymity, we restrict access and omit 
or alter names in our examples. 

The highest-level view lists the (three in this database) 
values of School, with columns for school name, location, 
number of Reading Tutors, and number of students.  
Clicking on a school name brings up a table of Reading 
Tutors at that school, with columns for machine name, 
description, and number of launches.  Clicking on a 
machine name brings up a chronologically ordered table 



with one row for each launch of the Reading Tutor on that 
machine. Each row includes the date and time of the 
launch, which version of the Reading Tutor was launched, 
the number of sessions during that launch, and a link to 
the log file for the launch.  Clicking on a session count 
links to the list of sessions, and so on.   

Clicking on a session’s story count, step count, or 
student name brings up a table of stories read, session 
steps, or student information, respectively.  For example, 
Figure 2 lists the stories read in one session.  Each row 
shows the story encounter’s start time, number of 
sentences read, number of sentences in the story, title, and 
how the encounter ended.  Information about time spent 
on the story, reader level, story level, and who picked the 
story has been omitted here to save space.   

This example revealed two problems.  A bug in the 
populating script inflated the number of sentences in the 
story by including previews and reviews.  Second, the 
“select_response” value for how the last story encounter 
ended indicates that the log was missing expected 
information.  As these examples illustrate, a database 
populated from log files not designed for that purpose can 
be informative, but buggy or incomplete. 

Start 
Time 

NumSent 
Encount 

NumSe
ntences 

Title 
Exit 

Throug
h 

04-05-2001 
12:24:25 

6 40 

How to Make 
Cookies by 

Emily 
Mostow. 

end_of_
activity 

04-05-2001 
12:28:14 

14 56 One, two, 
end_of_
activity 

04-05-2001 
12:31:34 

5 112 
Pretty Mouse 

by Maud 
Keary 

select_re
sponse 

Figure 2:  Table of activies for a session 
 
Following the sentence encounters link in the first 

story listed, “How to Make Cookies by Emily Mostow,” 
brings up Figure 3.  The first two records come from 
preview activities that introduced the words “oven” and 
“batter,” which the student was encountering for the first 
time in the Reading Tutor. The fifth record shows that the 
sentence “Then put it in the oven” took 33 seconds, with 
2 utterances and 3 other actions, totaling 5 – few enough 
to list here, which is why we chose this example.  

Figure 4 shows what happened during this encounter.  
First the Reading Tutor decided to give some preemptive 
assistance, though exactly what is not specified.  9 
seconds later it prompted the student by saying “to get 
help click, on a word.”  The two utterances turned out to 
consist of the words “then put,” followed by off-task 

speech.  Finally the student clicked the Go button to go on 
to the next sentence. 

Start 
Time Duration 

Num 
Actio

ns 

Num 
Utter
ances 

SentenceStr 

04-05-2001 
12:24:25 

00:00:01 3 0 OVEN 

04-05-2001 
12:24:27 

00:00:01 3 0 BATTER 

04-05-2001 
12:24:28 

00:00:44 47 4 
First get the 

batter 

04-05-2001 
12:25:12 

00:00:24 20 4 
Next put all the 
ingredients in 

04-05-2001 
12:25:37 

00:00:33 3 2 
Then put it in 

the oven 

04-05-2001 
12:26:11 

00:00:40 3 3 Last eat them 

Figure 3:  Table of sentence encounters for the 
story “How to Make Cookies by Emily Mostow” 

Besides starting at the list of schools and browsing 
downward to more detailed views, we wanted to view 
specific entities found by queries.  We therefore provided 
a more direct form of access by inputting the entity’s 
database id. The same integer represents different ids in 
different tables, so the user must also select the type of 
table – of schools, Reading Tutors, launches, sessions, 
story encounters, sentence encounters, or utterances. 

Start Time End Time Action Description 

04-05-2001 
12:25:38 

00-00-0000 
00:00:00.0 

Abstract 
Response 

preemptive 
help 

04-05-2001 
12:25:47 

00-00-0000 
00:00:00.-1 

Audio NONE 

04-05-2001 
12:25:48 

04-05-2001 
12:26:00 

Utterance NONE 

04-05-2001 
12:26:01 

04-05-2001 
12:26:11 

Utterance NONE 

04-05-2001 
12:26:11 

00-00-0000 
00:00:00.-1 

Click 
user_goes_fo

rward 

Figure 4:  Table of actions and utterances for the 
sentence encounter “Then put it in the oven” 

4. Answering questions with the database 

We are using the database both to replicate previous 
studies [5] and to answer new research questions [6], 
thanks to the (relative) ease of constructing queries and 



validating their correctness.  For statistical analysis we 
use SPSS’s ability to import from the database and our 
SQL client (urSQL)’s ability to export results into Excel.   

4.1. Constructing queries 

To answer a research question, we formulate it as an 
SQL query.  As a simple example, were students likelier 
to back out of a story if the Reading Tutor chose it than if 
they did?  This query counts how often students backed 
out of stories, disaggregated by who chose:      
select se.initiative, count(*)  

from student_click sc, story_encounter se, 
sentence_encounter sen 

where 
 sc.start_time = se.end_time and    
 sc.type_id=8 and 
sc.sentence_encounter_id =     
  sen.sentence_encounter_id and 

 sen.story_encounter_id =  
   se.story_encounter_id  
group by se.initiative 

 
The basic logic (in the where condition) is to find 

story encounters that ended when the student clicked 
Back (click type 8) out of a sentence and this click occurs 
at the same time a story ended.  One problem could arise 
if a student clicked back at the same time someone else 
finished a story on a different computer.  This case should 
not count as backing out of a story. To avoid this 
miscount, the where clause also specifies that the click 
must occur in a particular sentence in the story that ends 
at the same time as the click.  The first line specifies what 
data to collect – the initiative (who chose the story) and 
how many items met the condition. 

The query results in Table 1 (based on about 400 
students) support a Yes answer to the research question:  
the Reading Tutor chose the story in 2457 cases where the 
student backed out, the student chose in 703, and who 
chose was not specified in 140 cases.  Null values may be 
deliberate for introductory tutorial “stories” presented 
automatically to newly enrolled students, or may be 
caused by bugs in generating or parsing the logs. They 
seem inevitable in a large database, but if rare enough do 
not prevent analysis, as this example illustrates. 

Table 1:  Results of query to determine when 
students backed out of stories 

Item Initiative count(*) 
1 (null) 140 
2 student_initiative 703 
3 tutor_initiative 2457 

4.2. Using the viewer to debug queries 

Queries are excellent tools for generating summary 
results, but are less powerful for examining individual 
cases.  Queries therefore complement the browser, whose 
strength is its ability to display individual cases.  For 

example, to analyze how much time students spent 
waiting for the Reading Tutor to respond, we developed a 
query to compute the delay from the last word a student 
says in a sentence to the first word s/he says in the next 
sentence.  This query is 75 lines long because it requires 
several steps:  finding the last word of a sentence and the 
time it was uttered, finding the time the student uttered 
the first word of the next sentence, ensuring that both 
sentences are in the same story, etc.  After debugging 
each step, we ran the full query.  By sorting the resulting 
delays, we found some too long to be believable. The 
table of results identified the story encounters where they 
occurred. By using the viewer to browse these story 
encounters, we found the bug:  between some sentence 
encounters were activities where students were supposed 
to write, which the query erroneously included as part of 
the delay.  It is important to note that it is not necessary to 
create a new view for each research question.  For 
example, the view shown in Figure 3 was used to find the 
flaws in the query to compute how long students were 
waiting.  However, this view was designed before we 
knew that we would be conducting this analysis, and 
could be used to verify other queries.   

An additional benefit of the log viewer is that by 
presenting student-computer interactions in a more 
understandable form, it helps people with incomplete 
knowledge of the project to take part in data analysis.  
Our project had a near perfect split between those people 
who understood how the Reading Tutor worked and those 
people who could write SQL queries.  The viewer 
allowed those unfamiliar with the tutor to perform sanity 
checks on their queries (as in the case of student writing 
activities, mentioned above).  People who were less 
familiar with SQL used the viewer to examine unlikely 
query results and to find glitches in the database.  This 
dichotomy of project members’ knowledge is not unique 
to Project LISTEN; finding some means to work around 
this gap is very helpful.     

4.3. Benefits of using a database 

One benefit of using the database is the ease of 
extracting summary information.  We have had project 
meetings where questions were raised and immediately 
addressed by a quickly written query (e.g. “How many 
times did the Reading Tutor provide each type of help?”).  
Although is it slower to get detailed information about 
each student, rather than a summary, from the database, it 
is comparable to or better than the prior technique of 
using perl scripts.  The comparison of SQL vs. perl is not 
quite a fair one, as the difference in ease of use has less to 
do with the languages than with the data each of them 
processes.  SQL queries manipulate a structured database 
that we took time to set up, while the perl scripts had to 
work with low-level log files.  To create the database, we 



had to debug a set of perl scripts.  This task was time 
intensive, but only had to be done once.  Its constant cost 
is amortized over all of the analyses performed.  So for 
investigating a small set of research questions a database 
might not be worth the cost of setting up, but for more 
open-ended investigations it is.    

5. Conclusions 

We have described a database approach to view and 
analyze multimodal tutorial dialogue, and how we applied 
it to Reading Tutor data.  We now summarize its caveats, 
then its benefits. 

It was hard to develop a good schema and useful 
views, especially for pre-existing logs that lack some 
desired information, at least in easy-to-extract form.  We 
now make the Reading Tutor generate the database 
records in real time.  Deriving a schema ahead of time is 
simpler in some ways, but could result in critical 
information being lost if the schema is poorly designed.       

The database must be robust to tutor crashes and bugs.  
For example, when a crash ends a log prematurely, the 
end time of events in progress must be filled in.  Parsing 
the logs exposed some Reading Tutor bugs, such as 
assigning the same filename to two utterances, which 
must not be allowed to corrupt the database. 

Populating the database took weeks for our data, with 
2.4 million word encounters.  In the 2000-2001 school 
year, 33 Reading Tutors each recorded hundreds of logs, 
typically tens of megabytes long, with thousands of 
utterance files.  To avoid duplicating data, a long 
populating process must be robust to stops and restarts.  

Although the database takes long to design and 
construct, it pays off in queries much shorter than perl 
scripts, because they are expressed more declaratively.  
Database technology absorbs much of the complexity of 
searching and assembling data. When necessary, we 
speed up queries by adding appropriate indices, but that 
type of optimization is easier and less bug-prone than 
rewriting conventional procedures to speed them up. 

Views package specific queries in an understandable 
form, easier to use than querying the database directly – 
especially for views that integrate multiple tables, and for 
users more fluent at clicking on links than at formulating 
SQL queries.  It is hard to design views both concise and 
detailed enough to be useful.  Views should summarize 
lower-level details in informative aggregate form, for 
example, durations and counts of utterances and actions 
in a sentence encounter. Queries make such aggregation 
easier, less bug-prone, and more flexible than in 
procedural tutor code. 

We use queries both to answer statistical questions by 
aggregating over lots of data, and to find examples of 
particular phenomena, such as outlier values.  We use the 
viewer to inspect such examples in detail, finding bugs or 

unexpected cases that refine the question.  Finally, simply 
browsing our data at multiple levels often exposes 
interesting phenomena. 
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