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Abstract—Collaborative filtering is a widely-used technique
in online services to enhance the accuracy of a recommender
system. This technique, however, comes at the cost of users
having to reveal their preferences, which has undesirable privacy
implications. We propose a collaborative filtering system where
the system does not observe the users’ data and is still able to
provide useful recommendations. Compared to prior systems, our
emphasis is on building a practical system that can be reasonably
used by a large number of users. Qur approach involves creating
a primitive to cluster similar users privately by modifying existing
methods such as Locality Sensitive Hashing. Another technique
we use is artificial ratings, as part of the process of privately
predicting the rating for an item within a particular cluster. We
evaluate our scheme on the Netflix Prize dataset, reporting the
accuracy of our recommendations as a function of the privacy
provided.

I. INTRODUCTION

Recommender systems based on collaborative filtering [1]
are widely used in online services to boost revenue and the
user experience. However, the advantages of collaborative
filtering are tempered by the potential cost to user privacy. As
an example of the potential issues, in 2006 Netflix publicly
released a dataset containing the movie ratings of more than
480,000 anonymized customers as part of the Netflix Prize
contest [2]. The anonymization was broken by Narayanan and
Shmatikov [3], prompting an FTC investigation and the lawsuit
Doe v. Netflix [4] which alleges that the publication of the
dataset potentially allows inference of sexual orientation. The
lawsuit also notes that movie rental history may reveal per-
sonal issues such as domestic violence, adultery, alcoholism,
or substance abuse. Because of such privacy concerns, Netflix
cancelled the planned second stage of their contest [5].

In this paper we investigate whether one can obtain the
advantages of collaborative filtering and yet protect end-
user privacy. To this end, we argue that the most interesting
architecture is that of a user connecting to an untrusted recom-
mendation server. This is not only because a trusted server may
compromise privacy by release of inadequately anonymized
data as in the case of Netflix contest, but also because data may
be released through compromised servers, unauthorized break-
ins, and government subpoenas. User privacy is maximized
when there is no need to trust the server with the data.

Previous work in this area has proposed algorithms that
have been either impractical on large-scale data (e.g., [6]),
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focused on weaker privacy models (e.g., [7], [8]), or re-
quired additional network privacy infrastructure (e.g., [9]).
We propose an exceedingly practical and scalable privacy-
preserving collaborative filtering framework which consists of
a combination of user-side clustering and adding noise. Our
framework requires no additional network infrastructure or
trusted third-party.

As a running example, we describe our proposed algorithms
using the Netflix dataset. We recognize that our algorithms
may be of limited practical use with a company like Netflix:
through its control of distribution and billing, Netflix knows
the movies a user rents even without the ratings. As we
describe later, the set of movies rated is the main privacy
worry; the ratings themselves are secondary. Our system would
be more useful for a pure recommendation site, say for news,
products, or websites.

For our purposes though, the Netflix dataset offers a con-
venient way to demonstrate the prediction accuracy of our
algorithms and compare with other (non-private) algorithms.
The well-studied Netflix dataset has become the gold standard
for recommendation datasets, with a well-defined measure of
prediction accuracy: the root mean squared error (RMSE). We
cannot expect comparable RMSE values in our case where
the server does not have the actual data, but we are able to
achieve RMSE values that are better than baseline algorithms
in the non-private case. As far as we know, we are the first
to test the recommendation accuracy of our algorithms on the
Netflix dataset in the untrusted server case ([7] has a weaker
privacy model of a trusted server but also tests against the
Netflix dataset).

Our basic algorithm involves a clustering step and a rec-
ommendation step. The clustering step by itself may be
interesting, as in some applications simply clustering users
may be useful for, say, purposes of market segmentation.

Clustering Step: The server distributes a data-independent
hashing algorithm to the set of users. The hashing function is
fixed and public and operates on the space of movie ratings.
The user computes on his private machine the hash value for
his movie ratings and uploads the hash value to the server.
The server partitions the set of users into buckets of similar
users, where two users are in the same bucket if their hash
value matches.

Recommendation Step: The user adds noise to his ratings
vector and uploads this noisy ratings vector. The noise is in



the form of additional movies that are artificially rated. For a
given user and given movie, the predicted rating is the average
rating for that movie over the set of users similar to that user.
The average is calculated from the noisy ratings vectors.

A. Privacy Properties

We postulate that in the case of an extremely sparse dataset,
such as the Netflix dataset where 99% of possible ratings are
missing, the main source of privacy concern is revealing the set
of movies actually rated. The fact that a user has seen a given
movie is more sensitive than the fact that the user has not seen
a movie. The ratings themselves are also less important. This
is because with these sparse datasets, the normal condition is
for a user not to have rated an item and thus revealing this
fact is generally not privacy-sensitive.

The privacy properties of our system are data-dependent,
and we do not offer a rigorous description and proof of any
privacy guarantees for our system. Instead, we describe an
informal privacy goal and offer empirical evidence that our
goal is satisfied with the Netflix dataset. Our informal privacy
goal is that for any given movie, a server without auxiliary
data about the user cannot reasonably (i.e., probabilistically)
infer that the user has rated the movie. Note that this goal is
less important for very popular movies, as a large proportion
of users may have rated the movie. For simplicity, we focus
our arguments in the paper to the case of any single movie,
although in practice the arguments will hold for any small set
of movies.

B. Contributions

The main contribution of this work is to design a practical
solution to collaborative filtering where the users do not trust
the server with their recommendation data. This suggests
the use of homomorphic encryption and other state-of-the-art
cryptographic protocols. We have, however, avoided the use of
such methods in our basic algorithm, as current cryptographic
techniques are still not practical in terms of computational cost
for large datasets.

In particular, we have concentrated our experimentation on
the Netflix dataset, which are the movie ratings of 480,189
users for 17,770 movies. We present accuracy results for
our algorithm on this well-studied dataset. An algorithm for
collaborative filtering which preserves user privacy is not very
useful if it does not achieve at least some level of accuracy.
The RMSE of our algorithm can be as low as 0.9883 and go
up to 1.0380, depending on the number of fake ratings added,
while in the non-private case, a simple baseline algorithm of
averaging the ratings from all users has an RMSE of around
1.0540.

We analyze the privacy of our algorithms using existing
notions such as ¢-diversity [10]. One step in our algorithms is
the use of a data-independent hashing function, and the use of
such functions is well-known in the context of collaborative
filtering. To the best of our knowledge, however, we are the
first to analyze its privacy properties. We empirically show that

our privacy notion is satisfied due to the sufficient diversity
present in the Netflix dataset.

Finally, we present a novel data-independent hashing algo-
rithm that is inspired by the Locality-Sensitive Hash (LSH)
construction for cosine distance proposed by Charikar [11].
Our algorithm eliminates much of the random nature of LSH
functions and promotes more uniform clusters. In practice, our
algorithm gives us slightly better accuracy than LSH with at
least equivalent privacy.

II. BACKGROUND AND NOTATION
A. Collaborative Filtering Algorithms

We review some of the concepts for collaborative filtering
(CF); see [12] for a detailed survey. Formally, we consider a
set of n users and a set of m items, such as movies, rated on
a scale of, say, 1 to 5. Each user provides ratings for a subset
of the items. Hence, the entire recommendation data consists
of a user-by-item matrix of ratings. The aim of a collaborative
filtering algorithm is to predict the ratings for the items which
have not been rated. For notational simplicity, we denote the
ratings by  and users by suffixes u, v, . . . and items by suffixes
1,7, .... We denote the rating of user v for an item ¢ by 7, ;,
the set of all ratings of user u by r, and the set of all ratings
for an item ¢ by 7;.

We focus on CF algorithms that focus on computing user-
wise similarities, as in our privacy setting we require each
user to have access to only their own ratings. We review some
of the standard steps of collaborative filtering using user-wise
similarities below.

1) Standardizing Ratings. Since users may rate items
higher or lower on average compared to other users,
we require the users to standardize their ratings by
subtracting the mean. A user u with ratings r, =
{ru,.-sTum} with the mean rating 7,, computes
the standardized ratings {7y 1,...,7um}. = {ru1 —
T v vy Puym — Tu b

2) Grouping Similar Users. We identify similar users by
computing the distance over the standardized data for
all user pairs. Commonly used distance metrics include
cosine and Euclidean distance. For a given user, we
can select the users with top-k distance scores, i.e. the
k-nearest neighbors into one group. Another popular
strategy is to identify approximate nearest neighbors by
using Locality Sensitive Hashing which can be carried
out in linear time and yet achieve comparable accuracy.

3) Making Predictions. Once the users are grouped to-
gether, we obtain the predicted rating for a particular
user and particular item by computing the average
standardized rating for that item given by the other users
in the same group as the given user, and adding it to the
average rating for that user. Hence, the predicted rating
of an item ¢ for a user u belonging to a group S is given
by
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where S; is the subset of users in .S who have provided
a rating for the item ¢. If using k-nearest neighbors, we
can compute the average of the ratings in the group,
weighted by the distance.

B. Locality Sensitive Hashing

We briefly review Locality Sensitive Hashing (LSH) below.
While we do not directly use LSH in our collaborative filtering
algorithm, our clustering algorithm was inspired by LSH and
has similar properties.

A family of LSH [13] functions is defined for a particular
distance metric such as cosine or Euclidean distances. A hash
function from this family has the property that data points
close to each other as defined by the distance metric fall into
the same bucket with high probability compared to distant data
points.

We consider the LSH family defined over cosine distances.
Charikar [11] proposed the following construction for the LSH
family defined over cosine distance. By picking each compo-
nent of an n-dimensional random vector r; independently from
N(0,1), the hash function L;(q) for a vector ¢ is equal to 1
if ;- ¢ > 0 and 0 otherwise.

As using a single random hyperplane does not group the
data points into fine-grained clusters, we use a set of k¥ LSH
functions and the final hash value is obtained by concatenating
their output. This k-bit LSH function L[z] = L1 (z) - - - Ly (z)
maps an n-dimensional vector into a k-bit string.

III. OPERATIONAL MODEL

We assume that the users have access to only their individual
ratings which are stored locally on their computing device.
We assume that all users can communicate with an untrusted
server over a secure channel, but do not need to communicate
with each other. The latter condition is important to allow the
system to scale to a large number of users.

We assume that the users and server are semi-honest, i.e.,
they perform all the operations of the protocol faithfully,
but try to extract as much information as possible from the
intermediate results. The main assumption of this paper is
that the users do not trust the server with their ratings: the
unobscured ratings belonging to an individual user are never
revealed to the server or other users.

While maintaining the semi-honest assumptions mentioned
above, another source of vulnerability to the system is from
the server colluding with some users directly or by creating
fake users. As one of the steps in collaborative filtering is to
group similar users together, the server can potentially know
the ratings of multiple colluding users similar to a genuine
user, and can use this to gain information about the ratings of
the genuine user. In Section V, we analyze the loss of privacy,
and find that it is minimal for the Netflix dataset.

IV. SYSTEM DESIGN

Our system follows the general scheme of collaborative
filtering algorithms described in Section II-A where there are
two main steps: clustering similar users and computing average

ratings. In this section we present the design of our system,
along with a discussion of how user privacy is preserved at
each step.

A. Clustering via Hash Function Evaluation

As a first approximation to our hash function, we use a set
of k hash functions chosen from the LSH function family for
cosine similarity proposed by Charikar [11] (see Section II-B).
In essence, we choose k random vectors, and split the entire
space by the hyperplanes defined by these vectors. If k = 8,
we split the space of ratings into 256 “cones”, and users in the
same cone have the same hash value and thus are considered
similar.

First, we remark that we cannot directly use an LSH scheme.
The random nature of the scheme can be a potential problem
for privacy. If one of the random vectors has a large component
in the direction of a particular movie, the hash value reveals
the user’s preference for that movie. The server can also use
this to its advantage by choosing such vectors to represent
the LSH function. We therefore modify the usual LSH hash
function scheme by ensuring our k& random vectors do not have
this property.

Secondly, if we assume a uniform distribution of user
ratings, it seems reasonable to use equal-sized cones, rather
than those of disparate sizes. This can be achieved by choosing
the k£ vectors to be orthogonal. In practice, as compared to
LSH, this strategy of choosing orthogonal vectors makes a
small but measurable difference in the variance of the cluster
sizes (decreased by 2%) and also increased slightly our overall
accuracy (see Section VI).

Our hash function is thus constructed as follows. We
generate k random vectors and apply the Gram-Schmidt
process [14] to ensure that each vector is orthogonal. After
normalizing to unit length, we also check that there is no
component of any vector larger than, say, 0.03. In the unlikely
event that some component is larger than 0.03, we simply
replace it with another vector. We experimented with several
values of k for the Netflix dataset, and & = 8 gave us
reasonable accuracy and at the same time provided good
privacy (see Section V). Note that there could potentially be
a set of k£ vectors that result in higher accuracy on the Netflix
data than our set of k vectors. In practice, these could be found
by extensive experimentation, but in an instantiated system, the
server would not be able to perform these experiments while
preserving user privacy. As we require a data independent
scheme to identify similar users, we choose random orthogonal
vectors while satisfying the constraints mentioned above.

We first describe the clustering algorithm. We describe the
averaging step in Section IV-B. The mechanism used in our
system only involves a simple two-step interaction between
users and the server as illustrated in Figure 1. It incurs
little additional communication and computation overhead
compared to current collaborative filtering systems.
Initialization:

1) Server generates a set of k random orthogonal vectors as
described above. This defines the hash function L[] to
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Fig. 1: Clustering algorithm. The server generates the hash
function and pushes it down to all users. The users each
compute a hash value, which are sent back to the server and
used to cluster the users.

be used for the clustering. Each of the k vectors defines
a bit in the hash value as in Section II-B. The hash
function is considered public.

2) Server transfers the hash function L[] to all users.

3) Users compute their standardized ratings 7, as described
in Step 1 of Section II-A.

Applying hash function:

1) All users apply the hash function L[] to their standard-
ized ratings 7, to get the hash value L[#,], a k-bit binary
vector. All users upload their hash value to the server.

2) The server clusters users by hash value.

Remark. The server is assumed to be able to observe the hash
values provided by all users (see Section III). We therefore do
not need to protect the hash values in the open system and
rely on the diversity within our clusters to support our privacy
requirements (see Section V).

Performance. With the Netflix data set of 17,770 movies and
k = 8, the hash function consists of 8 vectors each with 17770-
dimensions, comprising about 1.08 MB in total. The hash
value to be transmitted to the server is just one byte. The
evaluation of L[] over the individual user’s ratings is a simple
matrix-vector multiplication requiring only a few milliseconds.

B. Averaging Step via Obfuscated Ratings Vector

As discussed in Section II-A, the server needs to compute
the average rating of all the users in the same hash bucket,
without observing the ratings. This is a well-established exam-
ple of a secure multiparty computation problem, and various
protocols (e.g., [15]), have been developed using cryptographic
techniques such as homomorphic encryption. However, most
of these techniques are computationally impractical or require
a trusted party.

We instead propose having users send obfuscated ratings
(not standardized) to the server, which can then compute
the average rating over the obfuscated ratings. Perturbing
ratings for preserving privacy is a standard approach (see, for
instance, [16]), but there are concerns about the degree of
privacy offered [17], [18]. Thus, compared to a cryptographic
approach this method has the drawback of a potential degrada-
tion in both accuracy and privacy. However, the advantage is a

much more efficient system. There are many potential schemes
for obfuscating the ratings, and we present just one simple
technique; better techniques in terms of privacy and accuracy
are certainly possible. We analyze the loss in accuracy and
privacy of our simple technique in Section V. In particular,
we quantify the loss of accuracy in Figure 3 and show that
reasonable accuracy is still attainable.

In our technique, the obfuscation is in the form of adding
some fake ratings to randomly selected movies. The ratio of
the number of fake ratings over true ratings is a parameter
of the system, and is chosen based on a privacy-utility trade-
off. A higher ratio increases the user’s privacy via plausible
deniability. Namely, for any given movie, the server can only
conclude that the movie has been watched by the user with
probability N/(N + M), where N movies are actually rated
by the user and M movies are artificially rated, and N +
M < total # of movies. This analysis does not take movie
popularity into account, but see Section IV-C below. We also
require N + M to be at least 80, as we need to ensure that the
set of rated movies returned to the server belongs to a space of
size at least 280, which is impractical to iterate over. Note that
for small N, the server does not know the value of N. Each
subset of the rated movies may constitute the set of actual
rated movies, so if N 4+ M is small, the server can compute
the hash value of every subset to see if the hash value matches
the user’s actual hash value. In the extreme case, there may be
only one match, in which case the server knows with certainty
the set of actual rated movies. If N 4+ M is large, then even
if the server finds some subsets that match the user’s hash
value, the server cannot iterate through all subsets and hence
cannot analyze these subsets for common properties (such as
common movies).

Experimentally, we tried adding fake ratings in two different
ways on the Netflix dataset. The first way is to simply
choose ratings uniformly over {1,...,5}. The second way
roughly preserves the user’s own average rating. The user’s
true average 7, is calculated, and the ratings are drawn from
N (74, 1), rounding to the nearest rating in {1,...,5}. As
expected (see Figure 3), the second way leads to more accurate
recommendations.

When we add the same number of fake ratings as real, we
expect an approximate doubling of the number of ratings in a
cluster to average over for any particular movie, with half the
ratings being fake. The accuracy is still found to be reasonable
as there is an averaging out effect for the fake movies.

Finally, we note that in operation a user may change some
of his ratings over time. There is negligible performance cost
to calculating a new hash value and noisy ratings vector.
However, knowledge of both the old values and new values
may be revealing. We make two suggestions here: (1) fake
ratings should be maintained as much as possible (else a movie
going from rated to not seen would indicate it was most likely
a fake, since a user deleting an actual rating is rare), and (2)
uploading should be in batch (e.g., after at least a few ratings
changes), to minimize possibilities of analyzing what changes
might move a ratings vector moving from one hash value to



another.

C. Alternatives

We considered data perturbation as a primitive for data
obfuscation, i.e., perturbing all user’s ratings, including the
0 rating. This approach would offer differentially private [19]
guarantees and has a minimal computational overhead. How-
ever, the sparsity of datasets such as the Netflix dataset argues
against this approach, since the noise that must be added would
quickly outweigh the signal from the actual ratings.

We also considered perturbing the actual ratings in addition
to adding artificial ratings to further protect the user, but
the gain in privacy would be small, as the user is more
concerned with protecting the set of rated movies more than
the individual ratings as we have reasoned in Section I-A.

An obfuscation method worth consideration is to randomly
set a fraction of rated movies to the O rating, i.e., consider them
as not rated. This introduces plausible deniability for movies
not rated and in some applications it may be important for the
server to have some uncertainty as to whether a movie has in
fact not been seen. In our obfuscation algorithm, the server
knows with certainty that the user has not seen certain items.

We could also take into account movie popularity when
adding fake ratings. This would give the user a higher degree
of plausible deniability for popular movies (see Section V-B).
However, the system would become more complex, as users
would need to be able to gauge movie popularity.

Another possibility is to calculate our hash on the obfus-
cated ratings rather than the true ratings. In this approach, the
architecture is simpler as the server could actually perform the
hash calculation. However, accuracy suffers. For instance, we
tried this approach with M/ = NN and the accuracy was 1.0452.

Finally, we consider an environment where some subset
of users are less privacy-sensitive and willing to reveal their
actual ratings. For some applications, this seems a reasonable
assumption, as for instance seen by the number of movie
reviews posted in IMDB and product reviews on Amazon.
If these users are numerous enough, we do not need the
obfuscated ratings vector from users who are more privacy-
sensitive, as we can simply average the ratings from the less
privacy-sensitive users.

V. PRIVACY ANALYSIS

Our basic scheme involves a clustering step and a rec-
ommendation step. We consider the potential loss of privacy
from each of these below. Again, we focus on intuitive and
empirical evidence rather than a rigorous description and proof
of privacy properties.

A. Privacy Loss from Clustering Step

We consider how much information is revealed from knowl-
edge of a user’s hash value. Clearly, this question is data-
dependent. For instance, there is a loss of privacy if the
individuals mapped to the same hash bucket have similar
ratings, allowing inferences about one user’s ratings by another
user in that hash bucket.

We can state our privacy notion by adopting the language
of ¢-diversity [10]. We require that for any cluster and any
particular movie, the ratio of the number of people who have
seen the movie divided by the number who have not seen the
movie is bounded by c:

#people who have seen < c¢(#people who have not seen).

In the language of (-diversity, each hash bucket is (c,2)-
diverse for each movie attribute, with possible values “seen”
or “unseen.” (The “2” means the number of possible values
of the attribute.) The seen value is considered sensitive. The
unseen value is not considered sensitive, and hence we do not
need to bound the reciprocal of the ratio. Hence, a user hashed
to any particular bucket can deny having seen any particular
movie where ¢ measures the plausibility of this denial.

c values in one bucket
Maximum c values by bucket

300 -

(a) Typical bucket’s c values. The
histogram is truncated for clarity;
there are over 17000 values in the
range 0.0 and 0.1.

(b) Histogram of maximum c val-
ues. There are 256 values, one for
each bucket. Each value is the max-
imum c in the bucket.

Fig. 2: Diversity of ¢ values

Figure 2a shows the distribution of 17770 c values for a
typical bucket. The vast majority (over 17000) of ¢ values are
near 0, with a handful of movies having c values over 1. Note
that the ¢ value encapsulates external information about the
movie, such as popularity.

Figure 2b shows the distribution of the 256 maximum c
values in each bucket over all movies. In general, most buckets
have a maximum c value of less than 1. The bucket with largest
c value has a maximum of about 1.8. Hence, in the worst case
(over all movies and all buckets), about 1/3 of the users in
the bucket have not seen the movie.

Finally, we remark that there is inherent tension between
privacy vs. accuracy in a clustering-based collaborative fil-
tering algorithm. Homogeneous buckets correspond to high
accuracy, and heterogeneous buckets to high privacy, since
revealing which users are similar is necessary to make the
recommendation. We expect users with the same hash to be
somewhat similar, else the recommendations would be no good
at all. On the other hand, if users with the same hash are too
similar, knowledge of the hash value can be privacy invasive.
Our experiments show a high degree of heterogeneity for our
buckets in the attributes important for privacy; in Section VI
we also show reasonable accuracy.



B. Privacy Loss from Recommendation Step

We consider how much is revealed by our simple obfusca-
tion of the ratings vector. For concreteness, we describe the
case of N movies actually rated by the user and M movies
artificially rated, where N + M < number of total movies.
If the server sees a 0, then the server can conclude that the
user didn’t see the movie. If the server sees an actual rating,
then the server can guess that the user saw the movie with
probability about N/(N + M). Here we do not take into
consideration movie popularity, where it may be more likely
that one movie has been seen than another.

In general, one must consider a server having the obfuscated
ratings vector for an entire hash bucket of users. First, we
observe that for popular movies, our scheme does not prevent
inference that the user has rated the movie. Consider a proto-
typical attack. The server observes obfuscated rating vectors
from a cluster. Each movie will have a varying number of
ratings, and since fake ratings are assigned to random movies,
the number of fake ratings will be about the same for each
movie. Popular movies will have a large number of ratings,
relative to the number of fake ratings. Any rating of a popular
movie will hence most likely be an actual rating.

To continue this analysis, this attack is not possible for
movies where the number of actual ratings is comparable to
the number of fake ratings within a cluster. In the case the
number of fake ratings added is the same as the number of
actual ratings, this will be true for movies with a small value
of ¢, say ¢ < 0.1. For a sample data point, in the histogram
of Figure 2a, there are 706 movies out of the total 17770
with ¢ > 0.1. For these relatively popular movies, there is a
high probability that a user has seen the movie if it appears in
his rated set. For most movies, however, the number of ratings
received is comparable to the number of expected fake ratings,
and so no inference can be made. In Section IV-C, we mention
the possibility of adjusting the fake ratings for popularity, at
a cost of a more complex system.

VI. ACCURACY

The recommendation accuracy for the Netflix Prize is mea-
sured by the root mean squared error (RMSE). For instance,
the Netflix prize winner had an RMSE of 0.8572 while the
original Netflix algorithm Cinematch had an RMSE of 0.9525.
The relatively simple baseline algorithm of averaging the
rating from all users has an RMSE of around 1.0540 (see [20]).
In our case we cannot expect comparable RMSE values since
the server does not have the actual data. Our algorithms have
RMSE values starting from 0.9883.

Table I shows the accuracy of the clustering step of our pro-
posed algorithm compared with a baseline privacy-preserving
algorithm and an algorithm where the usual LSH random
vectors are used. Our hash function does slightly better than
the LSH scheme, and both do much better than the baseline
algorithm. The baseline privacy-preserving algorithm is simply
to predict the user’s mean rating; this does not need to interact
with the server and is of course privacy-preserving.

To compute our accuracy figures, we assume here that the
server can take the clusters output by the algorithms and, by
some privacy-preserving process, generate predicted ratings by
averaging the ratings of users in the cluster who have seen the
movie. In practice, getting this average rating will reduce the
accuracy. For example, we may get only a noisy average after
adding fake ratings to the original ratings.

Algorithm RMSE
User means 1.1325
LSH 0.9932
Proposed Hash 0.9883

TABLE I: Clustering Accuracy. The “user means” algorithm is
the non-collaborative algorithm of always predicting the user’s
mean rating. The “LSH” algorithm means using the usual LSH
algorithm. “Proposed Hash” is our proposed hashing scheme.

1.08

1.06 | -

1.04 | /
/

1004 [0

RMSE
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0 10 50 100 200

9% fake ratings

Fig. 3: Privacy vs. Accuracy Tradeoff. The plot shows the
decrease in accuracy as relatively more fake ratings are added.
We picked a rating from a uniform distribution for U[1,5] and
from a Gaussian distribution for N(mean,1).

Figure 3 shows the results of experiments with adding fake
ratings to the original user ratings. We see that even after
adding as many as double the number of actual ratings, the
prediction RMSE stays as low as 1.0380, below the baseline.

As described in Section IV-B, we compared two strategies
to generate fake ratings, using a uniform distribution and
a Gaussian distribution. We observe that the latter strategy
performs much better than the former. We hypothesize that
this is because the distortion of user characteristics is less.
Along these lines, another interesting strategy that we did not
try would be to generate fake ratings that preserve the user’s
hash value.

VII. RELATED WORK

There is considerable previous work in the intersection
of privacy-preserving data mining and collaborative filtering.
Canny [6], [21] studies the same problem that we do and may
be the first to pose the problem. He proposes a scheme where
each user computes a public aggregate of their data using a
public blackboard provided by the server. Using homomorphic



encryption and a private computation, the user is able to get
personalized recommendations. Our approach is much more
practical than Canny’s and involves considerably less work
on the client side. In particular, our basic approach is easily
implemented and involves no cryptography, only a matrix
multiplication and adding noise.

Polat and Du [8], [22] study similar problems but propose
different approaches. In [8], their algorithm adds noise to
ratings on the client side and computes a weighted average
of all users’ ratings on the server side for the predicted rating.
However, their privacy model is weaker as the user only adds
noise to items the user has rated; this is problematical because
the set of rated items can be as privacy-invasive as the actual
ratings. They identify similar users through the noisy ratings,
while we rely on our data-independent hash function. The
algorithms proposed in [22] add fake ratings in the case of
binary ratings, where they study the problem of recommending
items rather than predicting ratings. Huang et al. [17] and
Zhang et al. [18] have shown that basic noise addition schemes
in many cases leak private information. Parra-Arnau combines
noise with suppression of ratings in [16]. In general, the
technique of adding fake ratings to enhance privacy is a
known technique, sometimes called “randomized response,’
after Warner [23] proposed the method in the context of
sensitive statistical surveys.

Nandi et al. propose privacy-preserving personalization mid-
dleware in [9]. Their idea is to locally compute the user’s
profile on the device and then anonymously aggregate the
data from similar users at a middleware node. The anonymous
aggregation depends on an anonymization network, such as the
TOR onion router, and a Distributed Hash Table. The method
to compute the user’s profile locally is in spirit similar to ours,
but we do not rely on any network privacy infrastructure to
aggregate data.

McSherry and Mironov [7] study a weaker privacy model
than ours. In their collaborative filtering model, a trusted server
holds actual user data and perturbs the output to prevent the
leak of inferences about user data from the recommendations
made by the server. They also perform experiments on the
Netflix Prize dataset. Since the server in their model can see
actual data, the RMSE numbers are not comparable to ours.

There has been some previous work on collaborative fil-
tering and a data-independent hashing technique, but without
privacy analysis of the hashing technique. For instance, Das
et al. [24] uses the LSH technique with the Jaccard similarity
measure in order to recommend articles to Google News
readers.

VIII. CONCLUSION

We have presented a practical scheme for privacy-preserving
collaborative filtering. Our basic scheme is easily implemented
and scalable and is a combination of user-side clustering and
adding noise. The user is able to receive recommendations
from an untrusted server without revealing actual data.

Our experiments with the Netflix Prize dataset reveal that
the recommendation accuracy of our algorithms is consider-

ably better than baseline algorithms, but, as expected, is worse
than algorithms where actual, unobfuscated data is available.
We empirically demonstrate the privacy property of /-diversity
for our algorithms on the Netflix dataset.
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Fig. 4: Clustering algorithm in the closed system. Users send
their public keys to an administrator, who is trusted to maintain
a public list of users. The server generates the hash function
and pushes it down to users. For each other user v in the list of
public keys, user u applies a salted, one-way function H,,(-)
to the hash value and sends the result to the server. The one-
way function is specific to v and v. v and v are in the same
bucket if the values of H,,(L[r,]) and Hy,(L[r,]) match.

APPENDIX

In the case collusion between a user and the server can
be prevented, we present a stronger, “closed” variant of the
system. The “closed” system has a restricted and known
set of users. One example scenario is centrally managed
users, such as a corporate network consisting of employees
utilizing an external cloud-based collaborative filtering service.
In this scenario, it is considered impractical for the external
recommendation server to collude with individual users.

The advantage of the closed system is that we can prevent
the server from learning the actual hash value. That is the
reason for the use of the one-way function. The knowledge
gained by the server is precisely the partitioning of the users
into their hash buckets. Knowledge about a user can only come
from auxiliary knowledge about other users and which buckets
these users fall into, that is, which users are considered similar.

Below we present a design where using cryptographic
techniques the server is restricted to observe only the set of
users that are similar to a given user, not the actual ratings
of any user. In the closed system, the server is assumed to be
unable to collude with users. By applying a one-way function,
we leverage this assumption to hide from the server the actual
hash values provided by the user. While the server can create
fake users with known hash values, it is unable to match these
with any real users. Our protocol uses a one-way hash function
based on the discrete logarithm problem and is similar to a
Diffie-Hellman key exchange.

We assume user accounts are managed by a trusted admin-

istrator within the closed system. This trusted administrator
cannot observe user ratings, but is able to observe user hash
values as it has the ability to create accounts.
Initialization. Similar to the open system, the users standard-
ize their data and the server generates the hash function L[].
In addition, the users and the administrator in the closed the
system perform the following steps.

1) The administrator inside the closed system picks a safe

prime p, where p = 2¢ + 1 and ¢ also prime, and then
generates a subgroup Z;, of prime order ¢ and generator
g. The administrator makes g and p public to all the
users.

2) When user u joins the system, he generates a random
number s,, from Z,, and sends a public key ¢g°* mod p
to the administrator.

3) The administrator releases the list of all public keys
{g®** mod p,...,g° mod p} to the users. There is no
harm done if the adversary is able to see this list, but
the adversary must not be able to add his own public
key to the list.

Applying hash function Similar to the open system, the server
transfers the hash function L[] to all users, who then apply
it to their standardized ratings to obtain the hash value L[#,].
We describe the protocol for applying the one-way function
to the hash value below.

1) For each public key g%, j # wu, in the list {g** mod

D, ..., g° mod p}, each user u computes the one-way
hash value
gsusj-i-L[f“u] mod p= (gsj)sugL[fu] mod p.

Here s, is the user’s previously chosen random number
and L[r,] is the clustering hash value. The expression

Sy 8y L[]

g mod p

is the Hy,(L[ry)) of Figure 4.

2) Each user u sends the set of pair-wise one-way hash
values {g®+% +L[m}, for ¢ # u, to the server.

3) The server clusters users that share the same one-way
hash value in a pair-wise manner. For example, for the
three users w,v,w, if gs«SvtLlliu]l — gsvsutLli] apd
gsusotlliu]l = gswsutLlfw] then all these three users
are clustered into the same bucket.

Remark. We assume computational hardness for the discrete
log problem, and hence the server and, similarly, the users
cannot reverse ¢+ mod p to obtain s, for other users. Thus,
g°+%* is the pairwise secret established between user u and
any other user 7. As a result, the one-way hash value of
{g®wsitLlPu]} | where i # wu, reveals nothing about user u’s
clustering hash value L[#,]. That is, the server knows nothing
beyond the clustering of users.

Performance. We analyze performance on the Netflix dataset.
Since the one-way hash function value is of size 1024-bits or
128 bytes and there are 480,189 users, the communication load
for each user in the system is 58.6 MB, which would require
a few minutes to transmit on a broadband network. Similarly,
each user needs to evaluate the one-way hash function 480,188
times, which required 11 min 36 s with our implementation.?
It is important to note that both of these costs are only for
the one-time initialization. Once the clustering is done, the
server can provide recommendations without requiring further
interaction with the users.

2We implemented the protocol in C++ on a desktop machine running 64-bit
Ubuntu 11.04 with 3 GHz Intel Core 2 Duo processor and 3.7 GB RAM.



