Parts Assembly Planning under Uncertainty
with Simulation-Aided Physical Reasoning

Sung-Kyun Kim, Maxim Likhachev
The Robotics Institute
Carnegie Mellon University
{kimsk, maxim}@cs.cmu.edu

Abstract—Parts assembly, in a broad sense, is to make
multiple objects to be in specific relative poses in contact
with each other. One of the major reasons that make it
difficult is uncertainty. Because parts assembly involves physical
contact between objects, it requires higher precision than other
manipulation tasks like collision avoidance. The key idea of
this paper is to use simulation-aided physical reasoning while
planning with the goal of finding a robust motion plan for
parts assembly. Specifically, in the proposed approach, a)
uncertainty between object poses is represented as a distribution
of particles, b) the motion planner estimates the transition of
particles for unit actions (motion primitives) through physics-
based simulation, and c) the performance of the planner is
sped up using Multi-Heuristic A* (MHA%*) search that utilizes
multiple inadmissible heuristics that lead to fast uncertainty
reduction. To demonstrate the benefits of our framework,
motion planning and physical robot experiments for several
parts assembly tasks are provided.

I. INTRODUCTION

Parts assembly is happening not only in factories but also
in most of our living spaces. It is an operation of arranging,
stacking, or combining objects. Many physical manipulation
tasks that are to set relative poses between multiple objects
in contact can be considered as parts assembly in a broad
sense.

The challenge, however, is that contact involves complex
physical phenomena such as friction and force interaction in
addition to kinematics and dynamics of objects. These phe-
nomena are hard to estimate or approximate well. Moreover,
parts assembly usually requires higher precision in motion
because it is a practice of placing objects to fit in, not
separating them apart.

Therefore, it is important to reason about the underlying
physics and to execute manipulation plans that are robust
to uncertainty during assembly. In this paper, we propose a
framework to utilize a physics-based simulator for physical
reasoning and use graph search algorithms to find a robust
motion plan in belief space.

The rationale behind selecting a simulator for physical
reasoning is that modeling complex manipulation actions
to sufficient degree of fidelity is infeasible. Instead, we
should exploit state-of-the-art in physics-based simulation
while planning.

This research was sponsored by ARL, under the Robotics CTA program
grant WO11NF-10-2-0016.

By sampling uncertainty distribution and running physics-
based simulation of actions, the planner constructs a belief
space. The planner then runs a heuristic search to find a
plan while reducing the uncertainty for a higher chance of
success.

This paper is organized as follows: Section II reviews
the related work in parts assembly and planning under
uncertainty. Section III explains some background about
graph search and describes how a simulator is integrated with
a motion planner for physical reasoning. Section IV provides
the detailed formulation and algorithm of the motion plan-
ning, and section V shows experimental results for several
parts assembly tasks. Section VI concludes the paper.

II. RELATED WORK

Since parts assembly is an essential manipulation task,
research about parts assembly has a long history. Some
earlier works were about part feeding that utilized contact
between an object and the environment to adjust its pose [1],
[2]. Basically, these approaches tried to reduce uncertainty
in object orientation on a plane by a sequence of actions.
They required rigorous analysis of configuration space that
particularly depended on the shape of the object and was
only possible in 2D space.

More recent works inheriting this scheme can be found in
[3] and [4]. In these works, the robot exploits contact with
the environment or other objects for robust grasping or in-
hand manipulation. (It is called extrinsic dexterity in [3].) As
in this paper, they rely on the idea of using contact to reduce
uncertainty and successfully demonstrate its effectiveness.
However, the motions being used are hand-scripted and there
is no general motion planner.

In [5], [6], works on parts assembly by multiple robots are
presented. They propose an architecture for parts assembly
and failure recovery. It is a high-level symbolic planner, so it
treats the actual manipulation as a simple operation and does
not account for physical phenomena during parts assembly.

On the other hand, there is an abundance of work on
planning under uncertainty, An example is collision avoid-
ance under uncertainty [7]. The other example is uncertainty
reduction in localization by getting closer to landmarks or
beacons [8], [9]. Both can also be pursued simultaneously
[10], [11], [12]. In either case, they don’t presume any

belief

particle,

particle,

istmotion
primitive__.*

belief i+

particlem

K-th motion
"~ primitive

belief #X

2nd motion "
primitive +*

belief 2
belief i+

™, (K-1)-th motion
*., primitive

particle»

particle

particlem

Fig. 1: Belief space representation in a graph and its expansion scheme. belief? denotes a belief state s° = P, and particle; denotes a
particle sub-state P;. Each particle in a predecessor belief state is simulated for each motion primitive to get a successor belief state.

contact with the environment, and thus, precise physical
simulation is not considered.

A similar approach to this paper can be found in [13], [14]
that are about 2D pushing motion planning under uncertainty.
They utilize a simulator for physical reasoning and RRT or
A* variant search algorithms for motion planning. In their
works, however, no interaction between multiple objects is
considered and the search space is limited to 2D, which
makes the problem simpler. In [14], tactile sensors of the
robot gripper are used to observe the true state assuming
direct contact with the object, but this approach can hardly
be used in our problem because the gripper is indirectly
contacting the environment.

Other relevant works are in [15], [16]. They are using
reinforcement learning techniques with deep networks for
different parts assembly tasks. No physics-based simulator
is used, but instead physical motion data of the robot is used
for learning. It would be interesting for us to compare results
with this approach in the near future.

III. GRAPH CONSTRUCTION WITH PHYSICAL
REASONING

A. Notation and Terminology

For a given graph search problem, let S denote the finite set
of states of the search domain. ¢(s, s’) denotes the edge cost
between state s and state s’, and if they are not connected,
c(s,s’) = oo. Succ(s) == {s' € S| ¢(s,s") # oo} denotes
the set of all successors of s. Let g(s) denote the current best
path cost from Sgq,¢ to s and h(s) denote the heuristic for
s which is an estimate of the best path cost from s to 54041
A heuristic is admissible if it never overestimates the best
path cost to Sqoq; and consistent if it satisfies h(sgoq1) = 0
and h(s) < h(s") 4+ c(s,s’) for any s, s” such that s # s40a1
and s’ € Succ(s).

Let H = [hg, h1, ..., hy] denote an ordered list of heuris-
tics where hyg is a consistent heuristic, while the other h,, for
v € {1,...,N} can possibly be an inadmissible heuristic.
OPEN,, denotes a priority queue ordered by a key value
which is f,(s) = g(s) + hu(s) o fu(s) = g(s) +w +hy(s)
where wy > 1.

(©) 3D (v, z, R)

() 3D (x, y, 2)

(@) 2D (x, y)

Fig. 2: An example of belief state representation: particles of cross-
polytopes (hyperoctahedron) in different search spaces.

B. Graph Construct: State Lattice with Controllers (SLC)

In order to formulate motion planning as a graph search
problem, we need to represent the search space as a graph.
One can discretize the world into n-dimensional grid and
take each cell as a node on a graph, but in this paper, we
adopt a graph construct called State Lattice with Controllers
(SLC) [17].

SLC is composed of a set of states S and their connecting
edges E. It adds more states and edges to the graph by
computing the successor function SUCC(s) for s € S that is
already in the graph. In SUCC(s), the original State Lattice
construct uses pre-computed metric motion primitives only,
but SLC allows us to use controller-based motion primitives
as well. This means that motion primitives can be simulated
in a realistic controller and trigger setting to generate more
plausible successor states. (A trigger is an event, such as
detecting a marker or reaching the target position, that is
used to terminate the simulation and return the result.) Based
on this scheme, a more physically reasonable graph can be
constructed for the given robot and the environment.

C. Belief State Representation

Since we assume there is uncertainty in the state of
robot and objects, we need to encode uncertainty into the
state of the graph. In this work, we represent a state of
a graph s as a belief state which is a set of particle sub-
states P = {Py, Py, ..., Py, } (see Fig. 1). Each particle P;
consists of the pose information of the robot and objects
{(pT‘7 Rr)a (pol, R01)7) (pona Ron)}-

()) Physics Simulator
Set Robot/Object Poses Robot-Objects Scene
Motion Primitive Signal Robot
50 XYZRPY Table
E Simulation Start/Pause/Stop Gripper
<
= Low-level Controller
= | Trigger Event Topic Callback - XYZRPY Table Control
.g 1) Control command finished - Gripper Open/Close Control
=} 2) Collision detected - Gravity Compensation
2 3) Time passed the limit Motion Primitive Generator
Get Robot/Object Poses = Desired Control Command
Trigger Monitor Thread
/

Fig. 3: Integration of a motion planner and a physics-based simu-
lator. The simulator has all the information about the robot and ob-
jects, including geometric shapes, inertial properties, and controller
characteristics. Simulation of a motion primitive is terminated if
one of the trigger events is detected.

For parts assembly tasks, we accept Gaussian distribution
as the initial uncertainty of a given task, but note that any
distributions can be used as long as the number of particles
are sufficient to represent the distribution.

The typical way to draw particles from a given Gaussian
distribution is random sampling. However, we cannot employ
plenty of random samples to properly represent the original
distribution because the simulation for each particle is com-
putationally expensive. Alternatively, we use vertices of a
uniform polytope as the particles since it can be seen as an
approximation of c,-sigma ellipsoid where ¢, is a constant
which is set to 2 in this work. Amongst uniform polytopes,
we used a cross-polytope which is a higher dimensional
octahedron for particle generation as shown in Fig. 2.

D. Belief State Transition via Simulation

In order to get physically reasonable SUCC(s) for a pre-
decessor belief state, we exploit a physics-based simulator.
More specifically, we use V-REP (Virtual Robot Experimen-
tation Platform) simulator that supports Vortex Dynamics
Engine [18], and integrated it with the motion planner as
shown in Fig. 3.

As shown in Fig. 1, every particle sub-state in the prede-
cessor belief state is simulated for each motion primitive, and
the results constitute the successor belief states. Note that all
the motion primitives being used are controller-based ones
in the context of SLC, which means that a motion primitive
is terminated by a trigger event in the simulation. Another
note is that each motion primitive is to assign incremental
displacement to the gripper, not the absolute pose in the
global frame.

A motion primitive is triggered when 1) the control
command is finished, 2) any change of the collision state
is detected, or 3) the simulation time exceeded the limit.
The first trigger is usually detected when the robot grip-
per remains in a free space without any collision until
reaching the target pose. The second trigger is detected
when the collision (or contact) states between any objects
is switched from NonContact to Contact, or Contact
to NonContact. The third trigger is for exception handling
for the case that the simulator gets stuck.

D

"t

N\ e b il

(a) A given planning problem. (b) (z,y, u)-configuration
space.
Fig. 4: Illustration of 2D box-on-table task. (a) The green box
is the start pose, and the blue box is the goal pose. (b) The red
boxes are the contact and goal attractors for inadmissible heuristics.
Uncertainty u in the configuration space is visualized in z-axis. The
green box on the upper level has high uncertainty and needs to get
contact with the walls to reduce pose uncertainty and get down to
the lower level of uncertainty where the goal state exists.

IV. MULTI-HEURISTIC A* SEARCH IN A FOLIATED
BELIEF SPACE

A. Uncertainty in Configuration Space

Before getting into the details for belief space search, we
describe the special structure of the configuration space under
uncertainty.

First, let us take an example. As shown in Fig. 4(a), the
robot gripper is holding a box and wants to place it at the
position of the blue box accurately. (This task will be called
box-on-table hereafter.) However, there is uncertainty in the
initial pose of the gripper and the box (depicted in a green
color). How can we represent the amount of uncertainty of
each belief state?

Let us define a particle-aggregated belief state vector X
which describes the distribution of particles.

x E;[p}”]
X = |w| = |Ejwi] (1)
u u

where j is the index for particles. p is a position vector,
and w = 6w is an orientation vector that can be obtained
from angle-axis representation where # and & are the rotation
angle and rotation axis, respectively. Basically it is composed
of mean vectors of position and orientation of the tool frame
in addition to a scalar-valued uncertainty measure. (The tool
frame is a local frame attached the object held by the gripper
and, in this example, is at the center of the bottom of the
box.) Note that position and orientation are with respect to
the local frame of the table which is the target object.

In this work, uncertainty is defined as a weighted sum
of traces of sample covariance matrices for position and
orientation as follows:

w= e (5 [0~ B, () (e — B)]
4w, Tr (Ej I:(w;ool ~E, [w;gool]) (w§ool —E, [w;;ool])TD
(2

where w,, and w, are weights for position and orientation,

respectively. Note that the trace of covariance matrix is used
instead of the determinant due to its numerical unstability.

Now notice that we have a uncertainty measure coordinate
in addition to pose coordinates in the belief state vector. It
means that we have (d+1)-dimensional configuration space
for d-dimensional planning problem under uncertainty. Fig-
ure 4(b) illustrates the (z,y,u)-configuration space for a
planning problem in (z,y)-space.

One important physical fact to note is that the uncertainty
of the relative pose between objects cannot be reduced
without getting in contact with each other, provided that all
the executable actions are to move around in the space. In
the box-on-table example, a belief state on a high uncertainty
level (the green box in Fig. 4(b)) cannot get down to the
lower level of uncertainty without contact with the walls. In a
word, this phenomenon leads to foliation of the configuration
space.

B. Foliated Inadmissible Heuristic Function

As discussed in the previous section, the search configu-
ration space is foliated, which means that transition between
states with different uncertainty measures is mostly blocked
by (virtual) obstacles except a few narrow passages, such as
the walls in the box-on-table example.

In order to tackle this narrow-passage problem, we intro-
duce a foliated inadmissible heuristic function as follows:

h(s) = h(dc(s), dg(s), u(s))
- wddc(s) + wuu(S) (U(S) > utol) 3)
wadg(s) +wyuls) (u(s) < o)
where wqy and w, are weights for distance and uncertainty,
respectively. d. and d, are Euclidean distances to the contact
attractor state and the goal attractor state that are given
parameters to the heuristic function. w is the uncertainty

measure defined in (2), and wy,; is the goal tolerance for
u. d. and d, are defined as follows:

dc(s) = d(S, Scont)

m

S <wp\/(z — 2)T (s — 20) + weAI(s, scom)>
“4)

&)

where s.on¢ is the contact attractor state, and Sgoq; iS the
goal state. x is the position vector of a belief state defined
in (1), and subscripts s, ¢ and g stand for the current,
contact attractor, and the goal attractor states, respectively.
AB(s,Tg0q1) is the rotation angle from the current state s
to the goal state sg0q;, Which can be computed in angle-
axis representation. w,, and w, are weights for position and
orientation, respectively.

As a high-level explanation, this foliated heuristic function

is to lead the graph to expand toward the contact attractor
state in high uncertainty region and toward the goal attractor
state in low uncertainty region. For example, if all the states
in OPEN of this heuristic are on the same high uncertainty
level and have the same g-value, then the state nearest to the
contact attractor will have the minimum A-value and f-value,
and it will be selected as the predecessor for expansion.

Also note that wy and w, on the right hand side of (3)
should be chosen carefully, so that the second term for the
uncertainty is signficantly larger than the first term for the
distance. It is because the transition in uncertainty coordinate
is more difficult due to the foliation of the search space.

We define a consistent anchor heuristic function (to adopt
MHA* framework which will be introduced in section IV-C)
and an edge cost function as follows:

hO(si) = h0(8i7 Sgoal) = wdd(sia sgoal) + wuu(si) (6)
g(s71 5% = waed(s'1, sY) Fwuu(sTY) (7)

where superscript ¢ is the index to represent predecessor-
successor relationship in the graph. d(s'~!,s%) means the
Euclidean distance between st~ ! and s. Then, we can define
fo(s%) for the anchor heuristic as follows:

fols') =D g(s"™",8") + ho(s", 8goat)
t=1

=3 (wad(s"™", 8) + wyu(s")

+ wqd(s, Sgoal) + wuu(si)

=wy (Z d(5t717 St) + d(si, sgoal)>
+u, (Zuw—l) + u(si>> ®)

t=1

where s0 is equivalent to Sg44-t. Note that the term for

uncertainty w in (7) is not the difference between predecessor
and the successor states, but the remaining uncertainty of the
parent state. This is because, in the former case, the second
term in (8) will be the same for all paths that connect Sgq,¢
and Sgoq;- On the other hand, the latter case can effectively
penalize a path that remains in high uncertainty region for a
long time.

C. Graph Search Algorithm in a Foliated Belief Space

For the motion planning in the above-mentioned foliated
belief space, Multi-Heuristic A* (MHA*) search algorithm
[19], [20] is used. Refer to the pseudo code of the algorithm
in Alg. 1.

MHA* has one consistent heuristic, which is called an an-
chor heuristic, and N arbitrary inadmissible heuristics of any
necessity. This algorithm cycles through each inadmissible
heuristics in a round-robin fashion, and determines whether
to use the inadmissible heuristic or the anchor heuristic based
on the condition in line 37 in Alg. 1. In such a way, it
can control the sub-optimality of the solution by a factor

S G

ho

(a) A given problem: move balls at S to G.
Consistent anchor heuristic (hg).

® @® @ @
ha ho hp hp
\ , A .
58 St S=80 S §¢ s

ha

, G=8¢ S5 S+

Motion ® m @ m o 4 [y
Primitives 4 h h
S P S g g

® ®

(b) Inadmissible contact heuristics (ho and hg) and goal heuristic (hg).

Fig. 5: Illustration of a 1-dimensional toy example.

of wy * we where w; and wsy are the weights for weighted
A* search (in line 22) and anchor sub-optimality (in line 37).

To adopt MHA* for our problem, two major revisions
are made: particle generation/transition and attractor-based
heurisitics. As a belief space search problem, we need to
generate a set of particles and obtain reasonable transition
of them, which are explained in section III. For the foliated
belief space, we need to find good (inadmissible) heuristics
that can help the search to go through the narrow passages
fast, which can be in the form of (3) in section IV-B.

The heuristic function in (3) needs two input parameters,
Scont and 54041, and they are being searched in ATTRAC-
TORSEARCH(Sgeeq) as shown in line 8 in Alg. 1. It is a
quite simple operation that checks the amount of uncertainty
reduction after applying motion primitives. It can apply a
single long motion primitive or a sequence of them, and it
can start from Sg¢qrt OF Sgoqi. As of now it is a naive process,
but can possibly be developed as a sophisticated one.

D. Toy Example

Let us take a look at a 1-dimensional toy example to see
how MHA* works in a foliated belief space. As shown in
Fig. 5(a), the initial belief state at S has high uncertainty
in x-position. From the belief state vector representation,
we can construct a 2-dimensional configuration space with
additional u-coordinate as shown in Fig. 5(b). There are two

TABLE I: MHA* SEARCH PROCESS FOR A TOY EXAMPLE

Ind Turn for Satisfied Selector Selected Child
naex Round-Robin Line 37? Heuristic Parent States
1 a No ho $0=5 S.sY
2 B Yes hg sv 52’
3 a Yes ha St S3
4 B Yes hg 52 s¢
5 o Yes hg 54 S5
6 B Yes hg S5 S6 =@

Algorithm 1 Multi-Heuristic A* Search in a Foliated Belief
Space

Input: The start state ss¢q,¢ and the goal state s 4041, Sub-optimality
bound factor w1, ws (both > 1), and one consistent heuristic
ho.

Output: A path from Ss¢art t0 Sgoar Whose cost is within wy *ws *
9" (sgoat)-

1: procedure CROSSPOLYTOPEPARTICLES(y, %)

2 create a nominal particle Py from p

3: P+ 0

4 for d € SearchSpaceCoordinates do

5 P—PU{Po+cp*Eaa€a} > {€q}: orthonormal
basis of SearchSpace

6 P+ PU {Po —Cp * E(d,d)éd}

7: return P

8: procedure ATTRACTORSEARCH(Sseed)

9 Sattractor 0

10: for m;, € LongMotionPrimitives do

11: s' « Succ(sseed, M)

12: if s UNCERT() < ¢y * Sscea-UNCERT() then

13: Sattructor — Sattructor U {Sl}

14: return S, :iractor

15: procedure NEWINADMISSHEURISTIC(Sattractors Sgoal)
16: create a new instance of a heuristic class, h’

17: h'.attractor < Sattractor

18: B .goal < Sgoai

19: return h’

20: procedure KEY(s, v)

21: hy < H.GET(v)

22: return g(s) + w1 * hy(5)

23: procedure MAIN()

24: Sstart < CROSSPOLYTOPEPARTICLES(4starts 2start)
25: H+0,N<+0

26: H.ADD(ho)

27: for suttractor i ATTRACTORSEARCH(Sstqrt) dO

28: H.ADD(NEWINADMISSHEURISTIC(Sattractors Sgoal))
29: N+ N+1

30: 9(Sstart) < 0, g(Sgoat) < 00

31: forv=0,1,..., N do

32: OPEN,, + 0

33: insert Ss¢qrt in OPEN,, with KEY(Sstart, V)

34: CLOSEDgnchor < 0, CLOSED;pqq < 0
35: while OPENy.MINKEY() < oo do

36: forv=1,2,..., Ndo

37: if OPEN,.MINKEY() < ws * OPENg.MINKEY()
then

38: if g(Sg0a1) < OPEN,.MINKEY() then

39: if g(Sgoal) < oo then

40: terminate and return a solution path

41: else

42: s < OPEN,.ToP()

43: EXPANDSTATE(s)

44: insert s in CLOSED; 04

45: else

46: if g(sg0a) < OPEN.MINKEY() then

47: if g(sgoar) < oo then

48: terminate and return a solution path

49: else

50: s < OPEN,.ToP()

51: EXPANDSTATE(S)

52: insert s in CLOSED gy chor

<

10

”

j«”‘a f«'

.1

X

3

8
o &
i”\"\

6) 9

' &
A

Pty o

12

Fig. 6: Planning results for 2D box-on-table tasks with 12 different
start poses. The green and blue markers are the start and final poses
of robot gripper particles, respectively, and an RGB-colored frame
marker is the goal pose for the object held by the robot.

TABLE II: PLANNING RESULTS FOR 2D BOX-ON-TABLE TASKS
(The step size for translational motion primitives is 0.10 m, and the
initial offset from the nominal start pose of each particle is 0.06 m.)

- . . . Node # in Path Pos. Error Pos. Error
Task ID Time [s] Cost / Expansion # Mean [m] Std Dev [m]
1 367 42032 9/10 0.0165 0.0085
2 482 46544 12/12 0.0143 0.0072
3 364 35812 8/10 0.0163 0.0067
4 484 45172 10/11 0.0158 0.0055
5 502 47644 13/13 0.0439 0.0066
6 396 47847 11/11 0.0273 0.0290
7 488 42900 13/14 0.0146 0.0059
8 685 48839 14/16 0.0296 0.0059
9 638 45951 12/16 0.0171 0.0063
10 463 41891 9/13 0.0382 0.0203
11 711 42198 16/19 0.0370 0.0099
12 637 47356 13/16 0.0162 0.0089
Mean 518.1 445155 11.6/13.4 0.0239 0.0101
Std Dev 1212 3705.5 2.3/2.8 0.0108 0.0072

inadmissible heuristics, h, and hg, that have their contact
attractors on the left and right walls, respectively, and the
goal attractors at the goal state position.

As presented in Table I, MHA* algorithm starts to cycle
each inadmissible heuristic for graph expansion. For the first
iteration, h,, takes the turn but couldn’t satisfy the condition
of line 37 in Alg. 1. So, OPENj of hg is used to select
the state for expansion, and then SO s expanded. For the
second run, hg takes the turn and satisfied the condition,
and S* is expanded. In the fourth run, S2’ is expanded by
applying motion primitives, m and m’, and the successor s¥
gets contact with the wall. Its particles are gathered at one
place, so its uncertainty measure reduces to near zero. For the
states with low uncertainty, the goal attractor is being used,
and after two more expansions, the algorithm successfully
finds a path to the goal with reduced uncertainty.

V. EXPERIMENTAL RESULTS

A. Motion Planning

1) Box-on-Table (2D): This task is to place a box held
by the robot gripper to a specified pose on the table (Fig. 4).
For analysis purposes, 12 different start poses are used for

Fig. 7: Comparison of planning results of 2D (left) and 3D (right)
box-on-table tasks.

TABLE III: COMPARISON OF PLANNING RESULTS OF 2D AND
3D BOX-ON-TABLE TASKS

(The motion step sizes and initial particle offsets are the same,
but the numbers of particles are 4 for 2D case and 6 for 3D case,
respectively, and the nominal pose in 3D case is 0.13 m higher than
the goal pose.)

. Node # in Path Pos. Error Pos. Error
Task ID Time [s] Cost / Expansion # Mean [m] Std Dev [m]
6 (2D) 396 47847 11/11 0.0273 0.0290
6’ (3D) 1322 42958 11/17 0.0611 0.0009

(b) A given problem.

(a) Models of a peg
and a hole.
Fig. 8: Illustration of 2D peg-in-hole task. (b) The green peg is the

start pose, and the blue peg is the goal pose. The red peg is a goal
attractor for an inadmissible heuristic.

the motion planning, and the results are shown in Fig. 6
and Table 2. It can be seen that the planned motion utilizes
contact with the walls close to the start and goal poses to
reduce uncertainty.

The contact attractors were at the walls, not at the corners
(as in Fig. 4(b)), but many motion plans got to the corner.
It can be interpreted that contact attractors don’t introduce
significant artifacts to the solution path.

2) Box-on-Table (3D): Planning results for box-on-table
task in 3D space are presented in Fig. 7 and Table 3.
It is compared to the 2D planning case that only differs
in the initial z-position. As can be seen in planning time
and number of expansions, the 3D planning case obviously
suffers from the curse of dimensionality. This is somewhat
expected because the number of simulations per expansion
equals to the number of particles times the number of motion
primitives, which should be (4x4) and (6 x6) for 2D and 3D,
respectively.

A

Fig. 9: Planning results for 2D peg-in-hole tasks with 3 different
start poses.

TABLE IV: PLANNING RESULTS FOR 2D PEG-IN-HOLE TASKS
(The step size for translational motion primitives is 0.10 m, and the
initial offset from the nominal start pose of each particle is 0.04 m.)

. Node # in Path Pos. Error Pos. Error

Task ID Time [s] Cost / Expansion # Mean [m] Std Dev [m]
1 706 12164 16/21 0.0032 0.0009
2 604 12474 16/19 0.0029 0.0018
3 830 15311 22/25 0.0035 0.0011
Mean 713.1 13316.3 18.0/21.6 0.0032 0.0013
Std Dev 113.2 1734.4 3.1/3.5 0.0003 0.0005

3) Peg-in-Hole (2D): This task is to insert the peg into
the hole. One interesting point of planning task is that, by
backward attractor search from the goal, an attractor state
was found at the entrance of the hole and set as a goal
attractor, not a contact attractor in a high uncertainty region.
This is reasonable because the state at the entrance should
have low uncertainty as the goal state. The results for three
different cases are shown in Fig. 9 and Table 4. The first
and third cases reduce uncertainty by contact with the top
and the left side of the box, but the second case does that
by contact with the top and the inner side of the hole.

B. Motion Execution

1) Box-on-Table (2D): Physical robot experiments were
conducted for a 2D box-on-table task (Fig. 10). 10 different
runs used the same motion plan searched for the given
(nominal) start and goal poses, but the actual start pose
for each run was perturbed by Gaussian noise with 0.05
m standard deviation. As shown in Fig. 11, the standard
deviation of the final pose reduced to tenth of the initial one.
However, there were remaining errors from the goal due to
relatively large motion primitive displacements.

2) Peg-in-Hole (2D): Robot experiment results for peg-
in-hole tasks are presented in Fig. 12 and Fig. 13. As in the
box-on-table case, 10 different runs used the same planned
motion computed by the planner for the given start and
(nominal) goal poses. The right gripper of the robot held
the box with a hole (see Fig. 12), but it was just used to
provide a perturbed goal pose for each run. The motion plan
from our proposed planner was able to successfully insert
the peg into the perturbed hole in all 10 runs.

In order to demonstrate the significance of the proposed
approach, two baselines are compared for these tasks. One is
a single-particle planner which considers only one particle
without the notion of uncertainty. The other is a contact-

Fig. 10: Snapshots of a robot experiment for a 2D box-on-table task.
The motion was planned for a nominal start position (upper square
in the picture) and a goal position (lower square in the picture).
The actual start position deviated from the nominal start position
by 6 cm, but the goal could be accomplished.

=]
IS
"

start (nominal)

| ® goal
035 @ attractor
03
2025
a
o
S
2
£ 02
A
Xous
0.1
0.05 -
o ; ; i
0 0.1 04 05

02 0.3
(—y)—axis of PR2

Fig. 11: Plot of robot experiments for 2D box-on-table tasks. (This
plot is rotated by 90 degrees, so that it can be depicted as the PR2
views the table.) The green filled circle is the nominal start position,
and the blue filled circle is the goal position. Green and blue squares
are the initial and the final positions of 10 individual test runs, and
the pairs are connected by black solid lines. The red filled circle is
the attractor used for planning, and the yellows bars represent the
walls of the table. The standard deviation of start position was set
to 0.05 m, and the perturbed start position of each test is randomly
drawn from the corresponding Gaussian distribution. The step size
of translational motion primitives is 0.10 m. The mean and standard
deviation of position errors to the goal are (0.0175, 0.0053) and
(0.0189, -0.0061) in meter, respectively.

greedy planner, an extension of the single-particle planner,
which tries to get to the nearest contact point as soon as pos-
sible, exploiting the uncertainty reduction effect of contact.
In both planners, physics-based simulation was necessary to
construct physically feasible graphs.

As shown in Fig. 13, the motion plan from the single-
particle planner was very fragile under uncertainty so that it
succeeded only in one case which has the almost same height
with the nominal goal pose. The contact-greedy planner was
more robust than the single-particle planner, but as it also
considers only one particle, its motion plan failed in more
than the half of the runs.

VI. CONCLUSION

We proposed a motion planning framework for parts
assembly under uncertainty. This problem is formalized as

Fig. 12: Snapshots of a robot experiment for a 2D peg-in-hole task.

0.56 x 0.56 x 0.56 (o)
X X O
0.55 0.55 0.55
X X O
X x X x %o
_ 054 x® O _0.54 » % 054 o ©
% X % () % (0]
T 0.53 x 0.53 o 0.53 o
0.52 0.52 0.52
x O o
0.51 0.51 0.51

—0.18 —0.17 -0.16
y [m]

—0.18 —0.17 -0.16
y [m]

—0.18 —0.17 -0.16
y [m]

(a) Baseline (b) Baseline

(contact-greedy)

(c) Our planner

(single-particle)
Fig. 13: Plot of robot experiments for 2D peg-in-hole tasks. The
red filled circle is the nominal goal position (the true mean of the
Gaussian distribution of the goal position) that is used for planning,
and the blue circles or crosses are the actual goal poisitions for
10 test runs that are drawn from Gaussian distribution with a
standard deviation of 0.01 m. The step size of translational motion
primitives was 0.04 m. Note that in these experiments the peg held
by the left gripper is set to be at the same start position for all
the test runs, but the box with a hole held by the right gripper
which serves as an environment under uncertainty (without any
sensor feedback) is set to be at a perturbed goal position. A circle
marker represents that a peg-in-hole task for the corresponding goal
position was successfully completed, i.e., the peg was inserted into
the hole, by the planned motion of a specific planner, while a cross
marker represents that the corresponding peg-in-hole task was not
successful.

a graph search problem in a foliated belief space where
uncertainty reduction is only possible in narrow passages of
contact. Physics-based simulation is used to construct a phys-
ically reasonable graph, and foliated heuristic functions with
contact and goal attractors are adopted in Multi-Heuristic A*
search framework to accelerate the search. The planning and
experimental results for box-on-table and peg-in-hole tasks
demonstrated the effectiveness of our approach.

As a future work, it would be interesting to study how
sampling-based methods can help finding good attractor
states for inadmissible heuristics and be combined with
combinatorial search algorithms. Based on the fact that
simulation-based reasoning is highly expensive, we would
like to incorporate Experience Graph (E-Graph) into our
framework, so that we can reuse the previous planning results
for other similar tasks [21].

[1]
[2]

[3]

[4]

[5]

[6]

[7

—

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

REFERENCES

K. Y. Goldberg, “Orienting polygonal parts without sensors,” Algo-
rithmica, vol. 10, no. 2-4, pp. 201-225, 1993.

S. Akella and M. T. Mason, “Parts orienting with partial sensor
information,” in 1998 IEEE International Conference on Robotics and
Automation (ICRA), vol. 1. 1EEE, 1998, pp. 557-564.

N. C. Dafle, A. Rodriguez, R. Paolini, B. Tang, S. S. Srinivasa,
M. Erdmann, M. T. Mason, I. Lundberg, H. Staab, and T. Fuhlbrigge,
“Extrinsic dexterity: In-hand manipulation with external forces,” in
2014 IEEE International Conference on Robotics and Automation
(ICRA). 1IEEE, 2014, pp. 1578-1585.

C. Eppner, R. Deimel, J. Alvarez—Ruiz, M. Maertens, O. Brock,
et al., “Exploitation of environmental constraints in human and robotic
grasping,” International Journal of Robotics Research, vol. 34, no. 7,
pp. 1021-1038, 2015.

R. A. Knepper, T. Layton, J. Romanishin, and D. Rus, “IkeaBot:
An autonomous multi-robot coordinated furniture assembly system,”
in 2013 IEEE International Conference on Robotics and Automation
(ICRA). 1IEEE, 2013, pp. 855-862.

M. Dogar, R. A. Knepper, A. Spielberg, C. Choi, H. I. Christensen, and
D. Rus, “Towards coordinated precision assembly with robot teams,”
in Experimental Robotics. Springer, 2016, pp. 655-669.

D. Lenz, M. Rickert, and A. Knoll, “Heuristic search in belief space for
motion planning under uncertainties,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 1EEE, 2015,
pp. 2659-2665.

J. P. Gonzalez and A. Stentz, “Planning with uncertainty in position:
an optimal and efficient planner,” in 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2005, pp. 2435—
2442.

——, “Planning with uncertainty in position using high-resolution
maps,” in 2007 IEEE International Conference on Robotics and
Automation. 1EEE, 2007, pp. 1015-1022.

S. Prentice and N. Roy, “The belief roadmap: Efficient planning in
belief space by factoring the covariance,” International Journal of
Robotics Research, vol. 28, no. 11-12, pp. 1448-1465, 2009.

A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion
planning under uncertainty,” in 2011 IEEE International Conference
on Robotics and Automation (ICRA). 1EEE, 2011, pp. 723-730.

J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under
uncertainty using iterative local optimization in belief space,” The
International Journal of Robotics Research, vol. 31, no. 11, pp. 1263—
1278, 2012.

J. A. Haustein, J. King, S. S. Srinivasa, and T. Asfour, “Kinodynamic
randomized rearrangement planning via dynamic transitions between
statically stable states,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA). 1EEE, 2015, pp. 3075-3082.

M. C. Koval, N. S. Pollard, and S. S. Srinivasa, “Pre-and post-
contact policy decomposition for planar contact manipulation under
uncertainty,” The International Journal of Robotics Research, vol. 35,
no. 1-3, pp. 244-264, 2016.

S. Levine, N. Wagener, and P. Abbeel, “Learning contact-rich manip-
ulation skills with guided policy search,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA). 1EEE, 2015, pp.
156-163.

S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” Journal of Machine Learning Research,
vol. 17, no. 39, pp. 1-40, 2016.

J. Butzke, K. Sapkota, K. Prasad, B. MacAllister, and M. Likhachev,
“State lattice with controllers: Augmenting lattice-based path planning
with controller-based motion primitives,” in 2014 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. 1EEE, 2014,
pp. 258-265.

(2016) Coppelia Robotics, V-REP (Virtual Robot Experimentation
Platform). [Online]. Available: http://www.coppeliarobotics.com.

S. Aine, S. Swaminathan, V. Narayanan, V. Hwang, and M. Likhacheyv,
“Multi-Heuristic A*,” The International Journal of Robotics Research,
vol. 35, no. 1-3, pp. 224-243, 2016.

F. Islam, V. Narayanan, and M. Likhachev, “Dynamic Multi-Heuristic
A*)"in 2015 IEEE International Conference on Robotics and Automa-
tion (ICRA). 1EEE, 2015, pp. 2376-2382.

M. Phillips, B. J. Cohen, S. Chitta, and M. Likhachev, “E-Graphs:
Bootstrapping planning with experience graphs.” in Robotics: Science
and Systems, 2012.

