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Abstract— The benefits of bidirectional planning over the
unidirectional version are well established for motion planning
in high-dimensional configuration spaces. While bidirectional
approaches have been employed with great success in the con-
text of sampling-based planners such as in RRT-Connect, they
have not enjoyed popularity amongst search-based methods
such as A*. The systematic nature of search-based algorithms,
which often leads to consistent and high-quality paths, also
enforces strict conditions for the connection of forward and
backward searches. Admissible heuristics for the connection
of forward and backward searches have been developed, but
their computational complexity is a deterrent. In this work, we
leverage recent advances in search with inadmissible heuristics
to develop an algorithm called A*-Connect, much in the spirit
of RRT-Connect. A*-Connect uses a fast approximation of
the classic front-to-front heuristic from literature to lead the
forward and backward searches towards each other, while
retaining theoretical guarantees on completeness and bounded
suboptimality. We validate A*-Connect on manipulation as
well as navigation domains, comparing with popular sampling-
based methods as well as state-of-the-art bidirectional search
algorithms. Our results indicate that A*-Connect can provide
several times speedup over unidirectional search while main-
taining high solution quality.

I. INTRODUCTION

Typically in motion planning problems, the planning com-
plexity arises near the start and goal regions. Consider a
standard robot manipulation scenario as shown in Figure 1
where a robot has to pick and place objects while operating
in a cluttered space. Such tasks are common in industrial
settings as well as in domestic robot applications, where the
robot needs to manipulate through clutter and circumvent
obstacles in order to accomplish the task. The problem is
hard not only because of the high dimensionality of the state
space but also because of the tight spaces in the robot’s work
space that translate to narrow corridors in the configuration
space (C-Space). The problem is especially aggravated when
clutter is present around the start or goal regions, causing
unidirectional planning approaches to get stuck around the
entrance to the induced narrow passage in C-space.

This led to the motivation of bidirectional planning meth-
ods. A popular sampling-based method, RRT-Connect [1],
attempts to solve this problem by incrementally building two
trees rooted at the start and the goal with a greedy heuristic
that tries to connect each other. Bidirectional sampling- based
methods like RRT-Connect have shown tremendous success
in solving complex motion planning problems which involve
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Fig. 1. A typical pick and place manipulation scenario in unstructured
environments. Clutter around the start and goal introduce narrow passages
in the configuration space that are problematic for unidirectional planning
algorithms.

tight spaces also referred to as “bug traps”. Although such
sampling-based approaches are extremely efficient in terms
of finding a path very quickly, their solutions are often low
quality and inconsistent for similar start-goal pairs, because
of the inherent randomization. Search-based methods on the
other hand generate good quality solutions but take longer
due to their systematic exploration of the configuration
space and the aforementioned limitations of unidirectional
planning.

Although the idea of bidirectional planning has existed for
long in the classical AI search literature, none of the existing
approaches have proven outstandingly successful in solving
complex motion planning problems. There has always been
a trade off between time efficiency and the guarantee of
optimality, the key trait of search-based planning methods. To
come up with a bidirectional search strategy that is efficient
in planning time and still provides good solution quality has
always been a challenge.

The primary contribution of our work is a fast bounded-
suboptimal bidirectional heuristic search algorithm called
A*-Connect. It works by running bi-frontal searches both
from the start and the goal configurations, as opposed to
having single frontier searches. It runs a front-to-back and
a fast-to-compute front-to-front heuristic search in parallel
from each side, leveraging the framework of Multi-Heuristic
A* (MHA*) [2] to do so. MHA* is a recently developed
multi-heuristic search algorithm that allows for the use of
multiple arbitrarily inadmissible heuristics while preserving
guarantees on completeness and bounded suboptimality. By
employing a bidirectional multi-heuristic search in a prin-



cipled manner, A*-Connect is able to find solutions several
times faster than a unidirectional search, while still guar-
anteeing bounded suboptimality. A*-Connect also achieves
comparable planning times to popular sampling-based meth-
ods, but provides significantly better quality solutions.

II. RELATED WORK

Sampling-based motion planners have been popular for
high-dimensional planning problems in robotics, with the
bidirectional variants being particularly useful in complex
scenarios involving narrow passages and tight spaces. RRT-
Connect, a bidirectional variant of the RRT, dynamically
builds two trees from the initial and goal configuration and
uses a greedy “Connect” heuristic to make the two trees
meet. It is seen to show fast convergence as compared to the
unidirectional RRT planner. While the original RRT-Connect
does not provide any guarantees on the solution quality,
recent variants of bidirectional sampling-based planners [3],
[4] have been developed that provide asymptotic optimality
guarantees.

In the heuristic search community, it has been counterintu-
itively observed that bidirectional search methods are more
efficient for uninformed searches (i.e., searches where the
heuristic knowledge is unavailable such as in breadth-first
search) rather than informed searches. In the case of informed
methods where heuristic guidance is available, bidirectional
methods fall short of expectations. The search confronts a
problem where the two frontiers pass by without intersec-
tion. Pohl metaphorically discusses this scenario as missiles
passing each other [5]. In such a scenario at worse the
search can expand twice as many nodes as an unidirectional
search would. Kaindl and Kainz [6] argue against the missile
metaphor, claiming that bidirectional search is inefficient not
because the two frontiers pass by without intersection, but
rather due to a major effort spent after the search frontiers
meet to ensure optimality of the solution. In other words,
even if the two frontiers overlap, the termination criteria for
optimality requires a lot more expansions in practice.

The conception of the missile metaphor led to the devel-
opment of different wave shaping algorithms such as BHFFA
(Bidirectional Heuristic Front-to-Front Algorithm) [7]. These
algorithms attempt to shape the wavefronts such that they
intersect each other, by computing a ‘front-to-front’ heuristic
that estimates the minimum distance from one frontier to
the other. While it gives significant reductions in terms of
number of expansions, the front-to-front heuristic compu-
tation is extremely expensive. Politowski and Pohl derived
another method from BHFFA called d-node targeting [8]
that guides the search to one central promising node in the
opposite frontier, but the method compromised optimality
assurance as the heuristic thus computed is inadmissible.
Kwa [9] suggested optimization techniques to prune nodes by
omitting a node that cannot contribute to the optimal solution
or by avoiding re-expansion of a node that has already been
expanded in the opposite search.

Weighted A* (WA*) [10], originally developed for speed-
ing up unidirectional search methods by settling for bounded

suboptimality, was extended to bidirectional methods to
reduce the effort spent after the intersection of the two
frontiers [11]. While this relaxes the termination condition
for the bidirectional search, it aggravates the problem of
the two frontiers passing each other (due to the inflated
heuristics), unless other wave shaping methods are employed.

Single-Frontier Bidirectional Search (SF-BDS) [12] uses
some variation of front-to-front evaluation to improve heuris-
tic accuracy. It deals with a single frontier as opposed to two
frontiers and every node in the search tree consists of a pair
of states (one from the forward and one from the backward
tree). Each node in this single frontier tree can be seen as an
independent task of finding a path from a start to a goal. A
major caveat for this method is that there are O(V 2) possible
tasks that can be created out of all possible pairs of states. SF-
BDS allows multiple re-expansions of states which further
aggravates the problem in spatial domains such as motion
planning. An enhancement of SF-BDS called eSBS [13]
attempts to reduce the number of re-expansions by pruning
states that cannot contribute to the optimal path; however, it
fails to provide any bounds on the number of re-expansions.

In comparison to these existing approaches, our proposed
algorithm is fundamentally different. While it introduces a
novel wave-shaping method which is computationally effi-
cient, it also provides bounds on suboptimality and number
of re-expansions. It uses an approximation of the front-
to-front heuristic estimate instead of computing the exact
estimate of cost to the opposite frontier. Although the ap-
proximation renders the heuristic inadmissible, the MHA*
framework allows the algorithm to provide guarantees on
suboptimality bounds.

III. BACKGROUND: MULTI-HEURISTIC A*

Since we use the Multi-Heuristic A* [2], [14] framework
in our method, we first provide a brief summary of its
working and properties.

Notations : We first assume that the planning problem
can be represented as a path finding problem on an implicit
graph. Throughout the paper, S denotes the finite set of
states of the domain, c(s, s′) denotes the cost of the edge
between s and s′; if there is no such edge, then c(s, s′) =∞.
CHILDREN(s) := {s′ ∈ S|c(s, s′) 6= ∞}, denotes the set
of all children of s. We use c∗(s, s′) to denote the cost
of the optimal path from state s to s′, g(s) to denote the
current best path cost from sstart to s, and h(s) to denote
the heuristic for state s, which is an estimate of the best path
cost from s to sgoal. A heuristic is admissible if it never
overestimates the best path cost to sgoal and consistent if it
satisfies, h(sgoal) = 0 and h(s) ≤ h(s′) + c(s, s′), ∀s, s′
such that s′ ∈ CHILDREN(s) and s 6= sgoal. OPEN denotes
a priority queue, and is typically implemented as a min-heap.

Optimal search algorithms such as A* [15] suffer from the
curse of dimensionality when dealing with high-dimensional
configuration spaces, due to the time and memory required
for systematic exploration of the search space. WA* [10], a
variant of A* that forsakes optimality for speed is often used
in such high-dimensional problems. It uses a priority function



f ′(s) = g(s) + w ∗ h(s) (w > 1) to provide a greedy flavor
to the search, which often results in faster termination [16],
[17], [18]. WA* guarantees that the suboptimality of the
solution is bounded by w times the optimal cost [19] if
h(s) is admissible, and does not require re-expansions to
guarantee the bound if h(s) is consistent [18].

While WA* has been shown to provide a speedup in many
domains, it relies heavily on the accuracy of the heuristic
function. If the heuristic is subject to local minima however,
then WA*’s performance can degrade severely [20], [21]
owing to its greedy nature. Multi-Heuristic A* (MHA*) [2]
is a recently developed search algorithm that builds on
the observation that while designing a single heuristic that
is admissible, consistent and has shallow local minima is
challenging for complex domains, it is often possible to
design a number of inadmissible heuristics. MHA* uses
multiple such (possibly inadmissible) heuristics to guide
the search around local minima, by exploiting the synergy
provided by these heuristics, each of which may be useful
in different parts of the search space, while ensuring that
bounds on suboptimality are still maintained.

Improved MHA* : In our work, we use an enhanced
version of MHA* called Improved Multi-Heuristic A* [14],
that can incorporate inadmissible heuristics that might be
completely unrelated to edge costs on the graph. It has been
shown to provide better performance than MHA* whenever
tighter suboptimality bounds on solution quality are desired.
Improved MHA* works very similar to WA*: it maintains a
priority queue OPEN containing the frontier states, sorted by
priority g(s) + w ∗ h(s) (w > 1), with h being a consistent
heuristic. Now, instead of simply expanding the state with
the best priority like WA* does, Improved MHA* repeats the
following until a solution is found or OPEN is empty: a) it
first obtains a subset of OPEN called the P-SET, containing
a list of ‘promising’ frontier states determined according to
some criterion, b) given n inadmissible heuristics, it picks the
n best states from P-SET greedily based on the inadmisisble
heuristics, c) expands those n states and marks them as
expanded inadmissibly, d) expands the state with the best
priority in OPEN and marks it as expanded admissibly. At
a high level, Improved MHA* interleaves an admissible
or anchor search with an inadmissible search guided by
multiple inadmissible heuristics. By choosing an appropriate
termination criterion, Improved MHA* guarantees that the
solution found is bounded suboptimal. Finally, it ensures that
no state will be expanded more than twice—once admissibly
and once inadmissibly.

IV. OUR CONTRIBUTION

We present a bidirectional search method that (a) uses
an efficient approximation of the front-to-front heuristic,
(b) provides solutions that are guaranteed to be bounded
suboptimal with respect to the underlying search graph and
(c) provides guarantees on the number of times a state in the
graph is re-expanded.

Our algorithm builds upon the framework of Improved
MHA*. Rather than using WA* searches for the backward

and forward search, we use Improved MHA* searches that
use two heuristics each: one guiding towards the opposite
root, and one towards the opposite frontier. This results in a
bidirectional dual frontier search where the search from each
end has two frontiers—one progressing towards the opposite
end and the other advancing towards the opposite frontier.
Intuitively, the algorithm simultaneously runs a forward and
a backward search, each of which is again a simultaneous
front-to-front and front-to-back heuristic search. Next, we
describe in detail how the admissible and the inadmissible
searches of Improved MHA* are utilized in our proposed
strategy.

A. Front-to-Back Heuristic Search

As discussed in the previous section, the Improved MHA*
algorithm uses one consistent (and hence admissible) heuris-
tic for the anchor search. We use an admissible front-to-
back heuristic as the anchor heuristic for each of the two
Improved MHA* searches. Front-to-back heuristics calculate
the h value of a node s by using the heuristic estimate
between s and the root of the opposite search tree (start/
goal). Front-to-back heuristics are typically inexpensive to
compute because they are static—i.e., they do not depend
on the frontier of the opposite search, but instead only on
the root of the opposite search.

B. Front-to-Front Heuristic Search

The core of our algorithm lies in our front-to-front search
methodology. The algorithm exploits the fact that Improved
MHA* permits an inadmissible heuristic to compute a
fast approximation of the usual front-to-front heuristic. To
differentiate our front-to-front heuristic from the classical
approach of estimating the distance between the two fron-
tiers [7] we call it the connect heuristic. The h value of
a node s for our connect heuristic is computed by finding
the minimum heuristic estimate between s and the “most
promising” last expanded state of the opposite search, rather
than scanning through the complete frontier of the opposite
search.

Connect Heuristic Explained: At a high level the connect
heuristic is an approximation of the conventional front-to-
front heuristic. Instead of getting an exact estimate of the
minimum distance of a state s to the opposite frontier we
compute an approximation of this distance. For the regular
front-to-front search the cost of the path through every node
in the opposite frontier needs to be computed. Instead, we
compute the cost of the paths only through the last expanded
states from the opposite search. This process is depicted in
Figure 2 for a search iteration in forward direction. Assume
we need to find a path from the start state S to the goal G
(shown in blue). The dark grey circles show the frontier of
the forward search whereas the light grey circles constitute
the backward search frontier. The states P0 and P1 denote
the last expanded states of the backward search from the
anchor heuristic and the connect heuristic respectively. We
call these states pivots. Now, whenever a heuristic update
needs to be made for the connect heuristic, the algorithm
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Fig. 2. Connect Heuristic Illustration.

only estimates the cost to these pivots and not the entire
frontier (light grey states). This way it saves the computation
time that is required by the classical front-to-front search
(BHFFA) whose complexity is quadratic in the number of
states in the two frontiers. For our approach the complexity is
linear in the number of heuristics for each Improved MHA*
search, which is 2 in this case.

It is trivial to explain how the algorithm can be generalized
to use any number of inadmissible heuristic searches on top
of the two existing ones, whether the heuristics be front-
to-front, front-to-back or other domain dependent arbitrarily
inadmissible searches [22].

V. ALGORITHM

A*-Connect (Alg. 1) builds upon Improved MHA*, which
uses a single OPEN list for the frontier states and two
CLOSED lists for keeping track of states expanded admis-
sibly and inadmissibly. As A*-Connect runs two Improved
MHA* searches, the OPEN and CLOSED lists are instanti-
ated for both, the forward and the backward searches (lines
20 to 22). The symbols f and b represent the forward and
backward directions respectively. The forward search queue
is initialized with the start state whereas the backward search
queue is initialized with the goal state (lines 26 and 27).
In other words the goal state is taken as the start state
for the backward search. The algorithm then repeatedly
runs the Improved MHA* loop (lines 30 to 39) for the
forward and backward directions, alternating between the
two. Both the forward and the backward searches maintain
independent data structures (OPEN/CLOSED lists and the
P-SETs) and respective functions (CHILDREN(s), h(s) and
g(s)). The superscript dir shows which direction a particular
data structure or a function is associated to. dir denotes the
direction complementary to dir. Then the algorithm repeat-
edly performs the following until a termination condition
is satisfied: A subset of OPEN list called the potential set
(P-SET) is constructed (line 32). P-SET contains the frontier
states that are likely to lead to a bounded suboptimal solution
and are determined according to P-CRITERION (line 5). Then
the connect heuristic selects a state from the P-SET (line 33)
based on the estimated domain-dependent distance (4) to the
pivots of the opposite search (line 8).

This state is marked as expanded by the connect heuristic
(line 35). Finally the state at the top of OPEN is expanded
admissibly (line 37). The entire process toggles for the

Algorithm 1 A*-Connect:

1: procedure PRIORITY(s, dir)
2: return gdir(s) + w.hdir(s)

3: procedure TERMINATIONCRITERION(u)
4: return u ≤ max ( max

s∈CLOSEDf
a

PRIORITY(s, f ), max
s∈CLOSEDb

a

PRIORITY(s, b))

5: procedure P-CRITERION(s, dir)
6: return gdir(s) + hdir(s) ≤ max

s∈CLOSEDdir
a

PRIORITY(s, dir)

7: procedure CONNECTHEURISTIC(s, dir)
8: return min

p∈(P0dir,P1dir)
4(s, p)

9: procedure EXPANDSTATE(s, dir)
10: remove s from OPENdir

11: for all s′ ∈ CHILDRENdir(s) do
12: if s′ was not seen before then
13: gdir(s′) =∞
14: if gdir(s′) > gdir(s) + c(s, s′) then
15: gdir(s′) = gdir(s) + c(s, s′)
16: if s /∈ CLOSEDa

dir then
17: Insert/Update s′ in OPENdir with PRIORITY(s′, dir)
18: u = min(u, gf (s′) + gb(s′))

19: procedure MAIN()
20: OPENf ← ∅, OPENb ← ∅
21: CLOSEDf

a ← ∅, CLOSEDf
c ← ∅

22: CLOSEDb
a ← ∅, CLOSEDb

c ← ∅
23: gf (sstart)← 0, gf (sgoal)←∞
24: gb(sstart)←∞, gb(sgoal)← 0
25: u←∞
26: Insert sstart in OPENf with PRIORITY(sstart, f)
27: Insert sgoal in OPENb with PRIORITY(sgoal, b)
28: dir = f
29: while not TERMINATIONCRITERION(u) do
30: if OPENf .EMPTY() or OPENb.EMPTY() then
31: return null
32: P-SETdir ←

{s : s ∈ OPENdir

∧ s /∈ CLOSEDdir
c

∧ P-CRITERION(s, dir)}
33: Pdir

1 ← argmin
s∈P-SETdir

gdir(s) + w· CONNECTHEURISTIC(s, dir)

34: EXPANDSTATE(P1
dir, dir)

35: CLOSEDdir
c ← CLOSEDdir

c ∪ {P1
dir}

36: P0
dir ← OPENdir.TOP()

37: EXPANDSTATE(P0
dir, dir)

38: CLOSEDdir
a ← CLOSEDdir

a ∪ {P0
dir}

39: dir = dir
40: return solution path

search in the complementary direction, and the algorithm
runs until a termination criteria is reached (line 29). After
every expansion epoch, we check if any state has a valid
path to it found from both the start and goal, and keep
track of the state with the best estimated path cost (u =
gf (s) + gb(s)) during every expansion (line 18). When
this quantity satisfies the TERMINATIONCRITERION (line
4), the search terminates and returns the path computed by
tracing the backpointers of the intersection state s in the
forward and backward directions. The criterion states that
the search should terminate when the best estimated path
cost is not larger than the maximum PRIORITY observed for
the admissibly expanded states in either of the two searches
(forward and backward).

A. Theoretical Analysis

All the theoretical guarantees for Improved MHA* hold
for A*-Connect:

Theorem 1: The cost of the solution returned by A*-
Connect is no greater than w times the cost of the optimal
solution.



Proof: (Sketch) The algorithm terminates when the TER-
MINATIONCRITERION (Alg. 1 line 4) is reached. Since the
forward and backward searches are both Improved MHA*
searches, they maintain the invariant that every expanded
state (i.e, all states in the closed list) have a priority value
that is no more than w of the optimal solution cost. Thus, the
right hand side of the condition is also upper bounded by w
times the optimal solution cost. The proof follows from the
construction of u, which is the lowest cost path discovered
so far by A*-Connect.

Theorem 2: Any state in the graph is expanded no more
than 4 times by A*-Connect—at most twice by each, the
forward and backward searches.
Proof: (Sketch) This statement makes direct use of Improved
MHA*’s property that no state is expanded more than twice.
Since we are essentially running two Improved MHA*
searches on the same graph, a state could be expanded at
most 4 times.

B. Implementation Details

We have already shown how our approach for front-
to-front heuristic evaluation is significantly more efficient
than the conventional front-to-front search. However we pro-
pose further optimization techniques to reduce the heuristic
computation time. Instead of updating the heuristic values
of the entire OPEN list, we pick the top n candidates
from the P-SET (the states with minimum key values) and
only update the heuristic of these states. Although similar
optimization can also be done for the conventional front-
to-front search, the heuristic no longer retains admissibility,
and thus optimality guarantees can not be provided. However
with our approach we no longer require admissiblity of
the connect heuristic and we can leverage this fact in our
optimization. Another optimization we do is that instead of
switching the direction of search every iteration we do it
every k iterations (For all of our experiments we use k = 10).
This reduces the number of times the heuristic updates are
made. Other optimization approaches might also be used for
A*-Connect such as making use of the meta-methods [22]
for switching the search directions based on which one is
making progress, or dynamic heuristic generation proposed
in [23]. The key idea in the latter is to only use the connect
heuristic when required instead of keeping the inadmissible
search queue at all times.

VI. EXPERIMENTAL RESULTS

We tested our algorithm on two motion planning domains,
7 DOF Single-Arm planning and 3 DOF Navigation Plan-
ning. We compared our results against popular sampling-
based and search-based planning algorithms. All experiments
were performed on an Intel i7 - 4770 (3.4GHz) PC with 8GB
RAM.

A. Single-Arm Planning

We evaluated the performance of A*-Connect on a ma-
nipulation planning problem for the 7 DOF PR2 robot arm.
The start state and the goal state are both represented by

Fig. 3. Illustration of A*-Connect algorithm for 7 DOF Arm Planning
domain. The arm visualizations in red, blue and orange show the forward
segment of the path, the backward segment of the path and the intersection
state respectively.

fully defined 7 DOF configurations. This is different from
the usual search-based arm planning approach [24] where the
goal is under-specified as a 6 DOF object pose. We use it for
A*-Connect as the backward search requires to be initialized
by a fully defined goal state. This is identical to how
bidirectional sampling-based planners operate in that they
also require a fully defined goal pose. The environment setup
we use for our testing is a common industrial manipulation
setting where the robot needs to pick and place objects
in clutter (Figure 3). These problems are challenging as
they require the robot to manipulate through tight spaces
while circumventing other objects. The search graph for the
problem is constructed on the fly, by applying a set of motion
primitives [25] to the state being expanded. These motion
primitives are small kinodynamically feasible motions that
the robot can execute.

1) Heuristics: For arm planning we use two common
and easy to compute heuristics. The hendeff (end-effector
heuristic) is computed by running a 3D Dijkstra’s search
from the goal position to compute the cost of the least-cost
path from the end effector position at a given state to the
end effector position at the goal state. The second heuristic
heuclidean is computed as the Euclidean distance in 7 DOF
space between two states. hendeff is used as the anchor
(admissible) heuristic and heuclidean works as the connect
heuristic for our algorithm. As a connect heuristic we need
a heuristic which is fast to compute and can be calculated on
demand because the heuristic values need to be dynamically
computed based on the opposite frontier. On the other hand,
hendeff , the admissible heuristic takes longer to compute,
but is done only once before the search starts.

2) Adaptive Motion Primitives: We augment the set of
predefined static motion primitives with adaptive motion
primitives that are generated on the fly during the search [24].
The way we compute them differs from their original version
because we use a fully defined goal state as opposed to
an under-specified 6 DOF pose. For the forward search,



when a state s is expanded whose end-effector position is
within a threshold distance from the goal state’s end-effector
position, we simply generate the goal state as a child if the
interpolated path between s and the goal is collision-free
and kinematically feasible. The same step is executed for
the backward search by taking the start state end-effector
position into account.

3) Adaptive Frontier Connection Primitive: In addition
to the above adaptive motions, we introduce a third motion
which we call adaptive frontier connection primitive. When
a state s is expanded whose end-effector position is within
a specified threshold from the end-effector position of a
pivot from the opposite search, that pivot state is generated
as a child if the interpolated segment between the two
states is kinematically feasible and collision-free. This step
is introduced to accelerate intersection of the frontiers when
operating in high-dimensional state spaces.

4) Simulation Results and Comparisons: For comprehen-
sive evaluation we compared A*-Connect against the unidi-
rectional WA* search [10], the bidirectional best-first search
(BHPAw) [11] which basically is the bounded suboptimal
version of the classical front-to-back search (BHPA) [5] and
popular sampling-based algorithms: RRT Connect and RRT*
from the Open Motion Planning Library (OMPL) [26]. The
cost function for RRT* is the distance traveled in joint space.
RRT* was configured to return the first solution that was
found. For a fair comparison we provide the complete 7
DOF goal state and use the similar method of generating
adaptive motions for the other two search-based methods.
100 experiments were run with randomly generated start and
goal configurations of the arms such that the end-effector
positions lie within the clutter shown over the tabletops. The
results reported are averaged over these 100 tests. For all
the runs, the search-based planners were initialized with w
= 100 and a timeout of 30 seconds. We used the heuristic
hendeff for WA* and BHPAw.

Table I shows the performance comparison of A*-Connect
with the other planners. The metrics measured for each
plan are the success rate, planning time, mean number of
expansions (for the search-based methods) and the average
path length for the joints measured in radians. Here, the
success rate measures the number of trials in which a solution
was found within the given time limit. The results are
averaged over common successful trials. In terms of planning
times although RRT-Connect outperforms our method, our
method is certainly competitive in comparison to other search
based and sampling-based planners. As far as path quality
is concerned A*-Connect happens to provide shortest paths
among all the other planners. Particularly, it provides signif-
icantly better quality solutions compared to RRT-Connect

B. Navigation Planning

We also evaluated our algorithm in the 3D navigation
domain (x, y, θ) for non-holonomic robots (i.e, no turn-in-
place or sideways motions). The tests were run on a randomly
generated outdoor environment (Figure 4). The bidirectional
planning search approach has strong application in such

TABLE I
PERFORMANCE COMPARISON OF A*-CONNECT WITH OTHER

SEARCH-BASED AND SAMPLING-BASED ALGORITHMS FOR SINGLE-ARM

PLANNING

A*-
Connect*

WA* BHPAw RRTC RRT*

Success Rate(percent) 100 51 83 100 90
Mean planning time(ms) 34.33 789.23 640.79 5.59 712.44
Mean state expansions 115 2093 1763 – –
Mean path length(rad) 5.00 5.72 6.15 11.05 6.27

Fig. 4. Outdoor environment for navigation planning results with a size
of 267 x 267 meters

domains because non-holonomic constraints introduce local
minima at the start and/or the goal. A*-Connect is effective in
escaping these regions and can potentially intersect at other
regions of the configuration space given an effective connect
heuristic is employed.

1) Heuristics: For the navigation domain we use two
heuristics. Similar to the hendeff used in the arm-planning
domain, we use the heuristic hbase (base-heuristic) that is
computed by running a 2D Dijkstra’s search from the goal
position. The second heuristic is computed as the Euclidean
distance in 3D (x, y, θ), heuclidean, from a given state to the
pivot state from the opposite search. The admissible hbase
is used as the heuristic for the anchor search whereas the
inadmissible heuclidean is used as the connect heuristic for
A*-Connect.

2) Simulation Results and Comparisons: For the naviga-
tion domain we compare our results against the unidirec-
tional WA*, BHPAw and additionally with the bidirectional
front-to-front search approaches including the Bidirectional
Heuristic Front-to-Front Algorithm (BHFFA) [7] and the
enhanced Single Frontier Bidirectional Search (eSBS) [13].
We do not report comparisons with sampling-based methods
for the navigation domain as they are meant to be useful
mainly in higher dimensional planning problems. For WA*
and BHPAw we used the heuristic hbase whereas for BHFFA
and eSBS we used the heuristic heuclidean .

We compare the performance of A*-Connect with the
other methods against the metrics of planning time, number
of expansions and the solution cost (Table II) for 100 tests
with randomly generated 3 DOF start and goal configu-
rations. For all the experiments the search-based planners
were initialized with w = 3 and a timeout of 30 seconds.



TABLE II
PERFORMANCE COMPARISON OF A*-CONNECT WITH OTHER

SEARCH-BASED ALGORITHMS FOR NAVIGATION PLANNING

A*-
Connect

WA* BHPAw BHFFA eSBS

Success Rate (percent) 100 100 100 48 70
Mean planning time (ms) 2.06 5.03 1.88 1254.37 179.31
Mean state expansions 256 1135 259 202 39659
Solution Cost (ratio) 1.0462 1.00 1.0013 1.0178 1.3059

TABLE III
PERFORMANCE COMPARISON OF A*-CONNECT ONLY WITH WA* AND

BHPAw FOR NAVIGATION PLANNING

A*-
Connect

WA* BHPAw

Success Rate(percent) 100 100 100
Mean planning time(ms) 2.3 10.88 4.97
Mean state expansions 282 2509 907
Solution Cost 1.0767 1.00 1.0054

We show the solution cost as a ratio to the mean solution
cost of the unidirectional WA* method, which tends to have
the lowest solution cost. These results are computed for the
common successful trials for all the planners. The BHPAw

search performs significantly better in the navigation domain
as the chances of intersection are high for lower dimensional
problems. Also, these trials are relatively easier ones as these
are taken for the cases where all the algorithms show success.
However if we analyze the common successful trials only
for A*-Connect, WA* and BHPAw (results averaged over
all 100 experiments, Table III), A*-Connect provides better
planning times on average, compared to the other methods.
In general other methods either suffer because of the number
of expansions or the computation cost per expansion. In
terms of solution quality our methods provides almost similar
solution costs as the WA* search.

VII. CONCLUSIONS

We presented a bidirectional heuristic search algorithm,
A*-Connect, for computing fast bounded-suboptimal solu-
tions. A*-Connect uses the Improved Multi-Heuristic A*
framework to run bi-frontal searches in both forward and
backward directions, with one frontier solely devoted to
accelerating the connection of the two searches. We demon-
strated how A*-Connect is much faster than unidirectional
and state-of-the-art bidirectional heuristic searches, while
still providing guarantees on completeness and bounded
suboptimality. In our experiments on manipulation planning,
A*-Connect provides superior quality solutions compared to
popular sampling-based planners for comparable planning
times. Our future work involves generalizing A*-Connect
to multi-root multi-frontal searches for addressing common
bottlenecks in motion planning.
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