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Chapter 5

Precision: Effects of Foreshortening

Changes in latitude, changes in attitude.
— Jimmy Buffett

In this chapter we show how perspective foreshortening is manifest in the local spatial
frequency representation of stereo images. Ours will be a forward-reasoning analysis, begin-
ning with complete knowledge of the three-dimensional geometry of the scene and ending
with its two-dimensional projection in the image plane. The primary result is the presen-
tation (in Equation 5.10) of the Foreshortening Factor that allows us to compensate for
arbitrary foreshortening effects without explicitly warping the images. This result makes
no restrictions on the surface texture, and will not require the use of disparity derivatives.
The complementary technique (starting with the projections to determine three-dimensional
geometry) will be presented in Section 5.4.

To simplify the analysis, we assume the only object in the world is a textured flat plate
that is either parallel to the image plane, or rotated about the vertical axis by some angle
6. We further assume that the stereo cameras have parallel optical (depth) and vertical
(height) axes. Note that we can restrict our attention to the effects of foreshortening in
one-dimensional image scanlines, rather than complete two-dimensional images, since all
disparities will be horizontal under this assumption. Our world model will likewise be a
two-dimensional slice through the three-dimensional scene. Figure 5.1 shows an overhead
schematic of a horizontal slice through the world. We adopt the convention that parameters

measuring distances in the world will be capitalized (e.g., X, Z1), and those measuring
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S(Xs)

Figure 5.1: Overhead view of the foreshortening model. Xg is the distance from the point
exactly in front of the left camera (the origin Og at distance Z;) to the point (5) on the plate
being studied; x;;, and z;r are the left and right pixel indices of the image of surface point
S; the cameras are separated by baseline B and the surface tilts away from the cameras at

angle 6.

pixel or camera distances will be lower case (e.g., 1, f).

Figure 5.2 illustrates the effect of this foreshortening in the frequency domain. To simplify
the demonstration, a flat plate that has a surface texture with a single frequency component
is used: a sine wave. The figure has two images of the plate on top, and the corresponding
scalogram magnitude plots below. The head-on view of the plate on the left side of the
figure has the expected scalogram; a horizontal line centered at the frequency of the sine
wave, with some extra energy (dark regions) at the edges of the plate where it borders the
plain white background. The rotated view also has a straight line in the scalogram, but
it appears at higher frequencies and is no longer horizontal. This transformation will be
quantified precisely in the closed-form foreshortening factor developed later in this chapter.

Although our ultimate goal is to find the disparity between two stereo images, we must
first determine how the appearance of the object’s surface texture will differ between them.
Specifically, we want to know how the sampling rate varies between the two images. This is
a geometric formulation; what matters is how much of the surface is being mapped to each

pixel, not the actual surface texture (i.e., color intensity). So for each location Xg on the
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Head-on Plate Rotated 60 degrees

Scalogram Scalogram

Figure 5.2: The effect of foreshortening on scalogram magnitude. Two views of a flat plate
with a sinusoidal texture appear on top, and the scalogram magnitudes for their central
scanlines appear below. The responses are similar, but are compressed to higher frequencies

in the rotated view.

surface, we want to compare the pixel areas in the left and right images. Mathematically,

we want to compare the left sampling rate % to the right sampling rate gf;:

61L

bXs Sz
: : 5z iR
Sampling ratio = ng = 5o (5.1)
ZiR

Simplifying the ratio in this way proves most useful. The resulting formula tells us we
can compute the sampling ratio (which will be called foreshortening factor later) in image
space, without having to explicitly model the distance Xg along the object. Unfortunately,
it also implies that we need the disparity derivative (recall ddisparity/dz;y, is simply é(a;z, —
zir)/0x;, = 1 — Sampling Ratio). Since our ultimate goal is to estimate disparity, it would
be best if we could avoid using both disparity and its derivative in our calculations (the
derivative of a noisy signal will be even noisier). The remainder of this section will show

how we can express this ratio with terms that do not require disparity derivatives.
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Figure 5.3: Overhead view of the fore-
shortening model. Similar triangles for the
left camera geometry are highlighted (see
Equation 5.3).

Figure 5.4: Overhead view of the fore-
shortening model. Similar triangles for the
right camera geometry are highlighted (see
Equation 5.4).

5.1 Relating Disparity to Surface Angle

How is disparity related to the surface angle? Equation 1.2 gives the disparity for an individ-
ual point, but we will now show how it varies across a surface. We will focus our attention on
the distance from the left camera to the surface point immediately in front of it, expressing
other depths in terms of this value Z.

Recall that disparity is the difference of the left and right pixel indices. So let’s see how
each of the left and right indices (z;z and x;r) relates to the surface angle 6. A quick look

at Figure 5.1 shows us the general answer using similar triangles:
pizel index X World Coordinate (5.2)
focal length 7 World Coordinate '

Figures 5.3 and 5.4 highlight the similar triangles for the left and right scene geometries.

Applying Equation 5.2 to those figures we obtain expressions for z;;, and z;p:

T Xgcosb (5.3)
f N ZL —I-XS sin 6 )
zirp  Xs cosd — B (5.4)

f Zp+ Xgsinb
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Equations 5.3 and 5.4 give us expressions for z;;, and z;g in terms of the focal length f,
baseline B, distance in front of the left camera Zj, surface angle #, and location on the
surface Xg. These equations represent projections of the same surface point Xg into two
image planes, and we can find the relationship between them by solving Equations 5.3 and

5.4 for Xg and setting them equal.

A _ z;rZL + Bf

= 5.5
fcos® — x;;sinf fcosh — x;psinf (5:5)
Solving Equation 5.5 for the right pixel index gives us:
B B

;R = XL <1 + Z—Ltan 9) — Z—f (56)

And finally, recalling that disparity is the difference of the two indices:

B

disparilty = x;, — x;p = Z—f — ajiLZ—L tan (5.7)

Equation 5.7 is nearly the answer we want. It relates disparity to the scene parameters,
and does not depend on knowing the actual surface location. It does require knowledge of
71, (distance to the surface point in front of the left camera), unfortunately, but we will
eliminate this restriction below.

Equation 5.7 has some interesting interpretations. When the surface is frontoplanar (i.e.,
6 = 0 and thus tan @ = 0) it reduces to the familiar expression relating disparity to depth
from Equation 1.2; this is correct since all surface points would lie at the same depth 7.
And for an arbitrary fixed angle 6 the disparity derivative is constant, i.e., the disparity
varies linearly with respect to the image location ;7. While we won’t take advantage of this

property of the derivative, it could prove useful to shape-recovery techniques.

5.2 Expressing the Foreshortening Factor using Im-

age Parameters

Now that we know how the disparity and pixel locations relate to surface angle, let us return
to the Foreshortening Factor (Equation 5.1) and eliminate the derivative by substituting

for z;p:
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Figure 5.5: Left and right views of a surface tilted 65 degrees. Upper images are the central
scanlines, lower images are their corresponding scalograms. You can see similar features in
both scalograms: those in the left image are present at higher spatial frequencies because

the left image is subject to greater foreshortening effects than the right image.

Sz §{ay (1 4+ 2 tang) — BL
Foreshortening Factor = TR _ ( ( 2 ) ZL) from Equation 5.6
(S.”L‘Z'L 5$iL

B
Geometric Form = 1+ Z—tan@ (5.8)
L

This expression is very interesting. It tells us that for a given flat surface, the Foreshort-
ening Factor is constant over both images of the surface. In other words, the local spatial
frequencies of the left and right images are related by a simple constant scale factor. You can
get a feel for this by visually tracking the low magnitude phase singularities (white spots)
between the two image scalograms in Figure 5.5.

The fact that foreshortening causes frequency shifts has been noted in the literature (Fleet
& Jepson, 1993), but no explicit model was given to explain it in the context of stereo vision
(but see (Krumm, 1993; Malik & Perona, 1989) for single image texture-based models).
Instead, the instantaneous frequency was recovered using a heuristic averaging technique.
This technique yielded somewhat better results than the use of direct frequency, but did not
take advantage of the scene geometry to compute the precise shift. This averaging technique
also failed whenever the frequency shift caused the instantaneous frequency to fall outside the
range of the filter in either of the images. Our model overcomes these problems by making
use of all available frequency bands, rather than limiting attention to a small number.

The result in Equation 5.8 is useful for describing the form of the foreshortening effect
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(that of a constant scale factor), but it would be useless in a stereo matcher since it requires

knowledge of the depth Z;. A program that computed depth given depth would not be very

impressive. So how can we eliminate the need to know Z;7 Consider the ratio %. We can

rewrite Equation 5.7 as:

B _ disparity (5.9)
ZL f — T, tan 6

and replace that in Equation 5.8, giving us this final expression for the projected form of the

Foreshortening Factor:

disparity tan
f—x; tan

Projected form = 1 (5.10)

This is what we want! Equation 5.10 relates parameters in the image plane to the surface
slope 6, but does not require prior knowledge of the distance to the object or an estimate
of the disparity derivative. It does require use of some known parameters (focal length f,
image location ;1) and variables being estimated (disparity, surface angle 8), but we will
see how to manage these algorithmically in Section 5.4.

In this section we described the effect of perspective foreshortening in terms of local
spatial frequency. We developed this theory in steps to demonstrate several properties:
the frequency shift (aka foreshortening factor) between images of an oriented flat surface
is constant, it is independent of the surface texture, and it can be expressed using only
disparity and surface angle (without disparity derivatives). Section 5.4 will show how these

results can be applied to a stereo matching system.

5.2.1 Verifying the Foreshortening Factor

Before continuing, we will verify the geometric form of this Foreshortening Factor using a
simple example: a flat surface with a sinusoidal texture. If the model is correct, the surface’s
apparent spatial frequencies will be shifted between the two images by the amount given in
Equation 5.8. Note that we’re not solving the stereo problem yet, in fact this demonstration
will use the known disparity to compare the left and right image frequencies at the same

surface locations. What this will show is that Equation 5.8 accurately predicts the frequency
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Figure 5.6: Verifying the Foreshortening Factor - These graphs compare the predicted fore-
shortening factor (dashed line) against that computed using only image information (solid
line). The virtual lab setup (top left) and an example input image with surface angle of
60° (top right) are shown first. Next we have the results derived from a surface angled at
0° (middle left), 30° (middle right), 45° (bottom left), and 60° (bottom right). The virtual
surface is 4.0 units from the left camera, both cameras have a field of view of 45° and are
separated by a baseline of 0.4 (the surface in the actual images is larger than that shown in

the top left rendering).
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shift of a simple signal. We will use synthetic data so that our ground truth can be as precise

as possible.

Recall the geometric form of the Foreshortening Factor from Equation 5.8:

B
Foreshortening Factor = 1+ 7 tan @
L

Just what is this foreshortening factor? It describes the relationship between the spatial
frequencies at two image pixels representing the same surface point. How can we measure

such frequencies, and how do we know they correspond to the same surface point?

Finding the frequency is easy, but imprecise; we will use an artificial surface texture
that contains a single peak in the positive frequency domain, i.e., a sine wave. Its apparent
frequency can be found simply by locating the filter output with highest magnitude.! As a
further refinement, we will use the instantaneous frequency (phase derivative) of that filter
output as our frequency estimate. Under the scalogram representation this corresponds to

picking the maximum magnitude value in each column.

The procedure for finding corresponding points is somewhat complex, but simply stated
involves using knowledge of the ground truth to give the disparity at each pixel (disparity
is inversely related to depth, which is known from the 3D model). Remember, we are not
trying to solve the stereo problem at this point, we are simply trying to verify a property of

corresponding pixels.

Having established the correspondence in the 2D images, we extract the apparent fre-
quency at each pixel using the method described above, linearly interpolating the instan-
taneous frequency measurements from the right image. Finally, we graph the ratio of the
computed image frequencies values against the predicted ratio in Figure 5.6, for several sur-
face angles. The computed ratio is quite accurate but gets progressively less precise as the
angle increases. The loss of precision occurs from several factors, e.g., our use of simple
linear interpolation to compute the frequencies, and our filter set which only samples the

highest frequencies very sparsely.

'In practise our windowing scheme provides only high frequency info at the image borders, so our com-
puted Foreshortening Factor will become inaccurate at the ends of the graph since the actual spatial frequency

is lower than the lowest measured by the filters at that pixel.
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Frequency Shift as a function of Depth and Angle

1.95

457 -
433
4.1
Scale Factor 5
5- e
4+ .
35+ P ANy 291
3 L
251 243
2r 2.19 -
15+

124 -

10 5o 30

40 50 &5 05 Surface Angle (radians)
Depth Ratio 70 80 90100 5

Figure 5.7: Foreshortening Factor as a function of Depth and Angle. Depth is unitless

relative to the baseline, and varies from 3 to 100. Angle varies from zero to 85°.
5.3 Applicability

How important is this foreshortening analysis? More specifically, how often do situations
arise in which the assumption that a surface is frontoplanar can cause problems for stereo
systems? Intuitively the analysis would seem to be needed any time a surface is slanted
at a sharp angle; but what if the surface is so far away the slant can’t be measured? One
might also think it only necessary for surfaces at the sharpest angles; but close up images
can exaggerate even small angles. We will use the Foreshortening Factor to quantify these

effects in the spatial domain.

Since we want to consider the scenery being imaged rather than the images themselves, we
will use the geometric formulation of the Foreshortening Factor from Equation 5.8. Although
this expression is a function of three variables, we can reduce it to two if we consider the
ratio of depth over baseline % to be a single variable. In the rest of this chapter the word
depth will denote this unitless version of depth, expressed relative to the camera baseline. For
example, the distance between a person’s eyes would be 1, the distance to their computer
monitor 4-6, and the distance to the far wall in a typically small three-person graduate
student office about 100. Figure 5.7 plots the near-complete Foreshortening Factor space for

a person looking at objects in such an office.
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Depth Range | P(>10% effect) | Example Domain

0-100 | 0.210355 Human in office
5-20 | 0.354404 Robot Vehicle
30-100 | 0.0808227 Inspection Robot

Table 5.1: Probability that a surface exhibits >10% variation between images due to per-
spective foreshortening. The distribution of surfaces is assumed to be uniform within the

range of orientation angles from —7 to 7, and depth ratios (distance divided by baseline)

27

are as specified. A sample derivation can be found in Appendix B.

Figure 5.7 shows the Foreshortening Factor computed from many combinations of depth
and orientation (except for the extreme values near the point at which it approaches infinity).
The graph makes it clear that the Foreshortening Factor has its greatest impact when objects
are sharply slanted and/or located near the cameras. We can quantify its influence using
the contour lines that separate regions of large and smaller foreshortening effects. Suppose
we assume that surface depth and orientation are uniformly distributed throughout a scene.
Then we can compute the probability that a surface will require at least a 10% correction
term by finding the area under the 1.1 Foreshortening Factor contour curve. The derivation
follows in Appendix B, but the result is that given a uniform distribution of angles from 0°
to 90° and depths from 0 to 100, the probability that a surface will require at least a 10%
correction is 0.210355. Try it out; if you're sitting in an office, see if you can find one sharply

foreshortened surface for each set of four nearly head-on surfaces in your immediate vicinity.

Of course the probability of finding foreshortened surfaces depends very much on the
domain being studied. Robot vehicles like Carnegie Mellon’s NAVLAB often use a very
wide baseline, on the order of one meter. With the nearest visible ground point being about
five meters away, depth ratios of 5 to 20 are common in this domain. In that range, under the
same assumptions of uniform distribution, the probability of finding a foreshortened surface
jumps to better than one in three (see Table 5.1). Inspection robots typically use much
smaller baselines, with corresponding depth ratios from 30 to 100. Even in that range, the
probability of finding a 10% foreshortened surface is significant (nearly one in twelve). These
results suggest that a wide variety of stereo vision systems could benefit from an analysis

that considers the effects of foreshortening.
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5.4 Application

The analysis in Section 5 is not only theoretically interesting, it can also improve the per-
formance of real stereo algorithms. Phase-based methods such as (Fleet et al., 1991; Sanger,
1988; Weng, 1993) as well as our method can benefit from this analysis. In this section we ex-
plain how to apply the Frequency Shift to these phase-based stereo matching algorithms and
demonstrate how its application to our system increased the maximum matchable surface

angle from 30 degrees to over 75 degrees.

5.4.1 Extending Phase-based Stereo Algorithms

Some have argued that a small number of Gabor filters are sufficient for stereo matching.
(Fleet & Jepson, 1993; Weng, 1993) The idea is that although the phase may vary slightly
across nearby frequencies, the amount of variation is small enough that the error introduced
in measuring it at what might be the wrong frequency will be insignificant. But the assump-
tion is made that the same filters can be applied to both images, i.e., that both images can
be sparsely sampled at the same set of spatial frequencies. As was shown in the preceding
section, that assumption is not true when perspective foreshortening occurs in the images;
indeed, we have seen that frequency shifts of even 10% can occur often. Instead of introduc-
ing error by sampling at the wrong frequency, we would like to turn these perturbations to
our advantage by using them to confirm hypotheses of surface slant.

We will need a dense sampling of the phase space to get the most accurate results. We
will also interpolate phase values between adjacent frequencies when possible. The image
scalogram provides a useful framework for such computations, and will be used as the basis
for our foreshortening-corrected stereo algorithm.

The method outlined in Section 3.7 uses a global minimization strategy to find the best
disparity from a list of candidates. This framework makes it easy to include a foreshortening
correction term: in addition to searching disparity space, we also search over surface angle.
Recall from Figure 5.2 that a foreshortened object will generate a response at different
frequencies (i.e., scalogram rows) in the two images. Searching over surface angle allows us to
predict the corresponding frequency directly. Pseudocode for this revised algorithm is given
in Table 5.2. The only difference between this and the original algorithm is the presence of

the correction term on the right image phase measurements. This simple presentation of the
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Given: A pair of greyscale images, lists of potential

disparities and surface angles, focal length f.

For each row
Compute Left and Right Scalograms L and R
For each column ¢
For each disparity d

For each angle a

dtana
ctana— f

error = > pric, A)-

A:p(X)>threshold
|A¢z’deal(d7 A) = (¢dn(e, A) — pr(c+d, X - cm’rection))|27r

Return d (and a) that yield minimum error

correction = 1 +

Table 5.2: Pseudocode for the foreshortening-corrected algorithm. Column index ¢ must be

zero in the center of the image.

algorithm is only made feasible because of the large number of filters used in the scalogram.
The large filter set gives us a dense set of phases at many scales from which to compute the
appropriate subsampled phases.

There are several implementation details that arise from this simple correction factor.
It depends on three variables: the currently hypothesized disparity, surface angle, and the
current location within the image. Because these values vary at each pixel on the image
scanline, it must be recomputed for each hypothesis. And as was mentioned above, the
corrected frequency will almost certainly not be one of those already present in the scalogram;
some method of interpolation will be required. These are not serious problems, but imply

that their implementation will be very compute-intensive.

5.4.2 Results

We added the correction term to the algorithm presented in Section 3.7 using linear inter-
polation between adjacent phases. In this section we present the results of our method on

real images that have been synthetically mapped onto planar surfaces. The use of synthetic
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data allows us to quantify its precision using perfect knowledge of the ground truth.

Consider the stereo pair in Figure 1.3. It shows a synthetic stereo image pair of a flat plate
rotated 65 degrees from the image planes, with the image of a city scene texture-mapped
onto the plate. The actual disparity map (known from the 3D world model) and differences
between the ground truth and disparity computed by three stereo methods are presented
in Figure 5.8. The figure shows disparity maps rendered as perspective surfaces; only the
area known to have texture is shown since the plain white background makes depth recovery

impossible in those areas.

For this demonstration of the foreshortening-corrected algorithm, a set of 501 potential
disparities were considered (0 to 50 in steps of 0.1), and the angle was fixed at 65 degrees.
The RMS error of this result was 0.38 pixels over the entire plate, with ¢ = 0.63. The bulk
of this error can be attributed to two causes: the dark spots and a subtle systematic error
over the surface. The spots most likely arise from an artifact of the rendering process which
caused a few nearby pixels in one image to map to the same intensity. The more subtle
effect is that the disparity error, while within measurement bounds at the ends and center
of the plate, varies by as much as 0.5 pixels between the center and end of the plate (see

Figure 5.8, upper right).

The Kanade-Okutomi variable-window refinement method (Kanade & Okutomi, 1990)
uses a statistical analysis to grow the window from 3x3 to some maximum, stopping when
an error criterion (based on local changes in intensity and disparity) is exceeded. For this
test we let disparity vary between 0 and 50 pixels (as in our method), let the window size
vary from 3 to 21 pixels, and ran the method for 10 iterations. It approximated the surface
shape well, but produced many more outliers and quantized the flat tilted surface into several
stair-step frontoplanar patches (see Figure 5.8, upper right). The RMS error of this method
was 0.99 pixels over the entire plate, with o = 2.36.

The uncorrected phase method results are also shown in Figure 5.8. The same 501
potential disparities were considered, but foreshortening correction was not applied. The
RMS error of this result was 3.77 pixels over the plate, with ¢ = 6.23. The main source of
error is a general flattening trend over the entire plate, most likely due to the larger windows
used at lower frequencies. Like most traditional stereo matchers, the uncorrected method
has a strong bias toward frontoplanar surfaces, but unlike Kanade/Okutomi this uncorrected

phase method is unable to restrict its attention to the smallest-sized windows.
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Figure 5.8: Ground Truth and computed disparity maps for a surface angled at 65°. The top
row shows ground truth in perspective on the left, a graph of a representative scanline from
all methods on the right. The middle row shows perspective views of the disparity maps
computed by the foreshortening-corrected method, Kanade/Okutomi and the uncorrected
phase method. The bottom row shows differences between actual disparities and those
computed by the foreshortening-corrected method, Kanade/Okutomi and the uncorrected
phase method, for pixels that image the plate; darker values denote larger errors. Only
differences between 0 and 2 pixels are shown, errors larger than 2 pixels appear as a 2 pixel

error. Actual plate disparities range from 25.3 to 39.9 pixels.
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Other Rotation Angles A cross-section of results for different angles of rotation is pre-
sented in Figure 5.9. For these results only a representative scanline is shown, to demonstrate
how closely the computed disparity matches the actual ground truth. Only the disparities
on the plate itself are correct because the region behind it is a plain white background, and
there is no way to distinguish the correct disparity of a featureless surface.

The uncorrected method does reasonably well with small angles, but at slants greater
than 30° its performance degrades by several pixels. In contrast, the foreshortening-corrected

method performs well even at 75°, though at 80° the systematic error becomes more apparent.
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Figure 5.9:

Ground truth and disparity

(computed by both the uncorrected and

foreshortening-corrected phase methods) for the center scanline of the city scene at vari-

ous rotations. From left to right (and top to bottom): 0, 15, 30, 45, 60, 75, and 80 degrees.
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Chapter 6

Contributions

And at the laste he took conclusioun.

— Chaucer, the Knight’s Tale

This thesis has addressed several long-standing problems in stereo vision: perspective
foreshortening, ambiguous matches, and the quantitative evaluation of stereo results. We
also demonstrate by example the utility of the local spatial frequency representation in the

context of stereo vision. Some particular contributions include:

Perspective Foreshortening We addressed the long-standing problem of perspective fore-
shortening in stereo vision. Ours is the first work to provide an analytical closed-form
expression for the effect of perspective foreshortening on stereo matching in the fre-
quency domain, and demonstrate that the model improves the results of a real stereo
method. Results relating foreshortening to the frequency domain have appeared in the
shape-from-texture literature (Krumm, 1993; Malik & Perona, 1989), but without a
description of the use of disparity; instead, the mapping between two areas was left
as a general affine matrix. Similarly, (Jones & Malik, 1991) uses an affine matrix to
relate two corresponding image patches in the context of stereo, but does not provide
the analytic relationship. Ours is the first presentation to unify these three themes
(stereo, foreshortening, frequency domain) and the first to demonstrate good matching
even at slants up to 75 degrees (the spatial-domain system of (Belhumeur, 1993) might

perform as well, but this has not been demonstrated).
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Adaptive Scale Selection We demonstrated the improvement of our scale-adaptive algo-
rithm over traditional multiscale (e.g., coarse to fine) algorithms. Ours is the first
multiscale phase-based method that is not confused by missing information at inter-
mediate scales. Most of the prior stereo systems work either at a single scale or using
a coarse-to-tine approach in a fixed order. Ours is the first system to invoke automatic
scale selection (via filter magnitude weighting) in a nonrestrictive manner. (Sanger,
1988) also used magnitude weighting, but imposed a restrictive limit on candidate dis-
parities. (Jones, 1991) also used some scale-space processing, but only to eliminate
the coarsest scales at depth discontinuities. Ours is the first system that can handle

missing information at any scales.

Phase Wraparound We eliminated the restriction of previous phase-based stereo algo-
rithms on the maximum disparity range, and described a new stereo algorithm that
eliminates the problem of phase wraparound. Ours is the first phase-based stereo

method to overcome these limitations.

New Disparity Model We proposed a new error model for disparity that more accurately
represents the inaccuracies that result from ambiguous matches. This new model
characterizes the results of stereo processing more appropriately than the traditional

two parameter model (disparity value with variance).

Datasets We proposed a new taxonomy for stereo vision experiments, and provided some
of the first public datasets with piecewise dense ground truth. These datasets and
the easy-to-use tools for creating them should encourage the community to use (and

demand) more quantitative evaluations of stereo systems.

To summarize, our method uses an adaptive search through scale space. We combine
estimates from the most reliable scales in a framework that can be used to evaluate the
likelihood of arbitrary disparities at each pixel; we are not limited by the wavelength of
any single filter, as are all previous phase-based methods. The method eliminates the need
to perform explicit phase unwrapping, thereby improving accuracy, but at the cost of an
additional search over candidate disparities.

Potential future extensions to this work include:
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. Addition of a precision parameter (variance) to the representation of ground truth in

Chapter 2 to account for measurement errors and variation within a pixel.

2. Development of a synthetic data generator with better lighting models (e.g., using

radiosity rather than ray tracing).

3. Addition of sequences of stereo images to the taxonomy in Chapter 2.

. Experimentation with the shape of the evaluation function (as in Equation 3.14); a
replacement for AbsDiffMod such as a cosine might yield smoother results, or be faster

to implement.

. Speed up the processing by incorporating the fast wavelet transform with appropriate
interpolation in place of the complete scalogram computation, using a smaller set of

filters, and a smaller set of foreshortening angle candidates.

. Extend the occlusion and disparity models to account for multiple depths within a

pixel.

. Explore the use of nonsymmetric filters (in place of the Gaussian envelope used by
Gabor filters) to better address the disparity spillover that occurs at depth disconti-

nuities.

. Develop search strategies over the binary “peaks-only” images of Chapter 4 to merge

pixel disparities into potential surfaces.
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Appendix A

Theodolite Error Analysis

Both stereo disparity and ground truth measurements have finite precision which should be
made explicit. As a first step toward extending our notion of ground truth to include this
precision, we present in this section an analysis of the resolution obtainable using surveyor’s

theodolites in their present configuration as part of the Calibrated Imaging Laboratory (CIL).

The Calibrated Imaging Laboratory theodolites (Sokkisha, 1984) can repeatably measure
angles to within about 20 seconds of arc. That is, during a single test run, an individual can
repeatedly aim the theodolite site at a target, unlock it, then aim again and be confident
that the difference between successive measurements will never be more than 20 seconds.
This is in spite of the fact that the instrument readout is apparently measured to the nearest

tens of seconds (tens not tenths).

We would like to know how accurate subsequent X-Y-Z computations can be, under
this limitation. A simple two-dimensional (X-Z) analysis will give us a rough idea of the
magnitude of the precision in the horizontal plane. Figure A.1 shows the overall model:
depending on the angles measured, the computed depth D might lie anywhere within the
shaded region. Since that region is polygonal, we know that the largest possible error (i.e., the
maximum distance between any two points in the region) will occur between the endpoints
of one of its two diagonals. Just how long are the diagonals? To determine that, we need to

derive equations for the horizontal and depth coordinates. We address the horizontal first.
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Left

Theodolite Right

Theodolite

Figure A.1: Region of error. The greatest possible error occurs across one of the Target Area

diagonals (see Figure A.3 for a close up).
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Figure A.2: Two dimensional view of the theodolite imaging process.

A.1 Deriving equations for the coordinate axes

Figure A.2 shows the geometry of the scene. We will treat the two theodolites (as well as
the target) as points. 6 is the angle measured by the left theodolite, ¢ is that measured by
the right. B is the length of the baseline between the two theodolites; the baseline is split
in two at the projection of the target point: B = L+ R. D is the distance from the baseline
to the target point. If we define the left theodolite to be the origin of a coordinate system

with horizontal axis along the baseline, we have D as the vertical depth coordinate, and L
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as the horizontal coordinate.
Now we need to express D and L as functions of the two angles and baseline alone. The

left and right angles bear a simple relationship to the two baseline parts:

L R
tanf = D and tany = D

Solving for D and setting them equal, we have:

L tan(0)

R tan(v)

Recalling that L and R sum to the baseline B, we have by substitution:

B B
L = W and R = W (1&1)
+ tan(6) + tan(v)

This solves our horizontal coordinate problem: we have an expression for L that depends
only on angles 6, ¢ and the baseline. Moving on, these equations give us two expressions for

the distance D between the baseline and target point:

L R

D = =
tanf  tan

both of which reduce to the same symmetric result:

- m (A2)
So now we have the depth coordinate D as well. Without loss of generality, we assume
the baseline is a constant factor and write D = d(6, ) and L = [(0,v). Now we can compute
the lengths of the two diagonals in the Target Area; the larger one will give us the maximum
possible error.
To compute the lengths of the diagonals h and v (shown in Figure A.3), we find the
Euclidean distance between their endpoints. Call the theodolite measurement error §: for

the CIL theodolites ¢ is 20”. Then the length of the “horizontal” diagonal h (it’s not really

horizontal) is:

1(0,) = \/(d(0, — &) — d(8 — 6,))* + (1(8,0 — 8) — (0 — 5,))? (A.3)

The vertical diagonal v (it’s not really vertical) is computed in the same way:
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Target Area

Figure A.3: Target Area Precision (zoom in on Figure A.1): the largest error is the length

of one of the diagonals h and v.

0(0,%) = \/(d(0 — 8,0 — 8) — d(6,4))? + (1(0 — 5,4 — §) — 1(6,))? (A4)

Now we’re done; the length of the horizontal diagonal is the maximum error in the
horizontal direction, the vertical diagonal is the maximum error in depth. All that remains

is to plug in the measurement error 6 = 20".

A.2 Results

In the current laboratory configuration, the theodolite measurements will vary from 10 to
70 degrees, if all objects of interest lie on or above the object optical table. Figure A.4
shows the shape of the error surface for this configuration, with 6 = 20” and assuming a unit
baseline. How do we interpret this?

The largest error in Figure A.4 is about 0.0015, when both theodolites have angles of 10°.
What does this really mean? Assuming a baseline of 86.1 inches (219cm), it means an object
6.21m away can only by measured to within 3.3mm.! However, the far end of the optical table
is only about 3m away from the baseline, and according to the model the center point on the
far edge gives angles of about 20° for each theodolite. The error for those angles is 0.0004,
which means the best precision for the far end of the table is 0.876mm= 0.0004-219cm. Thus

16.21lm= — 2191 45nd 3.3mm= 219cm-0.0015

tan 10°4tan 10°
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Theodolite Error (10 to 70 degrees)

Hori zontal Error ——

0. 0015

Figure A.4: Error Space for § = 20" with unit baseline: depth error v(6,v) is greater than
horizontal error h(6, ) for all but the nearest points (when the sum of the angles is greater

than about 90 degrees)

it’s safe to say our theodolite measurements over the optical table are in general accurate to
within a millimeter.

Nearer measurements have better accuracy. For example, in the CIL-0001 Stereo
Dataset the left horizontal angles range from 41 to 50 degrees, and right angles from 31
to 42 degrees. The maximum error in that range is 0.296mm = 0.000135 - 219¢m.

It is in fact possible to compute the precision at each point. Simply plug the angles
measured into the error terms defined above. Or to estimate the precision for a whole
region, run the code in Table A.1 through the GNUplot package with appropriate limits
(instead of 10° to 70°), and visually pick out the largest error.

Limitations:  The acquisition of ground truth requires that static objects be imaged in
a laboratory environment. However there are many applications for which dynamic imagery
is required, and stereo systems must be tested using comparable data. The acquisition of

such data implies that no ground truth will be available.
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d2r = pi / 180.0

hor(x,y) 1/(1+tan(x * d2r)/tan(y * d2r))

ver(x,y) 1/(tan(x * d2r) + tan(y * d2r))
d = 20.0/3600
splot [10:70] [10:70] \
sqrt ((hor(x-d,y-d)-hor(x,y))**2 + \
(ver(x-d,y-d)-ver(x,y))**2) title "Depth Error", \
sqrt ((hor(x-d,y)-hor(x,y-d))**2 + \
(ver(x-d,y)-ver(x,y-d))**2) title "Horizontal Error"

Table A.1: GNUplot commands that generated Figure A.4
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Derivation of Foreshortening

Probabilities

We present here the derivation of one of the probabilities from Table 5.1. Figure 5.7 showed
the Foreshortening Factor computed from many combinations of depth and orientation (ex-
cept for the extreme values near the point at which it approaches infinity). The graph makes
it clear that the Foreshortening Factor has its greatest impact when objects are sharply
slanted and/or located near the cameras. We can quantify its influence using the contour
lines that separate regions of large and smaller foreshortening effects. Suppose we assume
that surface depth and orientation are uniformly distributed throughout a scene. Then we
can compute the probability that a surface will require at least a 10% correction term by
finding the area under the 1.1 Foreshortening Factor contour curve. This derivation assumes
the depth range begins at zero (the more general results require a little more work).

We want to find:

tand
P(Foreshortening Factor > 1.1 or < 0.9) = P ( aclil > 0.1)
for d = % € [0:100] and 6§ € [-7 : 7], each uniformly distributed. Since tan is symmetric

we can eliminate the absolute value by restricting the angle 6 to [0 : 7]. Continuing:

g 1 tand
P ( Z 01) _ P (tan 9 Z 01) _ fO min (ForeshEortening Factor—1" 100) d0
I e Jo0dddd

tan @

S min (t22€,100) df

0.1 7

507
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To eliminate the min from the integral we must find the minimum angle requiring a 10%

correction at distance 100:

0nin = arctan 100(Foreshortening Factor — 1) = arctan 10 = 84.2894°

Now we can split up the integral into two parts and evaluate it:

0.1 0.1

Insecé funin
0.1 |,
= 23.0756 4 9.96688

3 tan @ fmin tan 3
/ min (ﬂ,loo) b = / anf / 10040
0 0 emin

+ 9.96688

This brings us to the final result:

d

So under the assumption of uniform distribution on depth ratio from 0 to 100 and angle

tan 8

33.0425
>0.1] = = 0.210355
507

from —90° to 90°, the probability of a surface exhibiting at least a 10% foreshortening effect
is 0.210355.



Appendix C

Numbers

Table C.1 shows the default parameter values used to generate the images in this thesis.
Additional details can be found in the Matlab source code used to generate many of the
actual images, especially those in Chapters 3 and 4. This code is available on the web from

Mark Maimone’s Index Page.*

http://www.cs. cmu. edu/ ~mwm/
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Parameter Value Comments

Disparity Range d 0,1,...,50 The range of candidate disparities
can usually be inferred by figure axes,
and the step size by the visible
quantization in disparity space images.
Often the step size will be less than 1,

which indicates subpixel precision.

Wavelengths W 2,3,...,n/4 Unless otherwise stated, we typically
use the image scalogram sampling

which is linear in wavelength.

Wavelengths per window m 4 The Gaussian envelope of a Gabor
filter will be truncated outside this
many wavelengths. This determines the

window size.

Sigma fraction oy 1/6 Given a fixed window size (m),
the o parameter of the Gaussian will

be this fraction of the window.

Fleet threshold .05 Cutoft for Equation 3.10.

Table C.1: Default parameter values used to generate images in this thesis.
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Application of Visual Reconstruction

XXXX XXXXXXX XXXXX
Pittsburgh, PA XXXXX
(412) XXX - XXXX

work: (412) 268 - 7698
email: mwm@cs.cmu.edu

October 3, 1995

Prof. Peter Schickele

XXXXX XXXXXXXXXXX / NY Campus of U of SND at H
XXX XXXX XXXX XXXXXX

New York, NY XXXXX

Dear Colleague:

Greetings! 1 am writing to inform you of a most remarkable discovery: the visual ap-
pearance of Herr P.D.Q. Bach’s headstone within the mausoleum on the outskirts of Baden-
Baden-Baden. Although said mausoleum was destroyed in the 1840s ([1] pp. 112-113),
computer analysis of the data collected by your esteemed research team ([1] pp. 131-135)

has made possible visualization of this artifact whose historical significance cannot be un-
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derestimated.

As you are no doubt aware, my own area of expertise lies in techniques for reconstruction
of three-dimensional shapes from oblique imagery [2]. Application of these techniques to
those passages of text referring to Herr Bach’s exploits at Madame Hollender’s ([1] pp. 100-
101) resulted in images of a variety of organic experience [3] unsuitable for publication in
any reputable medium of scientific discourse. 1 remained firmly committed to the project,
however (anybody who says I'm not is a liar), and following a, hunch, applied the principles
of super-resolution [4] to your original images graciously made available to me by a random
house-keeper for a remarkably small fee.

I shan’t bore you with the details of the reconstruction, but merely outline the process.
Having accepted our dough, a dear (a female dear) house-keeper started us off with the data.
Following the principles of laser holography [5], a specially-modified computer filtered the
light ray (a drop of gold on Sun interface was required) passed by me through a Headpiece to
the Staff of Fa ([6] [% ) over a distance of some kilometers, a long long way to run. So like a
needle pulling thread!, the beam was fed through the IID/NM T-junction [7] while I retired
for a drink with jam and bread (that will bring us back to dough). Having scaled these
obstacles — naturally filtering out any non-diatons we found floating around — we achieved
our final result, an image of which is enclosed herewith.

Should you find yourself with access to the World Wide Web I encourage you to examine:
http://www.cs.cmu.edu/ "mwn/pdq/smix.html
for background.

Anxiously awaiting your reply I remain...

Your Honor’s and my most especially Highly

Honored Sir’s most obedient servant,

Mark W. Maimone

Ta
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(sum of absolute differences), 5, 95
Sampling Theorem, 50, 52, 66
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SSD

(sum of squared differences), 5

(sum of squared distance), 12

synthetic noise, 30

window effect, 55

window size, 6



