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ABSTRACT 
The computer and communication systems that office 
workers currently use tend to interrupt at inappropriate 
times or unduly demand attention because they have no 
way to determine when an interruption is appropriate.  
Sensor-based statistical models of human interruptibility 
offer a potential solution to this problem.  Prior work to 
examine such models has primarily reported results related 
to social engagement, but it seems that task engagement is 
also important.   Using an approach developed in our prior 
work on sensor-based statistical models of human 
interruptibility, we examine task engagement by studying 
programmers working on a realistic programming task.  
After examining many potential sensors, we implement a 
system to log low-level input events in a development 
environment.  We then automatically extract features from 
these low-level event logs and build a statistical model of 
interruptibility.  By correctly identifying situations in which 
programmers are non-interruptible and minimizing cases 
where the model incorrectly estimates that a programmer is 
non-interruptible, we can support a reduction in costly 
interruptions while still allowing systems to convey 
notifications in a timely manner. 

Author Keywords 
Situationally appropriate interaction, managing human 
attention, sensor-based interfaces, context-aware computing, 
machine learning, interruptibility. 

ACM Classification Keywords 
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INTRODUCTION 
Modern office workers increasingly find computing and 
communication systems at the core of their everyday work 
experience.  At any given point in time, a person might be 
notified of the arrival of a new email, receive an instant 
message from a colleague, be reminded by a handheld 
computer of an upcoming appointment, receive a phone call 
on their office or mobile phone, and be involved in a 
face-to-face interaction with a colleague.  Any one of these 
demands for attention can be addressed relatively easily, 
but simultaneous or repeated demands can quickly become 
disruptive.  In a study of the perceptions of interruptions 
held by managers in a research organization, Hudson et al. 
found that some managers consider interruptions to be such 
a problem that they physically move away from their 
computers or even away from their offices in order to 
obtain uninterrupted working time [14].  The systems that 
office workers currently use tend to interrupt at 
inappropriate times or unduly demand attention in part 
because they have no way to determine when an 
interruption is appropriate.  A colleague preparing to call a 
person cannot tell that the person is in the middle of 
debugging a complex program, and an email client about to 
announce the arrival of a new message cannot determine 
whether an obvious or subtle notification is currently more 
appropriate. 

Sensor-based statistical models of human interruptibility 
offer a potential solution to this problem [8, 9, 11, 15].  For 
example, a phone system might automatically inform a 
caller that the callee appears to be busy, giving the caller 
the opportunity to consider the importance of the call and 
either leave a message or interrupt the callee.  Prior work 
has explored a similar system that used a manually set 
do-not-disturb flag, but found that people often forgot to 
clear the flag when they became available, to the point that 
people considered the flag unreliable and ignored it [22].  
Email clients and other systems could consider the 
importance of a notification relative to a person’s current 
interruptibility, perhaps deferring or adjusting the salience 
of the notification when a person is busy.   
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Prior studies of the reliability of sensor-based statistical 
models of human interruptibility have primarily yielded 
results related to social engagement.  Our own prior work 
used an experience sampling technique to collect 
self-reports of interruptibility from office workers in their 
normal work environments and built statistical models of 
their interruptibility based on sensors deployed in their 
offices.  One of our primary findings was that a sensor to 
detect whether somebody in an office is talking is highly 
predictive of non-interruptibility [8, 9, 15].  Prior work by 
Horvitz and Apacible had office workers review recordings 
of themselves in their offices and provide labels of their 
own interruptibility.  They found that electronic calendars, 
which capture planned social engagement, and perceptual 
systems capable of detecting ongoing social situations were 
both predictive [11].   

While social engagement is clearly important and these 
results play an important role in deploying models, both our 
intuition and the literature suggest that task engagement is 
also important [14, 23, 25].  This paper presents work that 
more carefully examines task engagement in sensor-based 
statistical models of human interruptibility.  Using an 
approach that we developed for our original studies of 
predicting human interruptibility, we examine how 
programmers respond to interruptions while they are 
programming and how statistical models can be used to 
predict their interruptibility.  Within our approach, we 
develop a statistical model of the interruptibility of 
programmers that is based on low-level input events in a 
development environment.  This model offers the potential 
to reduce costly interruptions at inappropriate times while 
still allowing appropriate notifications to be delivered in a 
timely manner.  Furthermore, its performance is 
significantly better than the base performance typical of 
current systems that generally assume people are always 
interruptible.   

Our approach is based on the fact that sensor development 
can be costly and time-consuming, regardless of whether a 
physical sensor is created in the real world or a software 
sensor is created in a digital world.  Instead of a bottom-up 
approach to sensor development, wherein hardware and 
software sensing systems are developed, deployed, and 
evaluated, we present a top-down approach.  In our 
top-down approach, we first study a problem to collect the 
data needed to make informed decisions about what sensors 
to implement, then develop and validate those sensors.  The 
approach can be summarized as seven steps: 

• Collect exploratory recordings of the environment into 
which sensors will be deployed. 

• Collect a measure or estimate of the concept that will be 
predicted, which is human interruptibility in our work. 

• Examine the collected recordings to develop ideas for 
what sensors may be predictive of the collected measure. 

• Simulate the presence of those potential sensors in a 
systematic way from the collected recordings. 

• Select sensors based on the utility of their simulated 
versions and the expected cost of their implementation. 

• Implement the selected sensors. 
• Validate the effectiveness of the implemented sensors in 

the deployment environment. 

Our prior work has applied this approach to examining the 
interruptibility of office workers.  In this paper, we use our 
approach to examine how programmers respond to 
interruptions when they are programming and what sensors 
might be used to predict their interruptibility. 

In the next section, we further discuss our decision to 
examine task engagement and motivate our decision to 
study programmers.  We then present our experimental 
setup and data collection mechanisms.  This is followed by 
a discussion of the collected recordings and how those 
recordings influenced the direction of this work.  We then 
present our simulated sensors and the results of our 
simulations.  After brief comments on our implementation, 
we discuss our validation and present the resulting model.  
We then discuss our results and conclude. 

TASK ENGAGEMENT AND PROGRAMMERS 
Both our intuition and the literature suggest that capturing 
task engagement is important for creating reliable models of 
human interruptibility [14, 23, 25].  We also note that 
results from our prior work suggest that the task-related 
sensors we deployed in that work (software to detect the 
active application, other open applications, and the level of 
mouse and keyboard activity) could be significantly 
improved upon.  Specifically, there are interesting 
differences in the classification errors that we observed with 
models of different types of office workers [9].  A model of 
two manager participants, selected because we expected 
their interruptibility to be heavily influenced by social 
engagement, correctly identified 90.6% of the interruptible 
manager observations and 81.0% of the non-interruptible 
manager observations.  In contrast, a model of five 
researcher participants, all of whom did at least some 
programming and whom we expected to be less dominated 
by social engagement, also correctly identified 90.6% of 
interruptible researcher observations but only 60.9% of 
non-interruptible researcher observations.  Some difference 
between the researcher participants and the manager 
participants resulted in models that were significantly less 
likely to detect that a researcher was non-interruptible 
(χ2(1, 219) = 8.12, p < .01), and it seems like this difference 
might be an inability of the deployed sensors to capture 
some types of task engagement. 

Beyond our desire to further investigate this aspect of prior 
work, programmers have several other properties that make 
them good candidates for a study of task engagement in 
sensor-based statistical models of human interruptibility.  
Programming is a complex activity that places significant 
demands on working memory and other cognitive 
resources, and failures in working memory are known to 



result in programming errors [1, 17].  Because interruptions 
increase the likelihood of such failures, we may be able to 
develop tools that use models of interruptibility to help 
reduce programming errors, perhaps by preventing 
interruptions or by noticing when programmers are 
interrupted at particularly non-interruptible points in their 
work and then helping them recover.  Programmers also 
seem to be a good example of knowledge workers whose 
work involves significant interaction with computers, and 
so we are hopeful that results obtained with programmers 
will transfer to other computer-centric knowledge work.  
While results seem less likely to transfer to office workers 
who use computers relatively little, we are comfortable with 
this tradeoff because it seems like the advances offered by 
sensor-based statistical models of human interruptibility 
will initially be most relevant to computer-centric workers. 

EXPERIMENTAL SETUP 
In order to control the effects of social engagement and 
focus on task engagement, we studied programmers in a 
laboratory environment completing a realistic programming 
task while being subjected to interruptions.  Participants 
worked in a small office that was free of other people or 
environmental distractions (other than the experimenter, 
who was available for questions about the task or the 
equipment but did not otherwise interfere).  Participants 
worked in Eclipse 2.1.2, a modern development 
environment popular with Java programmers.  Commercial 
screen capture software captured the entire screen at 12 
frames per second in 24-bit color, with no noticeable impact 
on the computer’s performance.   

The Paint Program Primary Task 
The Paint program, shown in Figure 1, is a 503-line 
program consisting of nine classes implemented in Java 
with the Swing toolkit.  It provides basic paint support, 
allowing users to draw, erase, clear, and undo colored 
strokes on a white canvas.  Participants were given the 
Paint program and allowed 70 minutes to address five 
requests.  These requests were: 

• “Users complained that scroll bars don’t always appear 
after painting outside the canvas, but when they do 
appear, the canvas doesn’t look right.  Fix Paint so that 
(1) the scroll bars appear immediately when painting 
outside the visible canvas and (2) the canvas is correctly 
rendered when using the scroll bars to navigate the 
canvas.” 

• “Users complained that they can’t select yellow.  Fix 
Paint so that users can paint with the color yellow.” 

• “Users complained that the ‘Undo my last stroke’ button 
doesn’t always work.  Fix Paint so that the ‘Undo my last 
stroke’ button undoes the last stroke or clear of the 
canvas.” 

• “Users requested a line tool.  There’s a radio button for it, 
but it doesn’t work yet.  Create a line tool that allows 
users to draw a line between points.  Users should be able 
to see the line while dragging.” 

• “Users requested control over the stroke thickness of the 
pencil, eraser, and line tools.  Create a thickness slider 
with values from 1 to 50, which controls the thickness of 
the stroke for all tools.” 

Participants were given access to whatever resources they 
desired, including the Internet and the Java API 
documentation.  They were also given full control over in 
what order to address the requests and how to manage their 
time.  They were told they would be paid $10 for each 
successfully completed request. 

Mental Arithmetic Interruptions 
At random time intervals averaging approximately once 
every three minutes, an audio alert and the flashing taskbar 
icon shown in Figure 2 notified participants of a pending 

 

Figure 1. The Paint program that participants enhanced. 

 

 

Figure 2. The Eclipse development environment, with a 
pending interruption flashing on the taskbar. 

 



interruption.  Participants could choose whether to address 
it immediately or continue with their primary programming 
task until they wanted to address the interruption.  In his 
work on techniques for coordinating interruptions, 
McFarlane refers to this approach as a negotiated solution, 
because a person is able to choose when they want to 
address an interruption.  McFarlane found that this 
negotiated solution generally works best, as long as small 
differences in the time taken to begin addressing an 
interruption are not critical [21].  Robertson et al. have 
compared immediate and negotiated coordination of error 
messages when programming in a spreadsheet application, 
finding that task performance was significantly better with 
negotiated coordination [24].  This evidence that negotiated 
coordination is the best approach to interruptions in 
development environments informed our use of negotiated 
coordination, as we want our study to be based in how 
programmers handle normal interruptions.  Value was 
associated with the interruptions by telling participants that 
they would lose $2 for any ignored or incorrectly answered 
interruption, but we did not enforce this penalty.     

When the participant clicked on the notification, a two digit 
multiplication problem was presented, as in Figure 3.  
Participants were required to do the multiplication mentally, 
and were not allowed to use scratch paper or other 
programs.  Because this task is known to place significant 
demands on working memory [20] and working memory 
failures are known to be a significant cause of programming 
errors [1, 17], this is an effective interruption of a 
programming task.  To ensure the difficulty of the task, 
neither multiplicand had a 0 or 1 in its digits.  To ensure 
participants understood the interruption mechanism and 
were practiced in mental arithmetic, several practice 
interruptions were given prior to the 70 minute primary 
task, during a 10 minute session of surfing web pages 
unrelated to programming. 

EXPLORATORY DATA COLLECTION AND OVERVIEW 
To collect our exploratory data and recordings, we recruited 
ten participants.  Five were undergraduates majoring in 
computer science, four were graduate students in disciplines 
related to computing, and one was a graduate student in 
another field.  Half of the subjects reported more than a 
year of industry programming experience, and the other 
half reported an average of less than two months of industry 
experience.  This section reports on our exploratory 
analyses of the screen capture videos and how those 
analyses directed the work presented in the remainder of 
this paper. 

Given the focus of this work on task engagement, we 
designed our primary programming task and the mental 
arithmetic interruption such that we could use a measure of 
interruptibility based in task performance, as opposed to 
more subjective measures like the self-reports used in our 
prior work [8, 9, 15] or the retrospective labeling used by 
Horvitz and Apacible [11].  However, prior to examining 
our exploratory recordings, it was unclear which of several 
potential measures was most appropriate. 

After examining our exploratory data, we decided to 
measure interruptibility in terms of the difference between 
the time when the blinking taskbar notification was 
displayed, indicating that an interruption was pending, and 
the time that the participant acknowledged the interruption 
by clicking on the taskbar notification, which caused the 
multiplication dialog to take over the screen.  We decided 
on this measure of interruptibility because the exploratory 
recordings repeatedly show participants finishing an edit or 
navigation before responding to the interruption.  These 
behaviors are consistent with the notion that the participants 
were externalizing their working memory into the state of 
their development environment before addressing the 
pending interruption.  Less abstractly, participants who 
were editing code tended to finish the edit before 
addressing the interruption, as opposed to responding to the 
interruption and then trying to resume the edit.  Similarly, 
participants who were navigating to a particular location in 
the source code, such as a method or variable declaration, 
tended to finish the navigation, as opposed to addressing the 
interruption and then trying to remember to where they 
were navigating.  This explanation held even for 
exceptionally long delays in addressing an interruption.  For 
example, we inspected some delays of more than a minute 
that we initially thought resulted from missed or ignored 
notifications.  We found that participants had pasted a large 
chunk of code shortly before the notification, and the long 
delay was due to the participant completing all planned 
modifications of the recently pasted code before attending 
to the interruption. 

One of the more interesting potential measures of 
interruptibility that we considered but decided against is 
whether interruptions resulted in the introduction of actual 
errors into the Paint program.  We did not pursue this 
measure of interruptibility because we found very few 

 

Figure 3. A mental arithmetic interruption.   
Note that it obscures the entire screen. 

 



instances of an error being introduced as a result of an 
interruption.  We believe this is because the negotiated 
coordination of the interruptions allowed participants to 
carefully externalize their working memory in the 
development environment, as just discussed, and note that 
Gillie and Broadbent found similar results [10].  We believe 
that more programming errors would have resulted if the 
interruptions had been presented without warning or delay, 
but decided against this approach in order to remain closer 
to the types of interruptions that programmers experience in 
their normal programming environments. 

SIMULATED SENSORS 
Based on the major activities we observed in the 
exploratory recordings and our decision to measure 
interruptibility as the time for a participant to respond to an 
interruption notification, we developed a set of 21 
simulated sensors in 6 categories, shown in Figure 4.  These 
simulated sensors were chosen because they occurred with 
reasonable frequency in the exploratory recordings, because 
they seem like they might relate to interruptibility, and 
because they might reasonably be implemented.  While the 
specifics of some of these sensors, such as the difference 
between PERUSE and GOTO, might be rather difficult to 
implement, we included them because knowing that such a 
sensor would be predictive could possibly justify the effort 
needed to develop it. 

Working from a specification of when to mark the 
beginning and end of activation for each of these simulated 
sensors, we simulated their output for the minute preceding 
each notification of a pending mental arithmetic 
interruption.  We then created features to capture the 
frequency, duration, and recency of simulated sensor 
activation and built statistical models from these features, 
attempting to predict the interruptibility of the participants.  
We will not present a detailed analysis of these simulated 
sensors, leaving such a presentation for the results obtained 

with our implemented sensors.  Instead, we now comment 
on the results of these analyses that influenced our choice of 
sensor implementation. 

While we had expected the EDIT sensor to be useful, we 
were surprised to find it was the only simulated sensor to 
emerge as predictive.  This might be because the other 
activities for which we created simulated sensors do not 
have the same working memory requirements as editing, 
and so therefore do not result in delays when responding to 
an interruption.  It might also be that they impose working 
memory requirements, but do not occur often enough in our 
collected data to emerge as predictive of interruptibility.  In 
any case, this result led us to focus on implementing a 
sensor to detect the frequency, duration, and recency of 
low-level input events.  On the other hand, if simulated 
sensors like PERUSE, which is based in the activities a 
participant is performing over a period of time, had 
emerged as predictive, we might have instead chosen to 
implement a sensor that analyzed sequences of input events 
to detect different patterns. 

IMPLEMENTATION 
We implemented our sensor by developing an Eclipse 
plug-in that subscribes to every system event generated by 
widgets in the Eclipse development environment.  Because 
Eclipse is implemented in the Standard Widget Toolkit 
(SWT), our plug-in uses the SWT to start from each 
top-level SWT window and recursively descend its widget 
hierarchy, adding appropriate SWT event listeners to each 
widget encountered.  These event listeners log the 
appropriate parameters of each low-level event.  This 
recursive search is executed twice per second, such that 
newly created widgets and dialogs are detected and logged.   

Beyond logging the basic parameters of each event, the 
plug-in also logs some additional information more specific 
to the programming task.  For appropriate events, our 

Reading 

LINE 
Highlights line(s) or moves 
cursor through a brief series of 
lines without editing 

COMMENT Edits comments in the code 

PURUSE Scrolls through code, but not to 
specific line of code, as if reading 

BROWSE 
Expands nodes and/or scrolls in 
the package explorer, but not to a 
specific object 

HOVER 
Interacts with the system, but 
hovers the cursor over a specific 
line of code or explorer object 

IDLE Does not interact with mouse or 
keyboard for more than 2 seconds 

 
Coding 

EDIT 
Edits program code, including any 
cursor movements or line 
selections  

Code Navigation 

FIND 
Expands nodes and/or scrolls in 
the package explorer to a specific 
object 

GOTO Scrolls to a specific line of code 

METHOD Opens a method or variable from 
the package explorer 

SEARCH Places the cursor in a text field to 
searching or replace 

 
Interface Navigation 

UI 
Searches menus, context menus, 
or toolbars for commands for 
more than 1 second 

WAIT Is waiting for a progress bar or 
hour glass cursor  

Task Switching 
ACTIVATE Makes the Eclipse window active 

OUTSIDE 
Performs actions outside the 
Eclipse environment and their 
program 

RUN 
Executes the program with 
CTRL-F11, the Run button, or the 
menu item 

TEST Interacts with their program 

VIEW Switches Eclipse perspectives, or 
closes or open a source file 

 
Debugging 

FIND 
Expands nodes and/or scrolls in 
the package explorer to a specific 
object 

GOTO Scrolls to a specific line of code  

 

Figure 4. The set of 21 simulated sensors, grouped into 6 categories. 

 



plug-in examines the source code currently visible in the 
editor, logging which methods of which classes are visible 
and how many lines of code from each of those methods are 
visible.  This allows events to be associated with classes 
and methods, rather than just characters or screen 
coordinates. 

VALIDATION DATA COLLECTION 
In order to examine the effectiveness of our implemented 
sensor, we recruited twenty additional participants.  Eight 
were undergraduates majoring in computer science, six 
were undergraduates majoring in related fields, two had 
bachelor’s degrees in other fields and several years of 
industry programming experience, two were graduate 
students in computer science, and two were graduate 
students in related fields.  Thirteen participants reported 
more than a year of industry programming experience, and 
the other seven reported an average of less than two months 
of industry experience.  We collected a total of 475 
response time observations from these participants. 

In order to apply a classifier, we clustered participant 
response times using the Expectation Maximization 
algorithm [6] as implemented in Weka, an open source 
machine learning toolkit [26].  Given a set of values and a 
number of clusters to produce, the algorithm computes the 
means and standard deviations of the normal distributions 
most likely to have generated the given values.  We 
examined the algorithm’s output for two, three, and four 
clusters and decided to proceed by analyzing the data in 
three clusters, for reasons we will discuss later in this 
section. 

The first cluster, which we will refer to as interruptible, 
represents an immediate response to an interruption 
notification and contains 278 response time observations 
with a mean of 2.281 seconds and a standard deviation of 
752 milliseconds.  The second cluster, which we will refer 
to as engaged, represents a short delay from notification to 
response and contains 143 response time observations with 
a mean of 6.917 seconds and a standard deviation of 3.434 
seconds.  The final cluster, which we will refer to as deeply 
engaged, represents a long delay from notification to 
response and contains 54 response time observations with a 
mean of 43.065 seconds and a standard deviation of 37.399 
seconds.  Each pair of clusters is significantly different 
(interruptible vs. engaged:  t(419) = 21.55, p < .001, 
interruptible vs. deeply engaged:  t(330) = 18.28, p < .001, 
engaged vs. deeply engaged:  t(195) = 11.48, p < .001). 

Note that the very small deviation in response time for 
observations in the interruptible cluster was one of the 
reasons we decided to use three clusters to analyze this 
data, as we believe it indicates a more realistic partitioning 
of the data.  When using only two clusters, observations in 
our interruptible and engaged clusters were grouped 
together into a single cluster with a mean of 2.946 seconds, 
but the small deviation of response times for observations 

in the interruptible cluster gave this combined set of 
observations a standard deviation of 1.529 seconds.  The 
larger standard deviation meant that some entries from our 
engaged cluster instead appeared in the second cluster 
generated, which had a mean of 27.116 seconds and a 
standard deviation of 31.601 seconds.  Examining this data, 
we felt that three clusters represented a more appropriate 
division of the data, and found that moving to four clusters 
appeared to offer no improvement.   

ANALYSIS 
This section first presents our extraction of a set of features 
from the raw event logs collected by our sensor 
implementation.  We then discuss our method for selecting 
a useful subset of these features and present the accuracy of 
a statistical model constructed from this useful subset.  
Finally, we present some of the most predictive features in 
the model, so that the community might include such 
features in their systems. 

Feature Extraction 
Unprocessed sensor data is typically inadequate for creating 
sensor-based statistical models, for a variety of reasons.  
One reason is that observations of the value that a model 
will predict (the interruptibility of a programmer in our 
work) tend to be relatively sparse compared to the 
abundance of sensor data.  This makes it important to 
consider recent values of sensors, rather than training 
models from only the sensor data available at the exact 
moment of each observation of the value that is to be 
predicted.  Another reason can be found in continuous 
sensor data, such as the number of keystrokes in the last 
minute.  Because statistical models are based on extracting 
correlations between input features and the value to be 
predicted, better models typically result if such continuous 
values are discretized, a process of grouping ranges of 
values into discrete bins, prior to model construction.  This 
allows the determination, for example, that it is not 
important whether two or three keystrokes have occurred in 
the last five seconds, rather it is only important that more 
than zero have occurred. 

In our prior work and in our analysis of our simulated 
sensors, we used manually-developed scripts to extract 
features based on the frequency, recency, and duration of 
events in the raw sensor logs.  For our evaluation analysis, 
however, we automatically extracted features from our raw 
sensor data using AmIBusy, a system that we are creating 
to support the development and deployment of sensor-based 
statistical models of human interruptibility.  AmIBusy 
works by recursively applying sequences of operators to 
sensor data.  For example, one operator can get all of the 
sensor readings reported as XML strings by a sensor in the 
60 seconds prior to an interruptibility observation, another 
operator can then extract the value of an attribute from the 
XML for each reading, a third can convert the value from a 
string to a double, and a fourth can discretize the double. 



While AmIBusy and automated feature extraction are not 
the topic of this paper, it is important to point out that the 
features used by our models were automatically generated, 
because we want to make clear that the model construction 
process we use can be fully automated.  We do not believe 
that sensor-based statistical models of interruptibility 
should be considered static entities in deployed systems, but 
rather believe that they should be continuously and 
automatically refined.  The automated extraction of 
appropriate features from low-level sensor data is an 
important part of making this feasible.  AmIBusy enables 
this, and the results we present here demonstrate the 
effectiveness of such an approach. 

Feature Selection 
Not all of the features that are automatically extracted from 
raw sensor data are appropriate for use in a statistical 
model.  For some features this is because they simply do 
not correlate with interruptibility and so are not predictive.  
Other features are inappropriate for use in a statistical 
model due to a phenomenon known as over-fitting.  
Because it is computationally intractable to examine the 
utility of every potential combination of features, a 
two-stage heuristic search is used to select an appropriate 
subset of the generated features.   

This heuristic search starts by selecting the individual 
features that are most correlated with interruptibility, using 
three common but distinct measures of correlation 
(information gain, gain ratio, and symmetrical uncertainty).  
For each measure, AmIBusy selects the 250 features most 
correlated with interruptibility.  Additional features are then 
selected using Yu and Liu’s fast-correlation based filter 
technique [27] with each measure of correlation.  This 
technique selects a small number of features that are not in 
the top 250 but have some predictive value that is distinct 
from the top 250 features.  These correlation-based 
techniques can be applied quickly, and the union of features 
selected is used as input to the second stage of the search. 

The second stage of the search is a wrapper-based feature 
selection, which examines the predictiveness of different 
combinations of potential features.  In a wrapper-based 
feature selection, the algorithm starts with an empty set of 
features and slowly adds or removes features, examining 
the effect of these changes on the accuracy of the model 
being constructed.  When no change to the candidate subset 
results in an improvement, the feature selection terminates 
[18].  While this optimization can select the best feature 
subset, it is computationally expensive.  It is this expense 
that motivates us to first reduce the size of the search by 
using correlation-based techniques. 

Resulting Model 
Using the feature generation and selection mechanisms just 
discussed, we constructed a statistical model of the 
interruptibility of the programmers in our experiment.  This 
model differentiates between interruptible observations and 

observations in one of the other two clusters, engaged and 
deeply engaged.   Figure 5 shows the accuracy of this 
model, presented in a form known as a confusion matrix.  
This result was obtained using a standard ten-fold 
cross-validation, wherein ten trials of model construction 
are executed, each using 90% of the data for training and 
the remaining 10% to evaluate the model in that trial.  The 
values reported are the sums from all ten trials.  The rows 
represent the actual number of response time observations 
in each group, and the columns represent the estimates 
made by our sensor-based statistical model.  The unshaded 
diagonal, therefore, represents the cases there the model 
correctly predicted whether the participant was 
interruptible.  Conversely, the shaded diagonal represents 
the cases where the model was incorrect. 

With an overall accuracy of 71.8%, this model is 
significantly more accurate than the base performance of 
58.5% typical of current systems, which generally assume 
that people are always interruptible (χ2(1, 950) = 18.4, 
p < .001).  Built with a naïve Bayes classifier [7, 19], this 
model is based on 23 automatically generated features.  
Considering the expected difficulty of building a reliable 
model of the interruptibility of programmers from low-level 
input events, we consider this a strong result.  The 
difference between the models dominated by social 
engagement in our prior work and the task-related models 
built in this work mean that we should be careful not to 
directly compare their accuracy.  However, it would be 
unreasonable to expect perfect performance, as our prior 
work has shown that human observers of office workers can 
only estimate the interruptibility of those office workers 
with an accuracy of 76.9% [8].  In using sensor-based 
statistical models of human interruptibility, whether in 
social environments or task-based environments, it will be 
important for applications to negotiate entry into 
interruptions, rather than treating an interruptibility estimate 
as if it provides absolute guidance. 

We also note that applications can threshold the output of 
this model based on their own needs.  The confusion matrix 
in Figure 5 was computed by labeling a situation as 
interruptible if the probability of being interruptible output 
by the model was .617 or greater (this probability was 
chosen to maximize the overall accuracy).  At this 
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Figure 5. Accuracy of a model to distinguish interruptible 
situations from other situations (engaged or deeply engaged). 

 



threshold, the model correctly detects 74.8% of 
interruptible situations and 67.5% of non-interruptible 
situations.  This tradeoff might be appropriate for some 
applications, but other applications might prefer higher 
detection of interruptible situations.  Choosing a different 
tradeoff does not necessarily imply a large sacrifice in 
accuracy, as using our model with an interruptible threshold 
of .372 results in an accuracy of 71.6%.  At this threshold, 
the model correctly detects 90.0% of interruptible 
situations, while still detecting 45.7% of non-interruptible 
situations.  We will not introduce ROC curves in the space 
available here, but note that our model has an A' value of 
.776, significantly better than chance (Z = 18.7, p < .001). 

Selected Features 
To provide more insight into our model, Figure 6 presents 
an ordered list of its seven most predictive features.  This 
ordering was determined using an accuracy-based forward 
selection through the features in the model.  So the first 
feature is the single feature that results in the highest 
accuracy.  Once this first feature has been chosen, the 
second feature is the best addition to the model, and so on.  
The accuracy column on the extreme left presents the 
cumulative effect of these features on the accuracy of the 
model.  After adding the seventh feature, the model has an 
accuracy of 70.5%.  The additional 16 features, not shown 
here, improve the accuracy of the model to 71.8%. 

For each feature, Figure 6 shows how different values of 
the feature influence the model’s estimate of whether a 
person is interruptible or engaged.  Consider the first 
feature, how many ExtendedModify events (which are 
generated whenever the text of a file is modified) occurred 
in the 15 seconds prior to an interruption.  If we look only 
at the data for which no ExtendedModify events occurred, 
there are 132 situations where the programmer was 
interruptible and 86 non-interruptible situations.  These 218 
situations represent 45.9% of our total data, and our 
participants were interruptible for 60.6% of these situations.  
Accounting for rounding in our presentation, the difference 
between this likelihood of being interruptible and the 58.5% 
likelihood in the full data set is +2.0%.  This shows it was 
common for no ExtendedModify events to have occurred in 
the 15 seconds before an interruption (45.9% of the data), 
but this meant relatively little in terms interruptibility (the 
+2.0%).  On the other hand, when more than one 
ExtendedModify event had occurred in the past 15 seconds, 
participants were much less likely to be interruptible (a 
difference of -15.6%).  The magnitude of this difference, 
together with the fact that it occurred in 25.5% of the data, 
is a big part of why this feature was selected as most 
predictive.  This is also consistent with our simulated 
sensors, which found editing to be the primary indicator. 

Because considering a programmer non-interruptible if they 
have recently edited text is a more satisfying baseline than 
assuming a programmer is always interruptible, we note 
that our full model performs significantly better than a 

model based on this single feature (comparing accuracy:  
χ2(1, 950) = 10.1, p ≈ .001, comparing area under the ROC 
curve:  .776 vs .577, Z = 5.7, p < .001). 

The additional features show that programmers were less 
interruptible if they had recently switched away from 
Eclipse, perhaps because they were in the middle of testing 
the Paint application or searching through documentation.  
Subjects were also less interruptible if modifying two files, 
but the difficulty of modifying three files in 15 seconds 
makes it likely that those 19 cases are an artifact of the task, 
possibly due to a need for making a single small paste into 
multiple files.  The next feature shows that programmers 
were less interruptible when generating KeyTraversed 
events, which the SWT sends when the arrows or other 
keys are used to move the input cursor.  The fourth feature, 
indicating that subjects were interruptible when their last 
keyboard event occurred between 15 and 20 seconds in the 
past, might be related to task completion, but it occurs too 
infrequently to warrant much confidence.  Programmers 
were also more interruptible when they were interacting 
with tree controls.  This is consistent with our simulated 
sensor results, as a programmer interacting with a tree 
control cannot be actively editing code.  The seventh 
feature shows that programmers were less interruptible 
when they had recently resized part of the Eclipse 
environment, which may be related to maximizing one of 
the child windows in the development environment to focus 
on its contents. 

Accuracy Value  Num 
Int 

Num 
Non 

% of 
Data  % Int Change  

         

58.5% No Features 
62.1% ExtendedModify Event in Past 15 Seconds 

 No Event  132 86 45.9%  60.6% +2.0% 
 1 Event  94 42 28.6%  69.1% +10.6% 
 > 1 Event  52 69 25.5%  43.0% -15.6% 

64.6% Application Focus Change in Past 5 Seconds 
 No Change  221 151 78.3%  59.4% +0.9% 
 Eclipse Gained  36 12 10.1%  75.0% +16.5% 
 Eclipse Lost  21 34 11.6%  38.2% -20.3% 

67.2% Switch Between Modifying PaintWindow.java  
and Modifying Another File in the Past 15 Seconds 

 < 2 Files Modified  123 78 42.3%  61.2% +2.7% 
 2 Files Modified  138 116 53.5%  54.3% -4.2% 
 3 Files Modified  17 2 4.0%  89.5% +30.9% 

68.6% Most Common Key Event in Past 60 Seconds 
 No Key  150 101 52.8%  59.8% +1.2% 
 Key Pressed  14 13 5.7%  51.9% -6.7% 
 Key Released  65 26 19.2%  71.4% +12.9% 
 Key Traversed  49 57 22.3%  46.2% -12.3% 

69.1% Recently Stopped Typing 
(Last Key Event 15 to 20 Seconds Ago) 

 < 15 or > 20  267 197 97.7%  57.5% -1.0% 
 15 to 20  11 0 2.3%  100% +41.5% 

69.5% Tree Event in Past 5 Seconds 
 No Events  228 179 85.7%  56.0% -2.5% 
 1 Event  43 17 12.6%  71.7% +13.1% 
 2 Events  6 0 1.3%  100% +41.5% 

70.5% Control Resize Event in Past 5 Seconds 
 No Resize  265 178 93.3%  59.8% 1.3% 
 Controls Resized  13 19 6.7%  40.6% -17.9% 

Figure 6. Seven most predictive features from the model. 

 



RELATED WORK 
Field studies of interruptions and how people perceive their 
interruptibility have informed our work, but do not directly 
inform the deployment of sensor-based statistical models of 
human interruptibility.  As mentioned in our introduction, 
Hudson et al. studied the perceptions of interruptions held 
by managers in a research organization, finding that some 
managers consider interruptions to be such a problem that 
they physically move away from their computers or even 
away from their offices in order to obtain uninterrupted 
working time [14].  Perlow found a self-perpetuating cycle 
of interruptions in the workplace, wherein workers in 
danger of missing a deadline interrupt other workers with 
requests, which then causes the interrupted workers to fall 
behind in their own work, leading them to then interrupt 
others [23]. 

Field studies that more directly inform sensor-based 
statistical models of human interruptibility have typically 
reported findings primarily related to social engagement.  In 
our own prior work, we have used the approach presented 
in this paper to study the interruptibility of office workers in 
their normal working environments [8, 9, 15].  In that work, 
we measured interruptibility using an experience sampling 
technique, prompting workers to report their interruptibility 
at random intervals approximately once per hour.  We 
collected data for several weeks from each participant, and 
showed that real sensors could support models of their 
interruptibility with accuracies as good as or better than 
human observers.  These results were largely dominated by 
social engagement, helping to motivate the work presented 
in this paper.  Horvitz and Apacible also directly studied 
interruptibility, asking workers to retrospectively review 
several hours of collected recordings to provide labels of 
their interruptibility, then examining models of these labels 
based on system events, perceptual analyses of audio and 
video streams, and electronic calendar entries [11].  They 
do not explicitly differentiate between sensors related to 
task engagement and social engagement, but the perceptual 
systems and electronic calendar analyses on which their 
discussion is focused seem to be primarily related to social 
engagement. 

Other work has studied interruptibility in laboratory tasks, 
but without the goal of enabling sensor-based statistical 
models of human interruptibility.  For example, Czerwinski 
et al. examined interruptions by instant message 
notifications during some relatively simple list-browsing 
and office software tasks, finding that even ignored 
notifications can be disruptive [4, 5].  Gillie and Broadbent 
studied resumption of a task after different types of 
interruptions, also finding that the externalization of 
working memory into the state of the task meant that very 
few errors resulted from interruptions [10].  McFarlane 
points out that models of interruptibility can be used as part 
of a mediated approach to coordinating interruptions, but 
his studies of interruptions and task performance compare 
strategies for coordinating interruptions, rather than 

informing the development of sensor-based statistical 
models of human interruptibility [21].  Robertson et al. 
studied interruption coordination specifically in the context 
of spreadsheet programming, finding that negotiated 
coordination lead to better task performance, but their work 
does not inform the development of statistical models of the 
interruptibility of programmers [24]. 

A variety of systems have explored concepts related to 
interruptibility.  The Priorities system, by Horvitz et al., 
considers patterns of prior device access to reason about 
when a person is likely to be available on a given device, 
such as a personal computer or a mobile phone, and can 
consider the apparent importance of a message in deciding 
whether to forward it to a mobile device [12].  The 
Coordinate system, also by Horvitz et al., adds perceptual 
sensors based on audio and video streams, together with 
analyses of electronic calendar entries, to reason about the 
presence and availability of people [13].  Begole et al. 
analyzed logs of presence in their Awarenex system and 
developed a method to automatically extract temporal 
patterns, such as recurring meetings [2, 3].  Kern and 
Schiele examined the ability of wearable sensors to detect 
different contexts and activities that they argue relate to 
interruptibility [16].  A major difference between our work 
and these systems is our use of an evaluation based on an 
explicit measure of interruptibility.  Evaluations of other 
systems typically examine the ability of a system to 
recognize particular contexts, but do not explicitly evaluate 
how those contexts actually relate to interruptibility. 

DISCUSSION AND CONCLUSION 
We have presented our work to more carefully explore task 
engagement in sensor-based statistical models of human 
interruptibility by studying the interruption of programmers 
working on a realistic programming task.  This work 
contributes an evaluation of a model based on low-level 
system events in a development environment, finding that it 
can distinguish situations where a programmer is 
interruptible from other situations with an accuracy of 
71.8%, significantly better than the base accuracy of 58.5% 
accuracy typical of current systems that generally assume 
that a programmer is always interruptible and significantly 
better than a model that assumes programmers are 
non-interruptible if they recently edited their code. 

Beyond the specifics of the models created in this work, we 
contribute an explicit presentation and application of our 
approach to developing sensor-based statistical models.  
Because sensor development can often be costly and 
time-consuming, our approach is based on collecting 
recordings from an environment into which sensors will be 
deployed and then using the recordings to simulate the 
presence of sensors that might be predictive.  The 
information obtained from these simulated sensors allows 
informed decisions to be made about which sensors to 
implement, thus making it more likely that the resulting 
system will be successful.   



Moving forward, there are several lines of future work we 
intend to pursue.  The models presented here offer to reduce 
the costs of inappropriate interruptions experienced by 
programmers, and we are interested how to best deploy 
such models into programming environments.  We are also 
interested in expanding these results beyond programmers, 
perhaps by studying task engagement with different types 
of office workers or by building a sensor that logs low-level 
input events in the entire system, rather than just in the 
development environment.  Our approach to developing 
sensor-based statistical models of human interruptibility has 
yielded strong results in both our prior work and this work, 
but we remain interested in the possibility of refining or 
improving it.  We also intend to integrate the results of this 
work and the results of our prior work, with the goal of 
developing more accurate models of human interruptibility. 
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Contribution and Benefit Statement 
 
Examines task engagement in models of human interruptibility by studying programmers 
working on a realistic programming task.  Models of interruptibility offer to reduce costly 
interruptions while still allowing timely notifications. 


