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Music Signal Processing

M usic analysis based on signal processing offers new ways 
of creating and listening to music. This article focuses on 
applications and interfaces that are enabled by advances 

in automatic music analysis. By using signal processing, some 
of these applications provide nonexperts the chance to enjoy 
music in their daily lives, while other applications apply signal 
processing to enhance professional music production and create 
new opportunities for composers and performers. Described in 
this article are the history and state of the art of music interfaces 
as well as its future directions that emphasize interactive music 
applications based on automatic music signal analysis.

Applications of music signal processing
Music understanding and music analysis is part of the human 
experience; whether the listener is a nonmusician casually en-
joying music and tapping along with the beat or a professional 
making a formal analysis or transcription. As with many other 
human-oriented tasks, engineers and scientists have been in-
spired to formalize and automate aspects of human music per-
ception such as identifying tempo, chords, melody, and rep-
etition. Automatic music analysis capabilities have inspired 
research into new interfaces that take advantage of these novel 
possibilities. At the same time, applications have inspired new 
developments in signal processing for music listening and un-
derstanding. We have seen an explosion of new and exciting 
applications and interfaces. In this article, we explore some of 
the recent and emerging possibilities for music signal process-
ing in music software.

Music signal processing goes by many names. Among these 
are machine listening (which also includes nonmusic signals) 
and music understanding (which emphasizes deep musical 
abstractions, e.g., patterns and structures, in contrast to shal-
lower features such as pitch, loudness, and note-onset times). 
Music content analysis emphasizes the processing of signals 
(content) as opposed to metadata (often machine-readable text, 
such as file names, tags, web pages, or catalog entries). In this 
article, music analysis (i.e., music signal analysis) is used to 
refer to virtually any type of automatic (computational) music 
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recognition, detection, decomposition, classification, or under-
standing. Music analysis can identify music structure (chorus, 
section, and repetition) [1], [2], melody lines, chords, beat struc-
ture (beat and bar), drums [3], and so on.

Music interfaces may focus on a single musical piece or 
on collections of music, such as playlists, personal libraries or  
online catalogs. By means of a number of representative exam-
ples, this article explains how automatic music analysis can aug-
ment music interfaces; however, it considers only interfaces that 
focus on a single musical piece. The following three sections 
present different types of music interfaces based on playback 
navigation, customization, and music production, respectively.

Music interfaces for content-aware  
playback navigation
The traditional way of listening to music is hearing the piece 
from beginning to end. In the past, before it became possible 
to record music audio, one could only hear music at a live per-
formance. When recording music became a reality, one could 
play a specific musical passage on demand, although manu-
ally controlling phonograph and tape players was often time 
consuming and inconvenient. The listener’s ability to change 
the playback position almost instantly, with just the push of 
a button, only began recently with digital music on compact 
discs and the personal computer. 

Interactive control of music playback is also a relatively recent 
development. Although digital music makes it easy for a listener 
to quickly jump from one song to another, only the fast-forward 
and rewind buttons can change the playback position within a 
musical piece. Even after media-player software on computers 
and portable digital audio players (e.g., MP3 players) appeared in 
the 1990s, music-listening interfaces remained unchanged except 
for a continuous playback slider. The total length of the slider cor-
responds to the length of a piece, and listeners can manipulate the 
slider to jump to any position in a song. However, listeners must 
use trial and error to search for a specific playback position.

Automatic music analysis based on signal processing addresses 
this problem by adding content-based navigation to conventional 
interfaces. Music interfaces that visualize music structure allow 
the listener to change the playback to logical positions. This 
approach is introduced in the “Music-Listening Interfaces Based 
on Automatic Music Structure Analysis” section of this article. 
Furthermore, when lyrics and music notation are aligned with audio 
signals, music interfaces display the lyrics or score in synchroni-
zation with the audio playback of a musical piece. As a result, new 
visual information about music content offers the listener a way 
to specify the playback position based on either lyrical or musi-
cal content. This approach is introduced in the “Music-Listening 
Interfaces Based on Automatic Music Synchronization” section.

Music-listening interfaces based on automatic  
music structure analysis
Automatic analysis of music structure improves conventional 
music-listening interfaces by using content-based playback 
navigation. The earliest of these works, introduced in 2003, is 
SmartMusicKIOSK [4], an intelligent music-listening station. 

In addition to the standard playback control buttons, Smart-
MusicKIOSK added a “jump to chorus” button and “jump to 
next/previous section” buttons, as shown in the lower window 
of Figure 1. SmartMusicKIOSK also extended the playback 
slider by visualizing the detected sections as the music struc-
ture. This visual representation, shown in the upper window of 
Figure 1, is called the music map and consists of chorus sec-
tions (the top orange row) and repeated sections (the five, lower 
green rows). In each row, colored sections indicate similar (re-
peated) sections. The music map helps a user decide where to 
jump to next, while each visualized section acts as a button to 
listen from the section’s beginning. 

The chorus and repeated sections are automatically deter-
mined by a signal processing method (RefraiD) [4] used for 
chorus-section detection, with a focus on popular music. First, a 
12-dimensional feature vector, called a chroma vector [2], [4], is 
extracted from each frame of an input audio signal. Each element 
of the chroma vector corresponds to one of the 12 pitch classes 
(C, C#, D, D#, E, F, F#, G, G#, A, A#, and B) and the value of each 
element is the sum of magnitudes at frequencies of the pitch class 
over six octaves. In practice, this representation has been found 
to be robust with respect to changes in accompaniments, largely 
because its low dimensionality is enough to capture aspects of 
harmony and melody but not spectral details. The whole song is 
thus represented as a sequence of chroma vectors, i.e., a chro-
magram, and a pair of repeated sections is expected to have 
similar sequences of chroma vectors. RefraiD then calculates 
the similarity between all of the chroma vectors within the song 
and finds pairs of repeated sections whose similarity is higher 
than a certain threshold. This threshold is determined by an 
automatic threshold-selection method based on a discriminant 
criterion since the appropriate threshold varies for each song. To 
organize commonly repeated sections into groups and to identify 
both ends of each section, the pairs of repeated sections are inte-
grated (grouped) by analyzing their relationships throughout the 
entire song. For example, three pairs of repeated sections, A and 
A’, A’ and A”, and A and A”, can be grouped on the basis of their 
relationships, even if one of the pairs is missing. Accordingly, 

FIGURE 1. The SmartMusicKIOSK interface [4]. A user can actively listen to 
various parts of a song, guided by the visualized music structure (“music 
map”) in the upper window. 
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RefraiD obtains several groups of repeated sections as interme-
diate results (the five lower green rows in Figure 1). Finally, it 
selects the chorus sections from them by evaluating the possi-
bility of being chorus sections for each group. This possibility 
is greater when its sections are repeated more frequently with 
higher similarity, are longer and more appropriately positioned. 

The RefraiD method was sufficiently useful for detecting 
and playing back the chorus sections (the final output) during 
trial listening without any interface or visualization, but it was 
even more useful for visualizing the chorus sections along the 
playback slider, as shown in the top orange row on the music 
map of the SmartMusicKIOSK in Figure 1. We also found this 
method to be informative when visualizing the repeated sec-
tions in the five lower green rows in Figure 1, even when those 
sections were not final but intermediate results.

SmartMusicKIOSK thus augments within-song browsing 
and trial listening. A user can skip sections of a song that are of 
no interest by interactively changing the playback position while 
viewing the music map. This is an example of active-music-lis-
tening interfaces [5], which allow a user to enjoy music in more 
active ways than conventional passive music playback. More-
over, this interface can draw attention to music structures that 
are unknown to users. By enabling the user to listen to the cho-
rus sections of a song in succession, the user can more accurately 
understand how lyrics and the arrangement change for each rep-
etition of the chorus (as a reflection of the musicians’ intent). 
SmartMusicKIOSK is not only an active interface, but also 
it is considered an example of augmented music-understanding 
interfaces [6] that facilitate a deeper understanding of music.

The interface concept of SmartMusicKIOSK is universal 
and can be used with other methods for music-structure analy-
sis [1], [2]. Its interface is also versatile enough to be used with 
music structures annotated by humans even though the manual-
annotation process is not scalable to a large music collection. 

In fact, the SmartMusicKIOSK interface has already been 
implemented and made available for more than 1,200,000 songs 
on Songle [7], a public web service that was launched in 2011 

and available at http://songle.jp free of 
charge. Songle enriches the music expe-
rience by providing an active, augment-
ed music-listening interface. Through 
signal processing, Songle estimates not 
only the music structure but also the 
beat structure (beat and downbeat), mel-
ody line, and chords of songs available 
on the web and visualizes all of them  
(Figure 2). Given the wide variety of 
music available, one drawback of auto-
matic analysis is that errors are inevita-
ble. To overcome this, Songle provides a 
crowdsourcing interface that encourages 
users to correct errors in the estimated 
results by selecting from a list of alter-
natives or by providing an alternative 
annotation. The supplied corrections 
are then shared and used to immedi-

ately improve the user experience. Since Songle also provides an 
application programming interface (commonly known as API), 
the results of music analysis and human annotation can be 
used to develop music-driven applications such as robot danc-
ing, stage lighting, and computer animation [8]. Songle therefore 
serves as an open showcase that demonstrates how people can 
benefit from signal processing-based music analysis and how 
interfaces can contribute to better music-listening experiences.

As previously mentioned in this section, a visual represen-
tation of music analysis results is key to changing traditional 
music interfaces into advanced interfaces with content-aware 
playback navigation. Another example is Dunya, a web-based 
application [9] that visualizes the pitch [fundamental frequen-
cy (F0)] contour of the melody line and its histogram as well 
as the waveform and spectrogram, with a focus on Carnatic 
music. By showing related recordings based on culturally spe-
cific similarity, it also allows a user to discover musically rel-
evant relationships between different pieces.

Music-listening interfaces based on automatic  
music synchronization
Automatic synchronization of different representations of music, 
such as audio signals, lyrics, Musical Instrument Digital Inter-
face (MIDI), and music scores, may also improve conventional 
interfaces with multifaceted, content-based music navigation 
and browsing. SyncPlayer [10], which is based on semiauto-
matic music synchronization procedures, is an early example of 
a music interface that provides users the opportunity to discover 
and explore multimodal representations of music. SyncPlayer’s 
alignments between various music representations are computed 
in a preprocessing step and stored using suitable data structures. 
During the playback of a musical piece, it synchronously displays 
lyrics and a MIDI-based piano-roll view along with audio wave-
form and spectrogram. Time-aligned lyrics are shown in a kara-
oke-like display as the phrase currently being sung is highlighted. 
SyncPlayer has a lyrics search function that enables a user to 
submit a text-based query for lyrics that finds the corresponding 

Four Major Types of

(Chorus/Repeated Sections)

(Root Note and Chord Type)

(Musical Beats and Bar Lines)

(F0 of the Vocal Melody)

Musical Elements

Music Structure

Chords

Beat Structure

Melody Line

FIGURE 2. An interface of the Songle web service [7]. Songle automatically analyzes songs publicly 
available on the web and visualizes them with an informative “music map,” including four types of 
musical elements. It is also equipped with the SmartMusicKIOSK interface. 
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audio. Time-aligned MIDI is generated by an automatic score-
to-audio synchronization (alignment) method [11] and visualized 
in a piano-roll display. SyncPlayer first detects note onsets in the 
audio signal of a musical piece to obtain a score-like representa-
tion. This representation is then aligned with musical notes of a 
MIDI file by using a dynamic time-warping (DTW) algorithm.

This concept is further extended to the Score Viewer and Inter-
pretation Switcher interfaces [11], [12], as shown in Figure 3. 
Score Viewer displays a time-aligned music score (scanned sheet 
music) that highlights the current bar. With a focus on Western 
classical music, spatial regions of the scanned sheet music are 
automatically synchronized with musically corresponding tem-
poral sections within the audio recording. Score Viewer first 
extracts chromagrams (temporal sequences of the chroma vec-
tors, as described in the previous section) from the results of 
optical music recognition of the sheet music. It then uses DTW 
to align those representations with chromagrams of the audio 
recordings. In classical music, recordings of different performers 
playing the same piece are often available. Interpretation Switch-
er automatically synchronizes those recordings and allows a user 
to seamlessly switch from one performance to another while con-
tinuing playback.

 Score Viewer does not synchronize real-time audio input 
with the sheet music. To enrich the audience’s experience of 
classical music concerts, however, real-time input is neces-
sary. Another project, EU FP7 PHENICX (http://phenicx.upf 
.edu), developed and used an automatic, real-time audio-to-sheet-
music synchronization method to track a live public performance 
of the Royal Concertgebouw Orchestra. During the performance, 
time-aligned sheet music was displayed for an audience in a con-
cert hall in Amsterdam [13]. 

While Interpretation Switcher synchronizes different perfor-
mances and allows comparisons by ear, a web-based interface 
[14] facilitates a more objective comparison of features of loud-
ness (using dynagrams) and tempo (using tempograms) in two 
performances. Music performances can also be shown as two-

dimensional (2-D) tempo-loudness trajectories called perfor-
mance worms. The alignment between the waveform displays 
of two performances is visualized as line patterns connecting 
the corresponding bar lines. This visualization also includes an 
interactive musical-score display based on automatic alignment.

LyricSynchronizer [15], another interface that synchroniz-
es symbolic text displays with music playback, is lyrics ori-
ented and displays scrolling time-aligned lyrics by using an 
automatic lyrics-to-audio synchronization method. Because 
lyrics are automatically highlighted, a user can easily follow 
the current playback position. Additionally, the user can click 
on a word that interests them and listen to a song from that 
word forward.

Music interfaces for customization and personalization
Traditional music players often include graphic equalizers or tone 
controls for bass and treble. Listeners can therefore customize/per-
sonalize music playback in a simple way by adjusting the overall 
frequency response. However, listeners cannot change the volume 
or timbre of each individual instrument in existing recordings un-
less individual tracks, called stems (separate recordings before 
mixing, corresponding to different instruments), are provided.

Sound source separation of musical audio signals can over-
come this limitation and enable new types of music interfaces 
that allow a listener to customize music by changing the vol-
ume or timbre of instrument sounds in existing music record-
ings or by altering notes and styles. These kinds of creative 
customization represent music personalization for a user.

Music-customization interfaces based on  
sound source separation
Drumix [16] is an early example of a music-customization in-
terface that allows a user to edit the drum part of an existing 
recording during music playback the same as if another drum-
mer was performing different drum patterns. With this inter-
face, a user can change the volume or timbre of the sounds of 

(a) (b)

FIGURE 3. (a) The Score Viewer and (b) Interpretation Switcher interfaces. The Score Viewer displays interactive scanned sheet music synchronized with 
music playback. The Interpretation Switcher enables a user to seamlessly switch to different recordings of the same piece of music [11].
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bass and snare drums, as shown in the left window of Figure 4. 
In the right window, the user can also rearrange drum patterns 
of bass and snare drums by dragging a pattern from “islands of 
drum patterns” in which each island represents a different clus-
ter of similar drum patterns. The larger an island is, the more 
popular its drum patterns are in a corpus of drum patterns. A 
user who is usually unaware of the drum pattern or timbre of 
drum sounds can use Drumix to edit them, which helps a user 
develop an appreciation of the musical choices of performers 
and producers. Drumix thus enhances the ability of the user to 
understand the role of drums in songs.

The onset times and spectrograms of drum sounds are automati-
cally estimated by AdaMast, a drum-sound-recognition method 
[16]. It first prepares a seed template that is the spectrogram of 
a typical bass or snare drum sound and then detects onset times 
of drum-sound candidates in an existing music recording (poly-
phonic sound mixture) by using a template-matching technique. 
Since the seed template is different from the actual drum sound in 
the recording, AdaMast uses the median of the detected spectro-
grams to update its template. It then uses the updated template to 
repeat this iterative-matching and adaptation process. After several 
iterations, AdaMast obtains the template (i.e., spectrogram) of the 
actual drum sound, which can then be used to separate, change, 
remove, and add drum sounds. To deal with drum patterns in units 
of bar (measure), Drumix also uses a beat-tracking method.

The concept of Drumix can be used not only with other drum-
sound recognition methods [3] but also with any instrument or 
voice if sound source separation for them can be achieved. Given 
polyphonic sound mixtures of popular music, however, it is well 
known to be extremely difficult to decompose them into all of 
the original stems because musical audio signals often combine 
more than ten simultaneous sounds with overlapping frequency, 
content, and reverberation. An ongoing, unsolved challenge for 
signal processing researchers is to achieve better source separa-
tion [17] and enable higher-quality audio manipulation of arbi-
trary music mixtures [11], [16].

Despite these challenges, this concept has been further investi-
gated by different research groups. For example, a music-manipu-

lation method [18] can change the timbre and phrases of a pitched 
instrument part. Because it is difficult to segregate an arbitrary 
instrument part from polyphonic sound mixtures, this method 
is based on score-informed source separation [19] that leverages 
a musical score of the target part to help isolate its sound and 
change its timbre. This method also changes the original phrase 
into a phrase specified by another score provided by the user.

By decomposing an existing recording of the input song into 
the vocal track (singing voice) and the karaoke track (the rest 
of the input sound mixture), a vocal-editing interface was pro-
posed in [20]. This interface allows a user to manipulate vocal 
F0 by adding vocal expressions (e.g., vibrato and glissando) and 
changing the melodic contour (i.e., the pitches of musical notes). 

Even if users are not musicians, music signal processing 
enables easy-to-use customization of existing music that allows 
for enjoying music in active ways and facilitates a deeper under-
standing of music. The interfaces discussed in this section are 
considered good examples of active music-listening interfaces 
[5] and augmented music-understanding interfaces [6].

Music interfaces for production and performance
Music analysis presents new capabilities for computer-assisted 
music creation and performance. In the “Music-Production 
Interfaces Based on Score-to-Audio Alignment” section, we 
examine how music analysis enables audio-editing software 
to “adjust” music recordings automatically based on models 
of pitch and rhythm, perhaps with guidance from machine-
readable music notation, envisioned as early as 1982 [21]. In 
the “Real-Time Signal Analysis in Interactive Music Perfor-
mance” section, we see examples of how new modes of music 
performance are enabled by real-time machine listening.

Music-production interfaces based on  
score-to-audio alignment
Audio editors typically use visual representations of wave-
forms and spectrograms, but these are difficult to comprehend 
and navigate. As an alternative, music-editing software can dis-
play symbolic representations of music alongside waveforms, 

Playback Slider

Playback Position Islands of Drum Patterns

Timbre Change
Function

Volume Control
Function Drum Pattern Design Function

Bass Drum Onsets

Snare Drum Onsets

FIGURE 4. The Drumix interface. A user can actively change the volume or timbre of drum sounds and rearrange drum patterns during music playback [16].
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as shown in the Figure 5 mockup. With this style of interface, 
the music audio is actively labeled with a human-readable no-
tation, which facilitates search and navigation. Constructing 
such an interface requires some form of symbolic notation and 
a method to align audio to it.

Obtaining symbolic notation directly from audio requires 
automatic music transcription [17]. Since this is extremely diffi-
cult to achieve (especially for recordings of multiple instruments), 
full, automatic transcription from arbitrary music signals is not 
likely to be practical for building notation-based interfaces in the 
near future. On the other hand, since many composers already 
use music-notation software, their music exists in a machine-
readable form. Rather than transcribing audio, interfaces can 
align existing notation to music audio. For example, an experi-
mental version of the Audacity (https://www.audacityteam.org/) 
audio editor can display MIDI files in a piano-roll view that is 
automatically aligned to a corresponding audio track.

Score-to-audio alignment (synchronization) generally works 
by converting music to feature sequences, such as the chroma-
gram described in the “Music-Listening Interfaces Based on 
Automatic Music Structure Analysis” section, and using DTW 
or hidden Markov models to align them [22]. In this audio-edit-
ing system, DTW was used, as in SyncPlayer, described in the 
“Music-Listening Interfaces Based on Automatic Music Syn-
chronization” section.

Navigating a digital audio track is a common facet of audio 
editing. Digital-editing software allows recording engineers and 
music producers to apply advanced signal processing techniques 
to make timing, pitch, and loudness adjustments on a note-by-
note basis. Sophisticated interfaces have evolved to support this 
work, but actual edits are nearly always specified manually. One 
exception is the Antares Audio Technologies Auto-Tune product 
(https://www.antarestech.com/), which has become a standard 
tool in music production for correcting off-key pitch. Auto-Tune 
works mainly by shifting pitch to the nearest musical scale 
degree as specified by the user, so it can automatically calcu-
late a target pitch and apply pitch corrections. Apple’s Flex Time 
(https://support.apple.com/kb/PH13083) processing interface 
enables automatic timing adjustments in one track to be guided 
by audio transients in another track, which is much easier than 
manually performing “microsurgery” to achieve the same result.

Rather than simply quantizing to pitches or beats, score-to-
audio alignment provides an audio editor the ability to auto-
matically determine the intended timing, pitch, and loudness 
of every note by reading the score, compare that to every per-
formed note based on the score-to-audio alignment, and then 
use signal processing techniques to adjust audio recordings [23]. 
In this article, multitrack audio is assumed, and each instru-
ment is recorded on a separate track. Each track is then aligned 
separately with music notation for a specific instrument. Since 
monophonic instruments are assumed, alignment is based on 
DTW to match pitch sequences obtained from onset-detection-
based note segmentation and F0 estimation. Next, the inter-
face produces a list of edits, applying small pitch adjustments 
(through resampling) and timing adjustments (by cutting, splic-
ing and cross-fading) on a note-by-note basis. Finally, tracks 

are mixed to balance the average root mean square. This arti-
cle shows that “intelligent” editors can automate and simplify 
many routine edits made in music production.

Of course, forcing audio to meet precise specifications can 
remove important musical nuance. Rather than “fixing” every-
thing, an audio editor might present an interface to act as a 
spell checker, in which the human engineer decides to accept 
or reject each of the computer’s suggested changes. We see this 
as a promising direction for future audio-editing interfaces and 
a logical extension of some of the automated tools and inter-
faces that exist for commercial editors today.

Beyond editing to correct mistakes or polish recorded perfor-
mances, music producers use equalization, gain control, reverber-
ation, stereo placement, and many other techniques to creatively 
enhance their work. There is growing interest in computational 
music production, and there are many automated mastering ser-
vices online, already claiming millions of mastering sessions in 
total. As signal processing becomes more complex [24], inter-
faces are needed to operate at higher levels of abstraction. A 
machine-learning approach [25], for instance, was proposed to 
describe filter-transfer functions with user-oriented terms such as 
warm or bright.

Real-time signal analysis in interactive music performance
Some of the earliest work in music audio analysis was motivat-
ed by composers and performers exploring real-time sensing 
and computation to create interactive musical works. These 
works often used F0 estimation to obtain pitches from mono-
phonic instruments because the simple hardware needed for 
this purpose was readily available. For example, Voyager [26] 
is a pioneering interactive system that uses note-level analysis. 
Monophonic audio input is analyzed for pitch (F0) and dy-
namic (signal-amplitude) information, which is processed to 
form pitch histograms, note density, and other features. These, 
in turn, influence music-generation algorithms that control a 
music synthesizer, thereby producing something akin to a 
collectively improvising ensemble. In [26], Lewis describes 
his system in terms of improvisation: “Improvisation must be 

FIGURE 5. The concept design for an intelligent editor that stretches and 
aligns music notations and audio, which enables users to quickly navigate to, 
select, and splice together the best “takes” from a recording session [23].
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open—i.e., open to input, open to contingency—a real-time 
and (often enough) a real-world mode of production.” In this 
sense, music analysis is critical to his work.

Live electronic compositions are not as well known as com-
mercial popular music and Western classical music, but there 
are many international festivals that feature interactive computer 
music, and music analysis is playing an increasingly important 
role by enabling composers to incorporate more sophisticated 
“listening” into their works. These works illustrate and explore 
the possibilities of nongraphical user interfaces. One example is 
CataRT [27], which slices input sound into short grains and orga-
nizes those grains according to composer-/performer-selected 
features. These features can have high dimension, drawing from 
spectral, perceptual, and harmonic descriptors; or, when applied 
another way, grains are projected onto a 2-D display that can 
be navigated with mouse or trackpad input. The performer then 
uses this control space to create sonic textures by summing from 
a few to thousands of grains per second. The navigation can also 
be controlled by features obtained from a musician’s audio in 
real time, offering a sort of analysis/resynthesis system in which 
the representation is a highly abstract feature space.

Another interesting development is that of Wekinator [28] 
(http://www.wekinator.org/), a machine-learning software package 
developed especially for musicians and interactive music perfor-
mances. Wekinator uses a visual interface to simplify the capture 
of input-to-output examples that are used to train the response of 
interactive systems. A typical application is mapping audio fea-
tures or even a simple fast Fourier transform to the multidimen-
sional control space of a music synthesizer or music-composition 
algorithm. A variety of classifiers are then used for supervised 
training of the input-to-output mapping.

Yet another class of interactive music performance systems 
is occasioned by computer accompaniment, which models the 
familiar scenario of a soloist and accompanist, such as a flute 
accompanied by piano, except that the accompanist’s part is 
played by a computer system that “listens” to the soloist, follows 
along in a machine-readable score, and synchronizes the accom-
paniment part to the live soloist [22], [29]. In this model, both the 
solo and accompaniment parts are composed and played note for 
note; therefore, the task performed by the computer is primarily 
that of synchronization. Computer accompaniment systems use 
various algorithms for “score following,” including DTW and 
hidden/semihidden Markov models. The signal processing chal-
lenges associated with these systems include dealing with the 
presence of accompaniment audio in a live performance (even 
with a microphone in close to the soloist). These systems also 
implement various strategies for musically adjusting tempo to 
maintain synchronization. In addition to performance, score-fol-
lowing technology allows for rich-performance interfaces that 
feature automatic music page turning and automatically gener-
ated feedback to student musicians.

Discussion and future directions
Music signal processing continues to encourage exciting new 
ways of working with music. From the listener’s perspective, 
we have seen how music interfaces can help to visualize music 

information and assist users in music playback, navigation, and 
multifaceted browsing. For creative amateurs, interfaces can 
harness sophisticated signal processing for customization or 
personalization of music, while for professionals, applications 
automate high-level editing and production tasks, allowing 
composers and performers to use music analysis to creatively 
control music generation and create new “instruments.”

In the future, advances in automatic music analysis will inspire 
and provide more advanced music interfaces. Conversely, the 
invention of novel music interfaces will require more advanced 
signal processing for music analysis. This interdependency drives 
the development and improvement of both novel music inter-
faces and state-of-the-art signal processing methods. Although 
significant research progress has been made in the past 30 years, 
music-analysis technologies have not yet matured and remain far 
from human levels of music understanding and analysis. Further 
progress is important for advanced music interfaces. For example, 
active music-listening and augmented music-understanding inter-
faces may benefit from advances in automatic music analysis. As 
discussed in the “Music Interfaces for Customization and Person-
alization” section, music-customization interfaces would benefit 
from better source separation and audio-manipulation techniques; 
and music-production interfaces would benefit from automatic 
music transcription of arbitrary polyphonic sound mixtures.

In addition to the efforts of advancing music signal process-
ing, another important future direction is to research and devel-
op a variety of music interfaces that involve human intelligence 
(i.e., human in the loop). For example, the Songle service dis-
cussed in the “Music-Listening Interfaces Based on Automatic 
Music Structure Analysis” section features an error-correction 
interface. Tarsos [30], a system used for pitch analysis in Western 
and non-Western music, employs F0-estimation algorithms such 
as the standard YIN and McLeod Pitch Method (https://github 
.com/JorenSix/TarsosDSP) but offers a graphical interface to 
guide the analysis. Similarly, the Interactive Source Separation 
Editor (ISSE) [31] (http://isse.sourceforge.net/) uses a sophisti-
cated interface for source separation based on probabilistic 
latent-component analysis, including machine learning from 
manual corrections. Interfaces that integrate human control and 
knowledge with automatic music analysis are advancing rapidly, 
and we expect to see increasingly sophisticated interaction in 
future intelligent systems used for music editing and production.

Another theme in emerging research is a consistent drive toward 
more active listening. If computers bring interactive and “smart” 
capabilities, and if music is now mediated by computers, it seems 
only natural to pursue greater interactivity and intelligence in 
interfaces for music. We see this trend in many experimental 
interfaces for music listening, and there are hundreds of interac-
tive music games, tablet-based electronic instruments, and com-
posing programs. More active music-listening interfaces such 
as SmartMusicKIOSK, Songle, and Drumix have the potential 
to blur the boundaries between music listening, music creation, 
games, and entertainment. Perhaps the extreme form of active 
listening is music performance, where interactive software such 
as SmartMusic (https://www.smartmusic.com/) provides always-
available music instruction and accompaniment.
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We have seen a revolution in music storage, processing, 
and distribution brought about by digital signal processing. 
The digitization of music has progressed from an initial, quan-
titative phase in which costs came down and the number of 
recordings in music collections went up. Today, we are in a 
second, qualitative phase that is changing the nature of musical 
experiences. We believe this phase will reveal the true value 
of digitization. The key to change is automatic music analysis, 
which enables music interfaces to move from just storing music 
to offering high-level musical interactions. Music interfaces 
based on music analysis produce qualitative changes in music 
experiences for professional and casual listeners alike.
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