
Volume 10, number 1

i

INFORMATION PROCESSING LETTERS

A 2.5 TIMES OPTIMAL ALGORITHM FOR PACKING IN TWO DIMENSIONS

Daniel D.K.D.B. SLEATOR
Computer Science Department, Stanford University, Stanford, CA 94305, U. S A.

Received 6 January 1979; revised version received 13 November 1979

Bin packing, two dimensional bin packing

1. Introduction

We consider the following two dimensional bin
packing problem: Given a set of rectangular pieces,
find a way to pack the pieces into a bin of width 1,
bounded below but not above, so as to minimize the
height to which the pieces fill the bin. The pieces are
not allowed to rotate (not even 90 degrees) or over-
lap. This problem was first considered in [13, which
includes several applications of the problem. The
most interesting one is the allocation of jobs to a
shared storage multiprocessor system. la that applica-
tion each rectangle represents a job whose memory
and time requirements are known, and the horizontal
dimension of the bin is memory, and the vertical di-
mension is time. A good way of packing the rectangles
into the bin represents a way to run the jobs so that
they all get done quickly.

It is easy to see that the problem of determining
whether a given set of pieces will fit into a given height
is "-hard, because we can reduce any instance of the
partition problem (problem SPl 1 in [3]) to an instance
of this problem. Therefore we have tried to find algo-
rithms that are fast and that give packings whose height
is within a small constant factor of the height of an
optimal packing. The same approach is taken in [11.
The authors of [11 give an algorithm that packs in
3 h P t where Hopt is the height of an optimal packing.
In this note we present an algorithm that packs in
2.5hpt and is easier to implement than the one given

:
I

*

in [l].

2. The algorithm

Here is the packing algorithm, as illustrated in Fig. 1 :

12 February 1980

I

(1) Stack all the pieces of width greater than 4 on
top of one another in the bottom of the bin. Call the
height to which they reach ho, and the total area of
these pieces Ao. All subsequent packing will occur
above ho.

height. The pieces will be placed into the bin in this
order. Let h l be the height of the tallest of these pie-
ces.

bottoms along the line of height ho with the first
piece adjacent to the left wall of the bin, and each
subsequent piece adjacent to the one just packed.
Continue until there is no more room or there are no
pieces left to pack. Draw a vertical line that cuts the
bin into two equal halves. Let dl be the height above
ho of the highest point of any piece in the right half
(or partially in the right half). Let Al be the area of

(2) Sort the remaining pieces in order of decreasing

(3) Now place pieces from left to right with their

I I

Fig. 1. The anatomy of a packing.

37

Volume 10, number 1 INFORMATION PROCESSING LETTERS 12 February 1980

the intersection of the left half and those pieces
packed in Step 3. Let A2 be the area of the pieces
not in A. or Al , including those pieces that have
yet to be packed. Thus the area of all the pieces is
partitioned into 3 disjoints areas Ao, Al, and Az.
Although Ao, Al , and Az are numbers it will be
convenient to be able to describe a piece by saying
which of Ao, Al , or A2 it is ‘in’. Notice that there
may be one piece which is partly in Al and partly in

(4) Draw two horizontal line segments of length
4, one across the left half and one across the right
half of the bin as low as possible so that the segments
do not divide any piece. Call these segments the left
and right half baselines, All subsequent packing in the
left and right halves will occur above these lines. Now,
choose the half whose baseline is lower. Into this half
bin pack one horizontal row of pieces from left to
right along the baseline until there are no more pieces,
or the next piece is too wide to fit in this row. Recall
that we have already packed all the pieces of width
greater than $, so this process must pack at least one
piece.

(5) Repeat Step 4 until there are no more pieces.

A2 *

3. The height bound

Theorem. Let H& be the height of a packing given by
the algorithm above, Hopt be the height of an optimal
packing and hta be the height of the tallest piece.
Then we have

H& Q 2 b p t t ;hta *

Proof. Define S to be the sum of the heights of all of
the rows of pieces in A2. Let e be the difference in
height between the left and right halves in the final
packing. Note that 2ho t h l t S t e is exactly twice
H&, the height of the packing.

ho is filled with pieces we have

iho <Ao .

Since over half of the area of the bin below height

We claim (and will prove below) that

SQ4A2 t d 1 .
Combining the statements above we get

2 H & = 2 h o t h l t S t e Q 4 A o t h l t 4 A 2 t d l t e .

Since the pieces were packed in order of decreasing
height, all the pieces in Al have height at least dl .
Either dl is not zero, in which case the widths of all
pieces in Al add to exactly 3, or dl is zero, in which
case we must have run out of pieces in Step 3 before
any piece crossed the center line. In either case we
know that

;dl < A l .

-

The two statements above imply that

2 H a Q 4 (A o t A 1 t A 2) t h l t e - d l .
Since an optimal packing has height Hopt we know

that the area of all the pieces cannot exceed Hopt, i.e.,
t Al t Az Q Gpt. Substituting this into the above

expression we find

2 H ~ Q 4 H o p t t h l t e - d l

If the height of the right column has never excee-
ded that of the left, then the height of the entire pac-
king is ho t hl . But ho Q Hopt, since no two pieces
in A. can be packed on the same level in any packing.
We also have h l Q bpt, so in this case the height of
the packing is bounded by 2Hopt.

that of the left, then e is bounded by the height of
the tallest row packed in A2, i.e., e Q dl . Combining
this with the last line above and the fact that h l Q
h,, we get the desired result:

If the height of the right column has ever exceeded

We will now prove the claim made above. The
pieces of A2 are to be packed into a bin of height S
and width 3 in order of decreasing height, “row by
TOW” in the manner described above. We will show
that S Q 4A2 t dl . This result is very similar to one
found in [4].

packed pz . . . and the last one packed pn. Let the
height of pi be di. (This is consistent with our defini-
tion of dl .) Let Ri be the di by 4 rectangle into which
the pieces of pi are packed.

and ci, as illustrated in Fig. 2:

Let the first row packed be called pl , the next one

We now partition Ri into three disjoint parts ai, bi

ai = that portion of Ri covered by pieces.

38

Volume 10, number 1 INFORMATION PROCESSING LETTERS 12 February 1980

b- 1/2 -1
Fig. 2. How we divide up Ri.

a rectangular subregion of Ri bounded on the
left by the right side of the rightmost piece
placed in Ri, on the right by the right wall of
Ri, and on the bottom by the bottom of Ri,
and on the top by the horizontal line of height
di+l above the bottom of Ri. If i = n, then bi is
empty.

ci = that part of Ri not contained in ai or bi.

Again we will be sloppy and allow the use of sym-
bols ai, bi and ci to represent both a region in the bin
and the area of that region.

Clearly A2 = Uiai. Let B = Uibi and C = Uiq.
Since A2 , B, and C are disjoint and cover the 4 by

S rectangle we have

iS = A2 t B t C .

wider and just as high as bi. Therefore B Q A2.

n - 1 and the height of c, is d,. So

Now, bi Q ai+l because the first piece in ai+l is

Consider C. The height of ci is di - di+l for i Q

c height of ci = d, t

Thus the pieces of C can be placed into a 3 by dl rec-
tangle without overlapping, so C < i d l .

c (di - di+l) = dl .
i l 6 i G n - 1

Combining the above three relations we get:
A

.r i S G A 2 +A, + i d , ,
* which implies the desired result:

S<4A2 t d 1 .

Since h t a Q Hopt we can summarize the above
result as H g Q 2.5HOpt.

The worst case bound of 2.5HOpt given above is in
fact tight. In other words there exists a sequence of
sets of pieces {Sk } such that the ratio of the height of

f
1

1 t 215

a b
Fig. 3. (a) How our algorithm might pack the pieces of Sg;
(b) an optimal packing of S5.

the packing given by the algorithm to the height of an
optimal packing goes to 2.5 as k +. 00. We define one
such sequence of sets:

Let Sk consist of the following pieces:

1 piece 1 unit high and l /k units wide,
2k pieces l /k units high and 3 - i (l /k) units

wide,
2k pieces l /k units high and l /k units wide.

Fig. 3 shows how these pieces would be packed by
our algorithm and also how they are packed optimally

The packing given by our algorithm will have
height 1 t (l/k)[i(3k - 1)1 units. (Assuming that
pieces of equal height are sorted in an order which
makes the algorithm do badly. This assumption is
reasonable since it is possible to force equal height
pieces to come out in any order we want simply by
adding or subtracting an infinitesimal amount to
their heights, and have the resulting packing still
have essentially the same height.) But an optimal
packing will have height 1 t 2/k units. Clearly the
ratio of the height achieved by our algorithm to the
height of the optimal packing goes to 2.5 as k -+ 00.

The time used by the algorithm to place each
piece is constant, therefore the dominant term in the
time complexity is the sorting step. Thus the algo-
rithm is o(n log n) time if there are n pieces,

39

Volume 10, number 1 INFORMATION PROCESSING LETTERS 12 February 1980

4. Generalizations

The idea behind the algorithm which makes it work
is this: It is possible to pack pieces wider than k in an
efficient way separately from the others. Once we
have eliminated the pieces wider than a, we can pack
in the left and right half of the bin separately and pre-
vent the height difference among pieces from wasting
space all the way across the bin. It is conceivable that
we could improve the packing algorithm by extending
this idea, and packing all pieces wider than l /n first,
and then partition the bin into n sub-bins each l /n
units in width. The problem with this approach is
that it doesn’t seem possible to pack the pieces wider
than l /n efficiently enough to give an improved algo-
rithm for any n > 2.

However, if we assume that all rectangles have
width not exceeding l/n, then we can use an algo-
rithm analogous to the one given above: After packing
one row of pieces across the bin, divide the upper part
of the bin into n parts and proceed to pack rows of
pieces into the lowest part. This modified algorithm
will have a better worst case bound than the one given
in this paper. In fact the height of a packing given by
this modified algorithm will not exceed 2HOpt t
+ htaln.

It has been suggested that the algorithm might
work better if it attempted to put pieces into gaps
below the level that is currently being filled. This
method might significantly improve the average beha-
vior of the algorithm, but we have been unable to
show that any such method would improve the worst
case behavior. The reason this is hard appears to be
that even though the area left empty by our algorithm
may be large, it may be broken up into a large num-

ber of small regions into which it is difficult to fit
things.

5. Asymptotic behavior

An alternative method of measuring the perfor-
mance of a packing algorithm is to consider the ratio
of the height of the packing generated to the height
of an optimal packing for sets of pieces in which the
height of the tallest piece is small compared to the
height of an optimal packing. The asymptotic ratio
of our algorithm is 2, since 2Hopt t &a + 2H0,t
as hta + 0.

One of the algorithms given in [2] asymptotically
packs in height 1 SHOP*, which is considerably better
than our algorithm. Unfortunately this algorithm has
a worst case that is worse than our algorithm. How-
ever if for a given set of pieces we run both the algo-
rithm in [2] and our algorithm, and choose the pac-
king with lowest height, we in effect have a single
algorithm with good asymptotic behavior and good
worst case behavior.

References

[11 B.S. Baker, E.G. Coffman Jr. and R.L. Rivest, Orthogo-
nal packings in two dimensions, SIAM J. Comput., to
appear.

[2] E.G. Coffman Jr., M.R. Garey, D.S. Johnson and R.E.
Tarjan, Performance bounds for level-oriented two-dimen-
sional packing algorithms, SIAM J. Comput., to appear.

[3] M.R. Garey and D.S. Johnson, A Guide to the Theory
of NP-Completeness (Freeman, San Francisco, CA).

[4] I. Golan, unpublished manuscript.

I.. - ,

L-
c

40

