
Automatic Numeric Abstractions for Heap-Manipulating
Programs ∗

Stephen Magill
Carnegie Mellon University

smagill@cmu.edu

Ming-Hsien Tsai
National Taiwan University

mhtsai208@gmail.com

Peter Lee
Carnegie Mellon University

Peter.Lee@cs.cmu.edu

Yih-Kuen Tsay
National Taiwan University

tsay@im.ntu.edu.tw

Abstract
We present a logic for relating heap-manipulating programs to nu-
meric abstractions. These numeric abstractions are expressed as
simple imperative programs over integer variables and have the
property that termination and safety of the numeric program en-
sures termination and safety of the original, heap-manipulating pro-
gram. We have implemented an automated version of this abstrac-
tion process and present experimental results for programs involv-
ing a variety of data structures.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Logics of Programs, Mechanical Verification

General Terms Languages, Reliability, Theory, Verification

Keywords shape analysis, separation logic, termination, program
verification, abstraction

1. Introduction
Current static analysis tools can check a wide variety of both safety
and liveness properties for programs involving integer variables.
Tools such as BLAST [20], SLAM [1], ARMC [29], ASTRÉE [15],
SPEED [18] and TERMINATOR [14] all focus on this class of pro-
grams. Some of these have support for pointers, but the heap rea-
soning is generally kept as simple as possible for the given problem
domain.

A major challenge is integrating these methods with very pre-
cise methods for heap analysis. Such combinations generally in-
volve a large increase in complexity, both in terms of the verifica-
tion problem and the implementation. In this paper, we offer a solu-
tion to this problem in the form of a logic for relating programs that
allows a heap program to be related to a numeric program in a way
that is useful for automated verification. The numeric program sim-
ulates the original program, ensuring that safety and liveness results
obtained by analyzing the numeric program also hold of the orig-
inal, heap-manipulating program. Also, invariants of the numeric

∗ This work was partially supported by the iCAST project sponsored
by the National Science Council (NSC), Taiwan, under the grants No.
NSC96-3114-P-001-002-Y and No. NSC97-2745-P-001-001. The second
and fourth authors were also partially supported by NSC grants No. NSC97-
2221-E-002-074-MY3 and No. NSC98-2219-E-011-001.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’10, January 17–23, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-479-9/10/01. . . $5.00

program can be translated into invariants of the heap program. Fi-
nally, the simulation result also implies that bounds on variables are
preserved, which, when combined with some additional instrumen-
tation, allows us to use the numeric program to calculate bounds on
execution time and memory usage.

The numeric program may include additional variables, called
instrumentation variables, which are not present in the input pro-
gram. These variables track numeric properties of heap-based data
structures, such as the height of a tree, the maximal element in a
list of integers, or the length of a path between two points in a data
structure. Generating a proof that two programs are related involves
following a separation logic approach to reasoning about the heap-
manipulating program and using the invariants thus discovered to
generate appropriate commands and branches on the instrumenta-
tion variables. These commands and branches record the connec-
tion between operations and conditions on pointer variables and
corresponding operations and conditions involving the instrumen-
tation variables.

Our proof system specifies the conditions under which certain
program transformations are sound for safety and liveness and per-
mits a great deal of reasoning power, allowing the production of nu-
meric abstractions for programs using complicated data structures
that cannot currently be handled by automated tools. For the class
of programs and data structures to which automated shape analyses
such as [16] and [23] are applicable, we have produced an imple-
mentation that can automatically generate numeric abstractions.

The implementation we obtain involves only small modifica-
tions to an existing shape analysis algorithm. Thus, when viewed
from a static analysis point of view, this paper provides a technique
for combining shape analyses based on separation logic with arbi-
trary numerical analyses that requires no re-implementation of the
numerical analysis and only small modifications to the shape anal-
ysis. Our implementation is built on the THOR [24] shape analysis
tool and we demonstrate the practicality of our approach by proving
safety and termination of a number of C programs using a variety
of numeric static analysis tools.

2. Related Work
In [22] we presented a static analysis algorithm for performing a
similar translation for programs involving only linked lists. The
translation was used for safety reasoning and, while technically
sound for termination, it was unusable in this context, as the nu-
meric programs it generated were too imprecise to allow us to
obtain termination results for any examples. However, the biggest
shortcoming is that soundness was only shown for the specific anal-
ysis described in the paper. In contrast, the logic presented here pro-
vides a general characterization of the terms under which a numeric
abstraction is sound, in much the same way that Hoare logic pro-
vides a general specification of when program invariants are satis-

fied (although Hoare logic is relatively complete, whereas we have
not investigated completeness properties of the system presented
here). This provides a general goal for static analysis work such
as [22]: ideally we would be able to generate a numeric abstraction
for any program that can be related “by hand” to a numeric program
by the logic presented in this paper. In addition to defining this tar-
get, the implementation developed for this paper also advances the
state of the art in terms of achieving this goal by providing support
for automatic generation of numeric abstractions for programs us-
ing user-defined inductive data structures and customized notions
of data structure size, both of which were missing in [22].

In [13], an early implementation of this work is used to obtain
upper bounds on allocated memory to enable the synthesis of hard-
ware from C programs that use dynamic data structures. A means
of obtaining numeric abstractions for C code that yields correct up-
per bounds is a crucial component of that work, but is not described
in the paper. This is the first presentation of these ideas.

The concept of relating two programs at different levels of ab-
straction is used heavily in the area of program refinement [32]. The
use of this concept to automatically generate a more abstract ver-
sion of a program has been very successfully applied in predicate
abstraction [1]. The goal of our work is similar, but we generate
numeric programs over unbounded integers, which have an infinite
state space, whereas predicate abstractions are finite-state.

Another approach to relating programs, based on a relational
version of Hoare logic, is given by Benton in [2] and Yang gives a
similar relational version of Separation Logic in [33]. The goal is to
relate two programs when their total correctness properties are the
same. In our work, since we are only concerned with obtaining an
over-approximation of the original program, the numeric program
may diverge in cases where the original program terminates. We
also are able to get by with a logic where the annotations represent
sets of states rather than relations. Indeed, the main goal of our
work is to offload the relational reasoning to separate analysis tools.

Our instrumentation variables are similar in usage to auxiliary
variables in Hoare logic [27]. Both auxiliary variables and instru-
mentation variables are not permitted to affect the values of the
original variables nor the control flow of the original program. The
work here presents a more thorough treatment of the concept of
auxiliary variable, more clearly specifying how auxiliary variables
may affect execution and how auxiliary variables relate to existen-
tially quantified variables. The standard rule for proof by auxiliary
variables can be viewed as an instance of Corollary 2.

Our treatment of existential quantifiers is also a key difference
between this work and other work in logics for relating programs.
Because we state soundness in terms of simulation, we are able to
use the INST-EXISTS rule, which is explained in Section 5, Figure
11 to insert and update variables representing values that are quan-
tified in the original program. We thus obtain information about
how these values change without resorting to relational invariants.

Termination proving for heap-manipulating programs has been
described in [21] and [30]. Both of these approaches utilize a differ-
ent shape analysis framework and [21] does not involve the produc-
tion of numeric abstractions, instead incorporating a rank-finding
algorithm directly in the analysis. The work in [30] does involve
the production of numeric abstractions, but they are produced from
counter-example traces generated by the termination analysis and
used to communicate with the heap analysis, which is run only on-
demand. By contrast, we convert an entire program to a numeric
abstraction before doing any termination analysis, which permits a
looser coupling between the termination tool and the shape analy-
sis tool. In [7], Brotherston et al. give a method of showing termi-
nation of programs using separation logic, based on the notion of
cyclic proofs. However, they do not give a static analysis capable of
automatically generating these proofs. It is also not clear that such

an approach can handle cases where more complicated termination
arguments, such as lexicographic orderings, are needed. In [4] a
method is presented for using a separation logic shape analysis to
prove termination. However, that work is tied to a specific rather
weak abstract domain for tracking size changes. The approach de-
scribed here is able to obtain much more precise information by
tracking the actual change in data structure size rather than only
the presence and direction of change.

The shape analysis portion of our implementation is not new
and has much in common with other recent work on shape analy-
sis with separation logic [3, 12, 17]. There has also been previous
work on extending shape analysis with support for tracking integer
properties. Chang et al. have extended their approach to support nu-
meric invariants of data structures [11]. Calcagno et al. handle the
case where arithmetic is allowed in the domain of the heap [10].
For approaches based on TVLA, there is the work of Beyer et
al. [5]. Rugina develops an analysis targeting balance properties
of tree-shaped data structures [31]. Nguyen et al. present a verifi-
cation condition-based procedure that can handle shape plus size
properties when loop invariants and pre- and post-conditions are
provided [26]. However, none of these use the method described
here of generating numeric programs as an intermediate step in the
verification process.

The closest work to ours is that of Boujjani et al. [6] which gives
a bi-simulation between programs manipulating singly-linked lists
and counter automata and Habermehl et al. [19] which provides a
termination result for trees by relating tree-manipulating programs
to tree automata. By focusing on specific data structures, these
papers are able to obtain very precise results. In our work, we obtain
a simulation result rather than bi-simulation, but the result holds of
arbitrary inductively-defined data structures.

3. Examples
Consider the program in Figure 1. This C-style code performs a
left-to-right, depth-first traversal of the tree at root. It does this
by maintaining a stack of nodes to be processed. The stack is
implemented using a linked-list with nodes of type TreeList and
initially contains a single node with a pointer to the root of the tree.
On each iteration, the top element of the stack is removed and its
children are added. Empty trees are discarded and when the entire
stack is empty, execution terminates.

There are a number of properties one might want to prove
about this code. First, we might like to show that it terminates.
We might also be interested in obtaining a bound on the amount
of memory allocated by the procedure. Both these questions are
really questions about numeric properties of the code. In the case
of termination, we want to demonstrate that some rank function
decreases during each iteration. For a bound on the number of
memory cells used, we can imagine adding a variable mem usage
to the program, which is initially zero and increments each time
memory is allocated and decrements each time memory is freed.
We might be interested in obtaining a bound on mem usage in terms
of the size of the input tree.

In this example, answering either of these questions requires
some reasoning about the shape and size properties of heap-
allocated data structures. What we show in this paper, and demon-
strate in our experiments, is that the shape reasoning can be sepa-
rated from the numeric reasoning by constructing a numeric pro-
gram that explicitly tracks changes in data structure sizes.

A numeric program for this example is given in Figure 2. This
program can be constructed from the original using the rules in Sec-
tion 5 and an equivalent, though larger program can be constructed
automatically by the analysis implementation discussed in Section
7. In each case, the variables in the numeric program correspond to
size properties of the data structures involved.

struct Tree {
Tree left;
Tree right;

}
struct TreeList {
Tree tree;
TreeList next;

};

TreeList push(Tree r, TreeList next) {
TreeList t;
t = malloc();
t->tree = r;
t->next = next;
return t;

}
void traverse(Tree root) {
TreeList stack, tail;

stack = push(root,0);
while(stack != 0) {
tail = stack->next;
if(stack->tree == 0) { // remove empty trees
free(stack);
stack = tail;

}
else { // process non-empty trees
tail = push(stack->tree->right,tail);
tail = push(stack->tree->left,tail);
free(stack);
stack = tail;

}
}

}

Figure 1. A depth-first traversal of a tree rooted at root.

Informally, tsize root is the number of nodes in the tree at
root, slen is the length of the list representing the stack, and
ssize is the number of nodes in the trees linked to by nodes in
the stack, as depicted in Figure 3. ssize and slen are the main
integer variables present in the program. A number of temporary
variables are then used to perform updates to these. These updates
are sometimes non-deterministic. For example, in the main loop,
we examine the first element of the stack and, if it links to a non-
empty tree, we replace it with two nodes, each of which links to
one of that tree’s children. Thus, in the numeric program we must
represent how removing an element from the stack changes the
values slen and ssize. In the case of slen, the length simply
decreases by one. For ssize, however, the effect of removing an
element is not deterministic. The most we can conclude is that
ssize can be broken into tsize, the size of the tree linked to
by the element we just removed, and ssize tail, the size of
the remaining portion of the stack. This is accomplished by the
non-deterministic assignments on line 5 coupled with the assume
statements at lines 6 and 7. A similar situation occurs on line 13,
when we record the relationship between tsize and the sizes of
the left and right children (tsize l and tsize r, respectively).

While assume statements are not part of standard C, they are
accepted by many verification tools, allowing us to pass the code in
Figure 2 directly to ARMC or TERMINATOR in order to check ter-
mination. In this case, the termination argument involves a lexico-
graphic order on ssize and slen. By producing numeric abstrac-
tions such as that given in Figure 2, we allow ourselves and our

void traverse(int tsize_root) {
1: assume(tsize_root >= 0);
2: slen = 1;
3: ssize = tsize_root;
4: while(slen > 0) {
5: tsize = ?; ssize_tail = ?;
6: assume(tsize >= 0 && ssize_tail >= 0);
7: assume(ssize == tsize + ssize_tail);

8: if(tsize == 0) // remove empty trees
9: slen--;
10 else { // process non-empty trees
11: tsize_l = ?; tsize_r = ?;
12: assume(tsize_l >= 0 && tsize_r >= 0);
13: assume(tsize == tsize_l + tsize_r + 1);
14: ssize = tsize_l + tsize_r + ssize_tail;
15: slen++;

}
}

}

Figure 2. A numeric abstraction of the program in Figure 1.

ssize=8

nil nil

1

nil nil

2

nil 1

nil nil

5

3

1

nil nil

1

nil nil

1

nil nil

nil

slen = 4

Figure 3. An example showing slen and ssize used in the pro-
gram in Figure 2. slen is the number of nodes in the stack and
ssize is the sum of the values in the bold circles. The shaded area
contains the nodes that contribute to ssize and nodes in this area
are labeled with the size of the subtree rooted at that node. Empty
trees (denoted by “nil”) have size 0.

program analysis tool to concentrate on the shape analysis prob-
lem, while leaving details of lexicographic rankings or disjunctive
well-foundedness [28] to other tools.

We can also ask bounds analysis tools as described in [18] and
[13] for a bound on the length of the stack. In this case, the stack
can grow as long as tsize root + 1 if the tree is maximally
unbalanced. The theory presented in Section 5, coupled with an
inductive description of a balanced tree, also allows us to obtain a
numeric program that demonstrates the expected logarithmic bound
on stack length for balanced trees.

Alternate Abstractions It is often the case that there are different
notions of data structure size. The measures used in Figure 2 are
fairly natural, in that the number of allocated heap cells is the sum
of slen and ssize. If we abandon this correspondence, we can
obtain the simpler numeric abstraction given in Figure 4. In this
case we have only one main size variable, ssize, which tracks the
sum of the sizes of the subtrees reachable through the stack. How-
ever, we alter the notion of tree size such that empty trees have size
equal to one, as depicted in Figure 5. This simplifies the termina-

void traverse(int tsize_root) {
1: assume(tsize_root > 0);
2: ssize = tsize_root;
3: while(ssize > 0) {
4: tsize = ?; ssize_tail = ?;
5: assume(tsize > 0 && ssize_tail >= 0);
6: assume(ssize == tsize + ssize_tail);

7: if(tsize == 1) // remove empty trees
8: ssize = ssize_tail;
9: else { // process non-empty trees
10: tsize_l = ?; tsize_r = ?;
11: assume(tsize_l > 0 && tsize_r > 0);
12: assume(tsize == tsize_l + tsize_r + 1);
13: ssize = tsize_l + tsize_r + ssize_tail;

}
}

}

Figure 4. A numeric abstraction of the program in Figure 1 with a
different notion of “ssize” and “tsize.”

ssize=20

nil nil

3

nil nil

5

nil 3

nil nil

11

7

3

nil nil

3

nil nil

3

nil nil

nil

Figure 5. An illustration of the notion of ssize used in the pro-
gram in Figure 4. The shaded area contains the nodes contributing
to ssize. Empty trees (denoted by “nil”) have size 1. Non-empty
nodes are labeled with the size of the subtree rooted at that node.
ssize is the sum of the values in the bold circles, plus 1 for the first
element in the stack, as “nil” has size 1 using this notion of size.

tion argument, as there is now only a single count, ssize, which
decreases during every iteration. However, we lose the ability to
talk about the length of the stack when computing bounds and we
lose the close connection between our counts and the number of
allocated heap cells. The technique described in this paper has the
flexibility to allow either approach to numeric abstraction, and the
implementation is not tied to any fixed notion of size. Instead, we
allow the user to specify the definition of size they have in mind
when running the tool. The numeric abstraction corresponding to
the input C program is then automatically generated for that notion
of size.

4. Preliminaries
In this section, we define our programming language, which is
based on C and thus includes explicit memory allocation and de-
allocation as well as unstructured flow of control.

4.1 Program Syntax
Figure 6 gives the syntax of programs. A program P is a list of
labeled continuations, which can also be viewed as a mapping from
labels to continuations (and we will often use function syntax for
P , writing P (l) for the continuation labeled with l in program P).
We take the first location l0 to be the initial location, at which

Variables xτ ∈ Varsτ

Fields fτ ∈ Fieldsτ

Labels l ∈ L
Integers n ∈ Z
Integer Expns ei ::= xi | n | ei

1 + ei
2 | ei

1 − ei
2 | ei

1 × ei
2

Address Expns ea ::= xa | nil

Boolean Expns eb ::= true | false | ¬eb | ea
1 = ea

2 |
ei
1 ≤ ei

2 | eb
1 ∧ eb

2 | eb
1 ∨ eb

2

Commands c ::= xτ := eτ | xa := ?a | xi := ?i |
xτ

1 := xa
2.f

τ | xa.fτ := eτ |
xa := alloc(f1, . . . , fn) | free xa

Continuations k ::= c;k | halt | abort | goto l |
branch eb

1 ⇒ k1, . . . , e
b
n ⇒ kn end

Programs P ::= l0 : k0; . . . ; ln : kn

Figure 6. Syntax of programs

execution starts. A continuation is a branching structure consisting
of conditional branches and commands that update the state. At the
leaves of each branching continuation, we have either a goto or an
indication that execution should halt or abort. Commands include
the standard commands for variable assignment, heap lookup, heap
mutation, memory allocation, and deallocation. The commands
range over variables drawn from the infinite set Vars and field
names drawn from the infinite set Fields.

We will write k ∈ subterms(P) if k is a sub-term of some
continuation in the range of P . A program P is considered well-
formed iff {l | goto l ∈ subterms(P)} ⊆ dom(P), where
dom(P) is the domain of P (set of labels prefixing continuations
in P). This ensures that all jumps are to locations defined by P . We
also write fv(P), fv(c), fv(e) to denote the set of free variables of
the program P , command c, or expression e.

Variables and expressions are typed, with the types drawn from
the set {a, i, b} (representing addresses, integers, and Booleans,
respectively). We assume that the set Vars contains two infinite,
disjoint subsets Varsa and Varsi such that Vars = Varsa∪Varsi. We
do not include variables of type b in our syntax or states. We write
xa to denote an element of Varsa and xi for an element of Varsi. We
use τ to stand for either a or i. Often, types can be inferred from
the context and, in such cases, we will omit them. We take a similar
approach to typing of record fields. We assume the set Fields can be
partitioned into two disjoint subsets Fieldsa and Fieldsi and write
fa for elements of Fieldsa and f i for elements of Fieldsi.

4.2 Program Semantics
The semantics is given in terms of transitions between states. Each
non-error state includes a store paired with a heap. Formally, a store
is a mapping from variables to their values. We require that this
mapping respect types and indicate this by using the notation →τ

to denote the function space. A function f is in Vars →τ Values iff
f ∈ Vars → Values and variables in Varsi are mapped to integers
while variables in Varsa are mapped to addresses.

Values def
= Z ∪ Addr

s ∈ Stores def
= Vars →τ Values

The heap is a finite partial function from non-null addresses to
records, which are finite partial functions from fields to values of
the appropriate type. The set Addr is assumed to be infinite. We
will use the meta-variable s to represent an element of Stores and h
to represent an element of Heaps. As with stores, the functions that
serve as the denotation of records must respect types. Unlike stores,

SEMANTICS OF COMMANDS

Jxτ := eτ K (s, h) = {(s[xτ → Jeτ K s], h)}
Jxa := ?aK (s, h) = {(s′, h) | s′ = s[xa → v] ∧ v ∈ Addr}
Jxi := ?iK (s, h) = {(s′, h) | s′ = s[xi → v] ∧ v ∈ Z}

Jxτ
1 := xa

2.fτ K (s, h) = {(s[xτ
1 → (h(s(xa

2))) fτ], h)} if s(xa
2) ∈ dom(h)

∧ fτ ∈ dom(h(s(xa
2)))

{error} otherwise
Jxa.fτ := eτ K (s, h) = {(s, h[v.fτ → (Jeτ K s)])} if s(xa) ∈ dom(h)

where v = s(xa) ∧ fτ ∈ dom(h(s(xa)))

{error} otherwise

Jxa := alloc(fτ1
1 , . . . , fτn

n)K (s, h) =

{(s′, h′) | h′ − {v} = h and dom(h′(v)) = {fτ1
1 , . . . , fτn

n }
and s′ = s[xa → v] and v ∈ Addr and v 6∈ dom(h)

and h′(v)(f
τi
i) ∈ Z if τi = i

and h′(v)(f
τi
i) ∈ Addr if τi = a}

Jfree xaK (s, h) = {(s, h− {s(xa)})} if s(x) ∈ dom(h) ∪ {nil}
{error} otherwise

Figure 7. Semantics of commands. dom(g) indicates the domain of function g. The notation g[x → v] indicates the function that is the same as g, except
that x is mapped to v. The notation h[v1.f → v2] indicates the heap that is the same as h except the record at v1 maps field f to v2. We write h − X to
indicate the function obtained by restricting the domain of h to dom(h)−X .

they need not be defined on all elements of the domain (different
heap cells may contain different sets of fields).

Records def
= Fields fin

⇀τ Values

h ∈ Heaps def
= (Addr − {nil}) fin

⇀ Records

We write Jeτ K for the meaning of an expression of type τ .
This is a function of type Stores → (Z ∪ Addr ∪ Bool) where
Bool = {true, false}. The definition of Jeτ K is standard and
omitted. As expected, JeiK ∈ Z and JeaK ∈ Addr, etc.

The semantics of commands is given in Figure 7. The command
x := e is a standard assignment statement, x := ?a and x := ?i

are non-deterministic assignments, x1 := x2.f reads a value from
a heap cell, and x.f := e writes a value into a heap cell. The
command x := alloc(f1, . . . , fn) allocates a new uninitialized
heap cell with fields f1, . . . , fn. The command free x disposes of
the heap cell at x.

Figure 8 gives the transition semantics of continuations. There
are three types of states: intermediate states, final states, and goto
states. Intermediate states have the form 〈k, (s, h)〉 where k is
the current continuation and (s, h) is the current store and heap.
Final states are either error, which indicates that an error has
occurred, or have the form final(s, h), which indicates that the
program has terminated in the state (s, h). Goto states have the
form goto(l, (s, h)) and indicate that execution should continue
from label l in state (s, h).

Note that at branch points, a non-determinstic choice is made
among all branches whose condition is satisfied. There are no exe-
cution steps possible from a branch whose conditions are all false.
This makes a single-condition branch equivalent to an “assume”
statement, and we will write “assume(e);k” as short-hand for
“branch e ⇒ k end.” Since our source programs are written in C,
we will have the property that all branches in the original program
are total (that is, the disjunction of the branch conditions is equiv-
alent to true). This ensures that all non-final states in the original
program can transition.

Figure 9 gives the semantics of programs. The program transi-
tions whenever the current continuation can transition. If a state of
the form goto(l, (s, h)) is reached, then execution proceeds with
the continuation at l.

SEMANTICS OF CONTINUATIONS

(s′, h′) ∈ JcK (s, h)

〈(c;k), (s, h)〉 ; 〈k, (s′, h′)〉
error ∈ JcK (s, h)

〈(c;k), (s, h)〉 ; error

JeiK s = true
〈branch . . . , ei ⇒ ki, . . . end, (s, h)〉 ; 〈ki, (s, h)〉

〈goto l, (s, h)〉 ; goto(l, (s, h)) 〈halt, (s, h)〉 ; final(s, h)

〈abort, (s, h)〉 ; error

Figure 8. Semantics of continuations.

〈k, (s, h)〉 ; γ

〈k, (s, h)〉 −P� γ goto(l, (s, h))−P� 〈P (l), (s, h)〉

Figure 9. Transition relation for program P . The variables γ rep-
resents an arbitrary execution state.

4.3 Separation Logic
Our method for producing numeric programs will involve reason-
ing about separation logic formulae. The syntax for formulae is
given in Figure 10. The syntax of expressions is the same as in
Figure 6 and is not repeated here. D is a set of identifiers that are
used to refer to inductively-defined predicates. We discuss induc-
tive predicate definitions in Section 4.4.

The semantics of formulae is also given in Figure 10. The spatial
formula emp describes an empty heap. The formula x 7→ [f1 :
e1, ..., fn : en] describes a singleton heap where x points to
a record whose f1 field contains e1 and so on. A heap satisfies
Q1 ∗ Q2 if it is a disjoint union of heaps h1 and h2 (denoted by
h1]h2) such that h1 satisfies Q1 and h2 satisfies Q2. The formula
d(~e), where ~e is a list of expressions, describes an instance of the
inductive predicate d. We leave more details of inductive predicates
(including their semantics) to Section 4.4.

SYNTAX

Inductive Predicates d ∈ D
Records ρ ::= ε | fτ : eτ , ρ

Spatial Predicates Ξ ::= emp | x 7→ [ρ] | d(~e)

Separation Logic Formulae Q ::= eb | Ξ | Q ∗Q | Q ∧Q |
Q ∨Q | ∃x. Q

SEMANTICS

(s, h) |= eb ⇔ JebK s = true
(s, h) |= emp ⇔ dom(h) = {}
(s, h) |= x 7→ [ρ] ⇔ h = {(s(x), R)}

where R = {(fi, JeiK s) | fi : ei ∈ ρ}
(s, h) |= Q1 ∧Q2 ⇔ (s, h) |= Q1 and (s, h) |= Q2

(s, h) |= Q1 ∨Q2 ⇔ (s, h) |= Q1 or (s, h) |= Q2

(s, h) |= Q1 ∗Q2 ⇔ h = h1] h2 and (s, h1) |= Q1 and
(s, h2) |= Q2

(s, h) |= ∃x. Q ⇔ there exists v ∈ Values such that
(s[x → v], h) |= Q

Figure 10. Syntax and semantics of formulae. The relation h =
h1] h2 holds iff dom(h1)∩ dom(h2) = ∅ and h = h1 ∪ h2. The
notation fi : ei ∈ ρ indicates that ρ = . . . , fi : ei, . . .

4.4 Defining Inductive Pointer Structures
Unbounded pointer structures in our system are described induc-
tively using definitions of the following form. We use vector nota-
tion (e.g. ~v) to denote a list of variables and refer to each Qi,j as a
case of predicate di.

d1(~v1) ≡ Q1,1 ∨ . . . ∨Q1,m1

· · ·
dn(~vn) ≡ Qn,1 ∨ . . . ∨Qn,mn

We require that all variables in ~vi are distinct and that if d ∈ D ap-
pears in any Qi,j then d ∈ {d1, . . . , dn}. Also, fv(Qi,j) ⊆ ~vi.
This specifies a set of mutually inductive predicates. We write
unrolln(Q) for the bounded expansion of formula Q. This is de-
fined such that unrolln(Q) is Q with each instance of di(~e) re-
placed by

(unroll(n−1)(Qi,1[~e/~vi])) ∨ . . . ∨ (unroll(n−1)(Qi,mi [~e/~vi]))

where Q[~e/~vi] is the simultaneous substitution of each element
of ~e for the corresponding element of ~vi. The semantics of a
formula Q containing inductive predicates is then defined such that
(s, h) |= Q iff there exists an n such that (s, h) |= unrolln(Q).

As an example, consider the following definition of a doubly-
linked list segment with length n starting at heap cell first and
ending at last.

dll(n,prev, first, last, next) ≡
emp ∧ n = 0 ∧ first = next ∧ last = prev

∨ (∃z. (first 7→ [prev : prev, next : z])∗
dll(n− 1, first, z, last, next)) ∧ n > 0

This states that there are two possible cases for a segment of length
n. Either n = 0, in which case the list is empty, or n > 0, in which
case there is a cell at the head of the list and a tail of length n− 1.

5. Instrumented Programs and Numeric
Abstractions

The translation from heap-manipulating programs to numeric pro-
grams proceeds via an intermediate form that we call instrumented
programs. These have the same structure as the original program
and include the original program commands, as well as new com-
mands that update a class of instrumentation variables. These in-
strumentation variables track changes to the values of numeric
counts, such as the size of a data structure, during execution of
the program. The new commands are added to the instrumented
program as a proof of memory safety is constructed and make use
of the intermediate results of this safety analysis. Once the instru-
mented program has been constructed, the numeric abstraction is
extracted from it by a simple syntax-directed translation. The end
result is that the numeric program simulates the original program
and thus is a sound abstraction for both safety and liveness prop-
erties. In this section, we discuss the theory of instrumented pro-
grams. In Section 7 we describe how we can automate the genera-
tion of instrumented programs and thus numeric abstractions.

5.1 Instrumented Programs
Figures 11 and 12 give the rules for producing an instrumented ver-
sion bP of an original program P . The instrumented program may
include commands that reference variables that are not present in
the original program. We refer to such variables as instrumentation
variables and they play a role similar to that of auxiliary variables
in program logics for concurrency [27].

Figure 12 defines a judgment Γ ` bP IV P which states that
under invariants Γ, bP is an instrumented version of P with instru-
mentation variables in V . The invariant function Γ is a mapping
from labels to separation logic formulae that specifies the invari-
ants associated with program labels. The notation {Q} c {Q′}
specifies a partial correctness triple and indicates that if (s, h) |= Q
and ((s′, h′) ∈ JcK (s, h)) then (s′, h′) |= Q′. Types are omitted to
avoid cluttering the rules, but instrumented programs and continu-
ations must satisfy the typing rules given in Figure 6.

Note that the property of being a valid instrumentation is defined
with respect to program invariants Γ and, in the case of continua-
tions, with respect to a precondition Q. If we view the construc-
tion of a proof in the system given in Figure 11 as proceeding in a
bottom-up manner, then instrumentation proceeds in lock-step with
the derivation of a partial correctness proof of the program. The
rules COMMAND and BRANCH tell us how to update the precon-
dition to reflect the results of executing an existing command, and
rules INST-ASSIGN, INST-ASSUME, INST-DISJ and INST-EXISTS
tell us which new commands may be added. The invariants in Γ and
those produced during the proving of the continuations that make
up the program ensure that the instrumentation commands are con-
sistent with the semantics of the program and provide a link be-
tween the original program and the numeric program that we even-
tually produce. More details on this connection can be found in the
statement of soundness in Section 6.

A key difference between this approach to command insertion
and the auxiliary variable approach lies with the EXISTS rule. This
rule tells us that if we insert an assignment x := ?, then we
can remove an existential quantifier on x. This may seem odd,
since {∃x. Q} x := ? {Q} is not a valid partial correctness
triple. However, inserting such a command and reasoning from
the unquantified formula is sound because our soundness result is
based on simulation. To maintain soundness, we must show that if
the original program can take a step, then there exists a step in the
instrumented program that takes us to a related state. The fact that
the semantics of x := ? includes all possible updates to x allows us
to find such a state. More details are given in Section 6.

HALT

Γ ` {Q} halt IV halt

ABORT

Γ ` {Q} abort IV abort

GOTO
Γ(l) = Q

Γ ` {Q} goto l IV goto l

COMMAND

{Q} c {Q′} Γ ` {Q′} bk IV k

Γ ` {Q} (c;bk) IV c;k

BRANCH

∀i. (Γ ` {Q ∧ ei} bki IV ki)

Γ ` {Q} branch . . . , ei ⇒ bki, . . . end IV branch . . . , ei ⇒ ki, . . . end

FALSE

Γ ` {false} halt IV k

INST-ASSIGN

{Q} x := e {Q′} Γ ` {Q′} bk IV k

Γ ` {Q} (x := e;bk) IV k
x ∈ V

INST-DISJ

Γ ` {Q1} bk1 IV k Γ ` {Q2} bk2 IV k

Γ ` {Q1 ∨Q2} branch true ⇒ bk1, true ⇒ bk2 end IV k

INST-ASSUME

Q ⇒ eb Γ ` {Q} bk IV k

Γ ` {Q} branch eb ⇒ bk end IV k

INST-EXISTS

Γ ` {Q} bk IV k

Γ ` {∃x. Q} (x := ?;bk) IV k
x ∈ V

STRENGTHENING

Q ⇒ Q′ Γ ` {Q′} bk IV k

Γ ` {Q} bk IV k

Figure 11. Rules for establishing that Γ ` {Q} bk IV k, read “under precondition Q, with label invariants Γ, the continuation bk is an
instrumented version of k with instrumentation variables V .”

dom(bP) = dom(P) fv(P) ∩ V = ∅
∀l ∈ dom(P). (Γ ` {Γ(l)} bP (l) IV P (l))

Γ ` bP IV P

Figure 12. Rule for proving that bP is an instrumented version of
P .

numabsV (bk) = bk if bk ∈ {abort, halt, goto l}
numabsV (c;bk) = c;(numabsV (bk))

if c is x := e or x := ? and fv(x, e) ⊆ V

numabsV (c;bk) = x := ?;(numabsV (bk))

if c is x := e and x ∈ V and fv(e) 6⊆ V

or c is x := y.f and x ∈ V

numabsV (c;bk) = numabsV (bk)

otherwise
numabsV (branch e1 ⇒ bk1, . . . , en ⇒ ckn end) =

branch numexpV (e1) ⇒ numabsV (bk1), . . . ,

numexpV (en) ⇒ numabsV (ckn) end

where numexpV (e) = e if fv(e) ⊆ V

true otherwise

Figure 13. Definition of the function numabsV (bk), which converts
an instrumented program to a numeric abstraction with free vari-
ables contained in V .

5.2 Numeric Programs
Numeric programs are the projection of the instrumented program
onto a subset of the integer-valued variables. In Figure 13 we define
a function numabsV (bk) that, given an instrumented program bk and
a set of variables V , produces the numeric abstraction of bk over
variables in V (which must all be of integer type). Because they
involve only integer-valued variables, numeric abstractions can be
analyzed by a tool without support for the heap and, as shown in
Section 6, a proof of safety or termination from the non-heap-aware
tool guarantees safety or termination of the original program.

5.3 Common Reasoning Patterns
We now demonstrate how the rules in Figure 11 may be used
to insert code that expresses various facts about the behavior of
numeric properties of data structures.

Deterministic Size Changes Suppose we have the following def-
inition of singly-linked list segments.

ls(n,first, tail) ≡
emp ∧ n = 0 ∧ first = tail

∨ (∃z. (first 7→ [next :z]) ∗ ls(n− 1, z, tail)) ∧ n > 0

and execute the code given below.

1 : branch x 6= nil ⇒ x := x.next; goto 1,

x = nil ⇒ halt end

An invariant of this code at label 1 is ∃n1, n2, x
′. ls(n1, x

′, x) ∗
ls(n2, x, nil). In order to track how the sizes of the segments are
changing, we can generate an instrumented program for the code
above. Let Γ(1) = ∃x′. ls(n1, x

′, x) ∗ ls(n2, x, nil). Then the
code below is an instrumented version of the code above with
instrumentation variables n1, n2 (the assignments to n1 and n2 are
added with the INST-ASSIGN rule).

1 : branch x 6= nil ⇒ x := x.next; n1 := n1 + 1;

n2 := n2 − 1; goto 1,

x = nil ⇒ halt end

Note that the existential quantification is dropped in the invariant
used for the instrumented program. This is possible because we are
now updating n1 and n2 in the body of the loop. Viewed another
way, it is by committing to an invariant in which n1 and n2 are
unquantified that we are forced to write the appropriate updates to
n1 and n2 in the body (if we update n1 or n2 incorrectly, we will
not be able to reestablish Γ(1) following execution of the code).

Non-deterministic Size Changes Suppose we have the following
definition of a binary tree.

tree(h, r) ≡ (h = 0 ∧ r = nil)

∨ (h > 0 ∧ ∃h1, h2. (h1 < h) ∧ (h2 < h) ∧
∃lc, rc. r 7→ [left : lc, right : rc]

∗ tree(h1, lc) ∗ tree(h2, rc))

If we now consider code for descending through the tree, we can
obtain update commands similar to those obtained for the linked
list example above. However, since h here is a bound on the height
of the tree, and the height of a subtree is not a deterministic function
of the height of the containing tree, we generate non-deterministic
update commands. The code for performing the descent is given
below. We have marked with {Q} a location of interest during
creation of the instrumented program.

1 : branch r 6= nil ⇒ {Q}branch true ⇒ r := r.left;

goto 1,

true ⇒ r := r.right;

goto 1 end

r = nil ⇒ halt end

Let Γ(1) = true ∗ (tree(h, r)) (where true is used to capture
the part of the heap no longer below r in the tree) and let Q′ be
the formula (h > 0 ∧ (h1 < h) ∧ (h2 < h) ∧ ∃lc, rc. r 7→
[left : lc, right : rc] ∗ tree(h1, lc) ∗ tree(h2, rc)). Then setting
Q = ∃h1, h2. Q′ gives us a valid instance of the BRANCH rule
(we would also need to generate a corresponding precondition for
halt). Applying the EXISTS rule then lets us insert the command
h1 := ? and begin working from the state ∃h2. Q′. We then do
the same for h2, obtaining h2 := ? and Q′. Finally, we can use the
INST-ASSUME rule to insert assume(h1 < h ∧ h2 < h).1 Putting
this all together with an update command for h (added via the INST-
ASSIGN rule), we get the instrumented program given below.

1 : branch r 6= nil ⇒ h1 := ?; h2 := ?;

assume(h1 < h ∧ h2 < h);

branch true ⇒ r := r.left;

h = h1; goto 1,

true ⇒ r := r.right;

h = h2; goto 1 end

r = nil ⇒ halt end

Non-deterministic assignment and “assume” statements are not
generally present in standard C source code, but they are imple-
mented in most program analysis tools (for example, BLAST [20]
has the BLAST NONDET construct). We can use these facilities to
format the numeric code we generate for particular tools.

Branch Condition Translation Let us return to the linked-list ex-
ample from above. The instrumented code that we generated sum-
marized how n1 and n2 were changing during each iteration. This
is sufficient, for example, to prove that the quantity n1 + n2 is in-
variant at location 1. However, we did not add any commands to
indicate how n1 and n2 influence the truth of the branch condi-
tions. Thus, when we extract the numeric program, we will get the
following, which we cannot prove terminates.

1 : branch true ⇒ x := x.next; n1 := n1 + 1;

n2 := n2 − 1; goto 1,

true ⇒ halt end

To obtain a more precise numeric abstraction, we need to replace
the branch on x = nil with a branch involving n1 and n2. To
accomplish this, we can use the INST-ASSUME rule to insert an
assumption on n2.1 The final instrumented program then becomes.

1 : branch x 6= nil ⇒ assume(n2 > 0); x := x.next;

n1 := n1 + 1; n2 := n2 − 1; goto 1,

x = nil ⇒ assume(n2 = 0); halt end

1 Recall that assume(eb);k is an abbreviation for branch eb ⇒ k end.

In this case, we have an exact translation of the branch condition
into an assume statement involving instrumentation variables. In
general, however, this approach let us records assumptions that
over-approximate the original program branch.

Inserting Branches In addition to adding assumptions after ex-
isting branch cases, we can also insert branches at arbitrary points
in the instrumented program. If we can show that our precondi-
tion Q implies (Q1 ∧ e1) ∨ (Q2 ∧ e2) then we can use INST-DISJ

and INST-ASSUME to insert a branch of the form branch true ⇒
(assume(e1);bk1), true ⇒ (assume(e2);bk2) end. By our seman-
tics, this is equivalent to branch e1 ⇒ bk1, e2 ⇒ bk2 end (ignoring
repeated states). Using this equivalence, we can codify the previous
instrumentation pattern as the following derived rule.

INST-BRANCH
Q ⇒ (Q1 ∧ e1) ∨ (Q2 ∧ e2)

Γ ` {Q1 ∧ e1} bk1 IV k Γ ` {Q2 ∧ e2} bk2 IV k

Γ ` {Q} branch e1 ⇒ bk1, e2 ⇒ bk2 end IV k

As branches with multiple cases can be encoded using binary
branches, we can also derive an n-ary version of this rule.

Since Q ⇒ (Q∧ e)∨ (Q∧¬e) is always derivable, we can use
this to insert arbitrary case splits into the instrumented program. We
can also use it to insert splits based on which case of an inductive
definition holds. For example, suppose we have the precondition
ls(n, x, y) and a branch on whether x = y or x 6= y. If n = 0 then
we know x = y. If n > 0 we cannot conclude anything about x
and y as they could still be equal if the list is cyclic. We can make
this relationship between n = 0 and x = y apparent by first case
splitting on n using the derived rule above and then using FALSE to
prune the branch where n = 0 and x 6= y. We obtain the program
below, where we have written {false} to highlight the location of
the inconsistent case.

branch n2 > 0 ⇒
branch x 6= y ⇒ . . . ,

x = y ⇒ . . . end,

n2 = 0 ⇒
branch x 6= y ⇒ {false} halt,

x = y ⇒ . . . end

end

6. Soundness
In this section, we prove the main soundness result, which is that
the numeric program simulates the original program. We then state
several consequences of this theorem as it relates to particular
classes of program properties. We use the notation s = s′ mod V
to indicate that ∀x. x 6∈ V ⇒ s(x) = s′(x).

Definition 1. Let RV,Γ
1 be the least relation on execution states

satisfying the following.

〈k, (s, h)〉 RV,Γ
1 〈bk, (bs, h)〉 iff s = bs mod V

and ∃Q.
`
Γ ` {Q} bk IV k

´
∧

`
(bs, h) |= Q

´
goto(l, (s, h)) RV,Γ

1 goto(l, (bs, h)) iff s = bs mod V

and (bs, h) |= Γ(l)

final(s, h) RV,Γ
1 final(bs, h) iff s = bs mod V

error RV,Γ
1 error

Theorem 1. Suppose Γ ` bP IV P and choose any l0 such
that l0 ∈ dom(P). Let (s0, h0) |= Γ(l0). Then we have thatbP with initial state 〈 bP (l0), (s0, h0)〉 stuttering simulates P with

initial state 〈P (l0), (s0, h0)〉 and RV,Γ
1 is the simulation relation

that witnesses this.

Proof. We use the framework of well-founded simulations from
[25] for the proof. We first show that initial states are related. We
have s0 = s0 mod V and (s0, h0) |= Γ(l0). Since we have
Γ ` bP IV P and there is only one rule for establishing this, we
have Γ ` {Γ(l0)} bP (l0) IV P (l0) from the premises of that rule
(see Figure 12). This completes the proof that 〈P (l0), (s0, h0)〉
RV,Γ

1 〈 bP (l0), (bs0, h0)〉.
For non-initial states, suppose γRV,Γ

1 bγ and γ −P� γ′. We will
show that one of the following holds.

1. bγ −bP� bγ′ and γ′RV,Γ
1 bγ′

2. bγ −bP� bγ′ and γRV,Γ
1 bγ′

There are additional well-foundedness conditions associated with
condition 2 which we address when we discuss those cases.

The only states that can transition are intermediate states and
goto states. We address goto states first. Suppose γ = goto(l, (s, h)).
Then, since γRV,Γ

1 bγ, we have bγ = goto(l, (bs, h)) and s = bs
mod V and (bs, h) |= Γ(l). Our program semantics gives us
γ −P� 〈P (l), (s, h)〉 and bγ −bP� 〈 bP (l), (bs, h)〉. Since we have
Γ ` bP IV P and there is only one rule for establishing this, we
have Γ ` {Γ(l)} bP (l) IV P (l) from the premises of that rule.
These are all the conditions required to establish that the target
states are related.

We now consider the intermediate states. Let γ = 〈k, (s, h)〉.
Since γRV,Γ

1 bγ we then have bγ = 〈bk, (bs, h)〉 for some bk, bs and that
there exists a Q satisfying the following

s = bs mod V (1)
(bs, h) |= Q (2)

Γ ` {Q} bk IV k (3)

The proof for these cases will proceed by induction on the
derivation of Γ ` {Q} bk IV k. The HALT and ABORT cases
are straightforward. For GOTO we have γ′ = goto(l, (s, h)) andbγ′ = goto(l, (bs, h)). To show that these states are related, we must
show (bs, h) |= Γ(l), which we have as a premise of the rule.

For COMMAND we have k = (c;k′) and bk = (c;bk′). By virtue
of the fact that the same command is being executed, and that s = bs
mod V and c does not contain variables in V , we have that the
heaps in the post-states are the same and the stores are equal mod
V . That (bs′, h) |= Q′ follows from our premise {Q} c {Q′}. For
BRANCH we have from γ −P� γ′ that JeiK s = true for some ei.
Since s = bs mod V and fv(ei) ∩ V = ∅, we have (bs, h) |= ei

which implies that bP can match the step.
The FALSE case holds vacuously, since our assumption (2) be-

comes (bs, h) |= false , which cannot hold. For STRENGTHENING, we
have that Q ⇒ Q′ so (bs, h) |= Q implies (bs, h) |= Q′, allowing
us to apply the inductive hypothesis to Γ ` {Q′} bk IV k and thus
obtain the result.

We now turn to the cases in category 2, where bγ −bP� bγ′
and γRV,Γ

1 bγ′. These are INST-ASSIGN, INST-DISJ, INST-ASSUME,
and INST-EXISTS. In addition to our usual proof obligations, in
these cases we must also show that some well-founded measure
decreases following the transition. If we take the size of bγ′ to be
the size of the term representing the current continuation, then this
will be an appropriate measure.

We begin with INST-ASSUME. We must first show that bk =

branch eb ⇒ bk′ end allows bγ to transition. This follows from

the premise Q ⇒ eb, which implies (bs, h) |= eb and thus JebK bs =
true, which is the required condition to establish 〈branch eb ⇒bk′ end, (bs, h)〉 −bP� 〈bk′, (bs, h)〉. That γRV,Γ

1 〈bk′, (bs, h)〉 is then
straightforward.

For the other cases, it is easy to see that a transition bγ −bP� bγ′
exists. Let bγ′ = 〈bk′, (bs′, h)〉 (as it will have this form in all
remaining cases). For INST-ASSIGN, we have as a premise {Q} x :=
e {Q′}, which implies (bs′, h) |= Q′. From (1) and the side
condition x ∈ V we have s = bs′ mod V . Our second premise
then provides the last condition required to establish γRV,Γ

1 bγ′.
For INST-DISJ, we must show that one of the branches allows the

post-state to be related to γ. Since bs and h are unchanged by branch
execution, we need only show that there is a Q satisfying conditions
(2) and (3). We have from γRV,Γ

1 bγ that (bs, h) |= Q1 ∨ Q2,
which implies (bs, h) |= Q1 or (bs, h) |= Q2. In either case we
have Γ ` {Qi} bki IV k and bγ −bP� 〈bki, (bs, h)〉, which implies
γRV,Γ

1 bγ′.
The final case is INST-EXISTS. In this case, we must show that

there is some bs such that 〈(x := ?;bk′), (bs, h)〉 ; 〈bk′, (bs′, h)〉 and
(bs′, h) |= Q. We have that (bs, h) |= ∃x. Q from our assumptions.
This implies that (bs′, h) |= Q for some bs′ that is the same as bs
except at x. The semantics of x := ? ensures that (bs′, h) is in the
set Jx := ?K (bs, h) and thus we have our result.

Since the numeric program does not involve heap access com-
mands, its semantics can be given entirely in terms of commands’
effect on the store. The interpretation of commands is then as given
in Figure 7 but with h, which is invariant for non-heap commands,
omitted. Intermediate states of the original program and instru-
mented program are then tuples 〈k, (s, h)〉 while concrete states
of the numeric program have the form 〈k, s〉.

Definition 2. Let s =V ′ bs hold iff ∀x ∈ V ′. s(x) = bs(x). Let RV ′
2

be the least relation on states satisfying the following

〈k, (s, h)〉 RV ′
2 〈k′, s′〉 iff s =V ′ s′

goto(l, (s, h)) RV ′
2 goto(l, s′) iff s =V ′ s′

final(s, h) RV ′
2 final(s′) iff s =V ′ s′

error RV ′
2 error

Theorem 2. Suppose P ′ = numabsV ′(bP) and choose any l0
such that l0 ∈ dom(bP). Let (bs0, bh0) |= Γ(l0). Then we have
that P ′ with initial state 〈P ′(l0), bs0〉 simulates bP with initial state
〈 bP (l0), (bs0, bh0)〉 and RV ′

2 is the simulation relation that witnesses
this.

Proof. The proof proceeds by induction on the structure of bP .
There is a case for each branch of the definition of numabsV ′(bk).
We need only consider commands c that modify variables in V ′.
We have that s1 =V ′ s′1 and must show that after executing c we
have s2 =V ′ s′2 where s2 and s′2 are the stores in the post-states.
For c = (x := y.f) we have a numeric command of x := ?,
the semantics of which includes all possible writes into x. For
c = (x := e) we have either x := ? or x := e as the numeric
command. We have x := e only when fv(e) ⊆ V ′, in which case
s1 =V ′ s′1 implies JeK s1 = JeK s′1, which ensures that the same
value is written into x in each case.

For branches, the reasoning is similar in that the branch condi-
tion is either true , which is an over-approximation of any branch,
or the condition is e with fv(e) ⊆ V ′ which implies that the con-
dition evaluates to the same value in both the instrumented and nu-
meric states. The condition that labels in the goto states are the
same follows from the fact that goto statements are carried over to
the numeric program unchanged.

Corollary 1. If Γ ` bP IV P and P ′ = numabsV ′(bP) and
P ′ terminates, then P terminates when started from any state
〈P (l0), (s, h)〉 such that (s, h) |= Γ(l0).

Proof. This follows directly from the simulation results above.
Transitivity of simulation gives us that P ′ simulates P with pre-
condition Γ(l0), which implies that if P ′ contains only finite traces
then P must contain only finite traces.

The following corollary relates safety properties of the numeric
program to safety properties of the original program by relating
the program invariants. We use the notation Γ ` P to mean
that Γ specifies invariants of P . That is, dom(Γ) = dom(P)
and for all l ∈ dom(P) and for all s, h, if (s, h) |= Γ(l) and
〈P (l), (s, h)〉 −P�∗ goto(l′, (s′, h′)) then (s′, h′) |= Γ(l′). We
will also write ∃V. (Γ ∧ Γ′) to denote the function Γ′′ with the
same domain as Γ but with Γ′′(l) =

`
∃V. (Γ(l) ∧ Γ′(l)

´
.

Corollary 2. If Γ ` bP IV P and P ′ = numabsV ′(bP) and
Γ′ ` P ′ and fv(Γ′) ⊆ V ′, then ∃V. (Γ ∧ Γ′) ` P .

Proof. This follows from the details of the simulation relations
involved. Let bP be the instrumented program connecting P and
P ′. The simulation relation tells us that if a state goto(l, (s, h))
is reachable in a trace of P starting from some 〈P (l0), (s0, h0)〉
such that (s0, h0) |= ∃V. Γ(l0), then the state is RV,Γ

1 -related to
a state goto(l, (bs, h)) in a trace of bP which is then RV ′

2 -related
to a state goto(l, s′) in a trace of P ′. That goto(l, s′) is reachable
in P ′ and Γ′ ` P ′ implies that s′ |= Γ′(l). The conditions of
the relation RV ′

2 and fv(Γ′) ⊆ V ′ then gives us that (bs, h) |=
Γ′(l) since s′ and bs agree on the values of the variables in V ′.
Finally, the RV,Γ

1 relation tells us that (bs, h) |= Γ(l) which implies
(bs, h) |= Γ(l) ∧ Γ′(l). That s = bs mod V then implies that
(s, h) |= ∃V. Γ(l) ∧ Γ′(l).

In fact, the simulation relations involved ensure that if Γ `bP IV P and P ′ = numabsV ′(bP) then each trace of P starting
from 〈P (l0), (s, h)〉 with (s, h) |= Γ(l0) is stuttering equivalent to
a trace of P ′, where the equivalence identifies states that agree on
V ′−V . The theory of stuttering equivalence developed in [8] then
gives us that P ′ is a sound abstraction of these traces of P for all
LTL−X properties over variables in V ′−V . In our implementation,
V ′ is chosen such that this difference includes integer variables
of interest from the original program, such as variables whose
values we would like to bound, or for which we want to compute
invariants.

7. Instrumentation Analysis
We will now describe how we have automated the production of
instrumented programs and thus numeric abstractions. As partial
correctness invariants describing the heap are a required part of the
proof that one program is an instrumentation of another, a shape
analysis will be at the center of our approach and we will only
be able to automatically produce instrumentations of programs for
which the shape analysis succeeds. The shape analysis we use is of
the form described in [16] and [23]. It has been implemented as an
extension of the THOR [24] shape analysis tool.

Using the terminology of [16], shape analyses of this type gen-
erally have four primary operations: 1) rearrangement, 2) abstrac-
tion, 3) symbolic execution, 4) entailment. In order to produce nu-
meric abstractions, we need to make slight changes to steps 1, 2,
and 4. We also need a method of translating branches involving
pointer variables into branches over instrumentation variables. We
now describe how to modify each of the shape analysis steps in or-
der to obtain an instrumentation. The modifications are such that

they do not interfere with the accuracy or convergence properties
of the underlying shape analysis.

Rearrangement In this phase, inductively-defined predicates are
expanded with the goal of exposing some specific heap formula
(often a formula stating that a certain heap cell exists). We will use
the notation Q(~x) to denote a formula with free variables ~x and
then Q(~e) to denote the simultaneous substitution of ~e for ~x. Given
an expansion rule of the form

d(~x) ⇒
`
Q1(~x) ∨ . . . ∨Qn(~x)

´
and a formula Q ∗ d(~e) containing an instance of d, the analysis
proceeds by reasoning from each case Q ∗Qi(~e).

In order to obtain an instrumentation in such a case, we require
that the implication have the form below, where the underlined
variables represent instrumentation variables. The expressions e′i
record the relation between the instrumentation variables ~v, which
occur as parameters to the predicate d and the new instrumentation
variables ~zi, which appear in the Qi.

d(~v; ~w) ⇒(e1 ∧ ∃~z1. e′1 ∧Q′
1) ∨ . . .∨

(en ∧ ∃ ~zn. e′n ∧Q′
n)

As a concrete example, consider our list predicate, which can be
written in the following form (where ~z1 is empty and e′1 = true in
the first case).

ls(n;first, tail) ⇒
n = 0 ∧ true ∧ (emp ∧ first = tail)

∨ (n > 0) ∧ ∃n′. (n′ = n− 1) ∧
(∃z. (first 7→ [next :z]) ∗ ls(n′; z, tail))

We can either provide such implications directly or, as is the case
with our tool, generate them from user-provided inductive defini-
tions.

We can represent this reasoning by cases in the instrumented
program by inserting an n-way non-deterministic branch (which
can be encoded as nested binary branches and justified with
INST-DISJ). We now have the precondition Q ∗ Qi(~e) in each case
and, based on the restricted syntax above, we know that Qi(~e) has
the form ei ∧ ∃~zi. e′i ∧Q′

i. Continuing our insertion of instrumen-
tation commands, we can use INST-ASSUME to insert assume(ei)
then INST-EXISTS to insert ~zi := ?. We now have a precondition
of the form Q ∗ (ei ∧ e′i ∧ Q′

i) and can use INST-ASSUME again to
insert assume(e′i).

Putting this together and simplifying the resulting program, we
get the following, where bki is the result of instrumenting the current
continuation k starting from the precondition Q ∗ (ei ∧ e′i ∧Q′

i).

branch . . . , ei ⇒ ~zi
′ := ?;assume(e′i);bki, . . . end

Symbolic Execution During symbolic execution, we are given
the precondition Q of some command c and must compute the
postcondition. This step is generally specified assuming that rear-
rangement has already revealed any heap cells necessary to process
c. That is, if c is x.next = nil then Q has the form Q ∗ (x 7→
[next : e]). This step is unchanged, as original program commands
are simply copied into the instrumentation, a process justified by
the COMMAND rule.

Abstraction Abstraction corresponds to applying an implication
whose right-hand side contains a single instance of an inductive
definition (there can be other abstraction rules as well, but these are
the kind we will want to instrument). Again, we require that the
implication in question have the following specific form, where e
relates ~z to ~v.

Q(~z) ⇒ ∃~v. e ∧ d(~v;~w)

As a concrete example, consider the following abstraction rule for
lists.

(x 7→ [next : y]) ∗ ls(n′; y, z) ⇒
∃n. n > 0 ∧ (n = n′ + 1) ∧ ls(n; x, z)

Abstraction rules for all the data structures considered in our exper-
iments can be written in this form.

Suppose we have such an abstraction rule and a precondition Q0

to which it is applicable. That is, Q0 = Q′
0∗Q(~e) for some ~e. Then

by STRENGTHENING followed by INST-EXISTS and INST-ASSUME, we
obtain the following instrumentation commands

~v := ?;assume(e)

and can proceed to reason from the precondition Q′
0∗(d(~v; ~w)∧e).

In our list example, for the precondition (x 7→ [next : y]) ∗
ls(n′; y, z) we would obtain the commands n := ?; assume(n >
0 ∧ n = n′ + 1).

Entailment In order to determine whether the shape analysis pro-
cess has converged, we need to check whether the current precon-
dition entails an invariant that we have seen before. This occurs, for
example, when we process a goto l command. In this case, we want
to check whether the current formula implies another formula that
is already known to be in Γ(l). In our implementation, when this
holds, the spatial portion of the formulas will always be syntacti-
cally equal up to renaming of existentially quantified variables and
instrumentation variables. Thus, we have some ∃~x. Q1 and some
previously discovered formula ∃~y. Q2 such that Q1 ≡ σ(Q2),
where σ is a substitution whose domain consists of ~y and the in-
strumentation variables in Q2. Let σi be the portion of σ that af-
fects instrumentation variables. Then, for all x ∈ dom(σi) we add
the command x := σi(bx). The commands are justified using the
INST-ASSIGN rule.

To again return to our list example, if we have ls(n2; x, nil)
and are processing goto l and have previously discovered that
ls(n; x, nil) is an invariant at l, then we can establish this invariant
from the current state by executing the instrumentation command
n := n2. The post-condition of this command is ls(n; x, nil),
allowing us to show that we have properly instrumented goto l
using the GOTO rule.

Branch Condition Translation Branches in the original program
that only involve integer-valued variables can be carried over un-
changed to the numeric program. However, branches that involve
pointer variables will be abstracted by the numabsV (k) function. In
many cases, we can obtain good approximations of these branches
in terms of instrumentation variables. For example, given the state
ls(n; x, nil) and the condition x = nil, we can prove that this con-
dition is equivalent to n = 0.

In the general case, given a state Q and a continuation

branch . . . , e ⇒ k, . . . end

we want to find some e′ involving only integer variables such that
Q ∧ e ⇒ e′. We can then use the INST-ASSUME rule to add an
assume(e′) command to the branch case, obtaining

branch . . . , e ⇒ assume(e′);k, . . . end

This assume(e′) command will then become part of the numeric
program we produce.

The search for such an e′ is fairly undirected, however, as the
right-hand side of the implication is entirely unknown. In our tool,
we have found it is easier to instead consider the equivalent formula
Q∧¬e′ ⇒ ¬e. We can then search for an assumption ea such that
Q ∧ ea ⇒ ¬e. This similar to the process of abduction described
in [9], except that we are searching for a pure, rather than spatial,
assumption. This ensures that we have something known on both

the left and right sides of the implication, which helps to structure
the proof search. Our translated branch condition is then ¬ea.

Consider the example of ls(a; x, y) ∗ ls(b; y, x) and the condi-
tion x 6= y. This describes a state in which we have a cyclic list that
x and y both point into. We would ask our prover to find an ea such
that (ls(a; x, y) ∗ ls(b; y, x)) ∧ ea ⇒ x = y. The discovered ea is
(a = 0)∨(b = 0). We then negate this to obtain (a 6= 0)∧(b 6= 0),
which is an over-approximation of x 6= y in the given state.

In practice, we find ea by expanding inductive predicates on the
left and recording in which cases a proof of Q ⇒ ¬e succeeds and
in which it fails. The condition returned is then the condition that
rules out all the failure cases.

8. Experimental Results
We have implemented the techniques described here in the tool
THOR [24]. Table 1 summarizes the experimental results of verify-
ing safety and termination of programs that manipulate different in-
ductive data structures. For each program, we use THOR to produce
a numeric abstraction of the original program. Then we use BLAST
and ARMC to verify safety and ARMC-LIVE to check termina-
tion of the numeric abstraction. The results of BLAST, ARMC, and
ARMC-LIVE are all consistent with the expected results and thus
we only list the timing information.

In these results, safety refers to memory safety of the pro-
gram. We can use the numeric abstraction produced by THOR to
show memory safety in cases where memory safety involves track-
ing arithmetic information. For example, the copy zip example in-
volves copying a list and then combining it with the original list to
produce a list of pairs. The code for combining the lists assumes
that they have equal length and will produce a memory fault if not.
Verification for this example then begins by adding assert state-
ments at each memory access checking that the variable to be ac-
cessed is non-nil. For example, we might translate y := x.next; k
to the continuation branch x = nil ⇒ abort, x 6= nil ⇒ y :=
x.next; k end. We then run THOR on this code to produce a nu-
meric abstraction. Some of the abort statements will have been
shown to be unreachable by the shape analysis, but others will
remain and be present in the numeric abstraction. This numeric
program is then fed to a separate safety tool, such as BLAST or
ARMC, which can prove that the remaining abort statements are
all unreachable. This implies that they are also unreachable in the
original program and thus the original program is memory safe.

As can be seen in the lift and dfs examples, the analysis time for
the numeric program is sometimes quite large. This is due to the
number of branches and instrumentation variables that are inserted
by our current implementation. Many of these are redundant, and
simplifying the resulting numeric programs, either by changes to
the algorithm or post-processing steps will be important in order to
allow such an approach to scale.

9. Conclusion
We have presented a formal system for producing numeric abstrac-
tions of heap-manipulating programs. The numeric abstractions de-
scribe how integer properties of data structures change during pro-
gram execution and can be used to reason effectively about safety,
termination, and variable bounds of the original program. In fact,
the numeric abstraction is a sound abstraction for all LTL−X prop-
erties specified in terms of integer variables shared by the original
program and numeric abstraction.

We have implemented this abstraction technique as part of a
shape analysis tool based on separation logic that includes support
for user-defined inductive predicates. We applied the implementa-
tion to a collection of test programs and used a variety of existing
numeric analysis tools to investigate safety and termination prop-

Program Expected Result TNA TBLAST TARMC TARMC-LIVE

Doubly Linked Lists
reverse bad unsafe 0.076 0.151 0.037 0.044

copy zip safe / terminates 4.862 0.238 7.674 31.683
iter sum safe / terminates 1.204 0.342 8.036 9.589

Circular Doubly-Linked Lists
traverse safe / terminates 1.526 0.046 0.908 1.383
delete safe / terminates 2.245 0.068 11.138 20.204
meet safe / diverges 0.760 0.126 1.734 0.180

Circular Linked Lists
sum safe / terminates 0.827 0.065 1.621 2.582

add after safe / terminates 1.072 0.061 4.846 12.342
add after loop safe / diverges 0.997 0.065 1.945 3.364
Skip Lists

create safe / terminates 9.651 0.122 10.546 34.960
lift unsafe 10.464 0.356 5.814 971.090

find loop safe / diverges 4.431 0.106 36.860 45.709
Binary Search Trees

insert safe / terminates 1.550 0.046 0.458 0.895
mem safe / terminates 0.573 0.042 0.387 2.690

Binary Trees
dfs safe / terminates 0.780 0.042 0.444 3503.065

Table 1. The experimental results. Time is in seconds. TNA rep-
resents the time of producing numeric abstraction. TBLAST, TARMC,
and TARMC-LIVE represent the time of verifying the numeric abstrac-
tion by BLAST, ARMC, and ARMC-LIVE respectively.

erties of these programs. The results demonstrate that generating
numeric abstractions is a flexible and effective means of extend-
ing the precision of shape analysis tools based on separation logic.
Such an approach allows reasoning about complex numeric safety
and termination properties without complicating the shape analysis
tool or the abstract domain on which it is based.

References
[1] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic

predicate abstraction of C programs. In PLDI, pages 203–213. ACM
Press, 2001.

[2] N. Benton. Simple relational correctness proofs for static analyses
and program transformations. In POPL, pages 14–25. ACM Press,
2004.

[3] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. O’Hearn,
T. Wies, and H. Yang. Shape analysis for composite data structures.
In CAV, LNCS 4590, pages 178–192. Springer, 2007.

[4] J. Berdine, B. Cook, D. Distefano, P. W. O’hearn, and Q. Mary.
Automatic termination proofs for programs with shape-shifting heaps.
In CAV, pages 386–400. Springer, 2006.

[5] D. Beyer, T. A. Henzinger, and G. Théoduloz. Lazy shape analysis.
In CAV, LNCS 4144, pages 532–546. Springer, 2006.

[6] A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and
T. Vojnar. Programs with lists are counter automata. In CAV,
LNCS 4144, pages 517–531. Springer, 2006.

[7] J. Brotherston, R. Bornat, and C. Calcagno. Cyclic proofs of program
termination in separation logic. In POPL, pages 101–112. ACM
Press, 2008.

[8] M. C. Browne, E. M. Clarke, and O. Grümberg. Characterizing
finite kripke structures in propositional temporal logic. Theoretical
Computer Science, 59(1-2):115–131, 1988.

[9] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional
shape analysis by means of bi-abduction. In POPL, pages 289–300,
New York, NY, USA, 2009. ACM.

[10] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Beyond

reachability: Shape abstraction in the presence of pointer arithmetic.
In SAS, LNCS 4134, pages 182–203, 2006.

[11] B.-Y. E. Chang and X. Rival. Relational inductive shape analysis. In
POPL, pages 247–260, New York, NY, USA, 2008. ACM.

[12] B.-Y. E. Chang, X. Rival, and G. C. Necula. Shape analysis with
structural invariant checkers. In SAS, LNCS 4634, pages 384–401.
Springer, 2007.

[13] B. Cook, A. Gupta, S. Magill, A. Rybalchenko, J. Simsa, S. Singh,
and V. Vafeiadis. Finding heap-bounds for hardware synthesis. In
FMCAD’09, 2009.

[14] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for
systems code. In PLDI, pages 415–426, New York, NY, USA, 2006.
ACM.

[15] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. The ASTREÉ analyzer. In ESOP, pages 21–30, 2005.

[16] D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis
based on separation logic. In TACAS, LNCS 3920, pages 287–302.
Springer, 2006.

[17] D. Distefano and M. J. Parkinson. jStar: towards practical verification
for java. In OOPSLA, pages 213–226. ACM, 2008.

[18] S. Gulwani, K. K. Mehra, and T. Chilimbi. SPEED: precise and
efficient static estimation of program computational complexity. In
POPL, pages 127–139, New York, NY, USA, 2009. ACM.

[19] P. Habermehl, R. Iosif, A. Rogalewicz, and T. Vojnar. Proving
termination of tree manipulating programs. In ATVA, LNCS 4762,
pages 145–161. Springer, 2007.

[20] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In POPL, pages 58–70. ACM Press, 2002.

[21] A. Loginov, T. W. Reps, and M. Sagiv. Automated verification of the
Deutsch-Schorr-Waite tree-traversal algorithm. In SAS, LNCS 4134,
pages 261–279. Springer, 2006.

[22] S. Magill, J. Berdine, E. M. Clarke, and B. Cook. Arithmetic
strengthening for shape analysis. In SAS, LNCS 4634, pages 419–436.
Springer, 2007.

[23] S. Magill, A. Nanevski, and E. M. Clarke. Inferring invariants in
separation logic for imperative list-processing programs. In SPACE,
2006.

[24] S. Magill, M.-H. Tsai, P. Lee, and Y.-K. Tsay. THOR: A tool for
reasoning about shape and arithmetic. In CAV, LNCS 5123, pages
428–432. Springer, 2008.

[25] P. Manolios. Mechanical Verification of Reactive Systems. PhD
thesis, University of Texas at Austin, 2001.

[26] H. H. Nguyen, C. David, S. Qin, and W.-N. Chin. Automated
verification of shape and size properties via separation logic. In
VMCAI, pages 251–266, 2007.

[27] S. S. Owicki and D. Gries. An axiomatic proof technique for parallel
programs I. Acta Informatica, 6:319–340, 1976.

[28] A. Podelski and A. Rybalchenko. Transition invariants. In LICS,
pages 32–41. IEEE Computer Society, 2004.

[29] A. Podelski and A. Rybalchenko. ARMC: the logical choice for
software model checking with abstraction refinement. In PADL,
LNCS 4354, pages 245–259. Springer, 2007.

[30] A. Podelski, A. Rybalchenko, and T. Wies. Heap assumptions on
demand. In CAV 2008, LNCS 5123, pages 314–327. Springer-Verlag,
2008.

[31] R. Rugina. Quantitative shape analysis. In SAS, pages 228–245,
2004.

[32] N. Wirth. Program development by stepwise refinement. Communi-
cations of the ACM, 14(4):221–227, 1971.

[33] H. Yang. Relational separation logic. Theoretical Computer Science,
375(1-3):308–334, 2007.

