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Abstract

Planning in partially observable environments remainsalehging problem, de-
spite significant recent advances in offline approximatémhniques. A few on-
line methods have also been proposed recently, and provenremarkably scal-
able, but without the theoretical guarantees of their adfliounterparts. Thus it
seems natural to try to unify offline and online techniquesserving the theo-
retical properties of the former, and exploiting the scailfof the latter. In this
paper, we provide theoretical guarantees on an anytimeitidgofor POMDPs
which aims to reduce the error made by approximate offlineevideration algo-
rithms through the use of an efficient online searching ptace. The algorithm
uses search heuristics based on an error analysis of loatalearch, to guide the
online search towards reachable beliefs with the most piatéoreduce error. We
provide a general theorem showing that these search hiesias¢é admissible, and
lead to complete angtoptimal algorithms. This is, to the best of our knowledge,
the strongest theoretical result available for online PGMidlution methods. We
also provide empirical evidence showing that our approa&iso practical, and
can find (provably) near-optimal solutions in reasonaloheti

1 Introduction

Partially Observable Markov Decision Processes (POMDRs)ige a powerful model for sequen-
tial decision making under state uncertainty. However egatutions are intractable in most do-
mains featuring more than a few dozen actions and obsengti&ignificant efforts have been
devoted to developing approximate offline algorithms fogéat POMDPSs [1, 2, 3, 4]. Most of these
methods compute a policy over the entire belief space. Bhimth an advantage and a liability.
On the one hand, it allows good generalization to unseeefsgknd this has been key to solving
relatively large domains. Yet it makes these methods intjwador problems where the state space
is too large to enumerate. A number of compression techeiage been proposed, which han-
dle large state spaces by projecting into a sub-dimensiepatsentation [5, 6]. Alternately online
methods are also available [7, 8, 9, 10, 11]. These achialelstity by planning only at execution
time, thus allowing the agent to only consider belief stdted can be reached over some (small)
finite planning horizon. However despite good empiricaf@enance, both classes of approaches
lack theoretical guarantees on the approximation. So itldveeem we are constrained to either
solving small to mid-size problems (near-)optimally, olveag large problems possibly badly.

This paper suggests otherwise, arguing that by combinifig@fand online techniques, we can
preserve the theoretical properties of the former, whilpl@iing the scalability of the latter. In
previous work [11], we introduced an anytime algorithm f@NWDPs which aims to reduce the
error made by approximate offline value iteration algorishthrough the use of an efficient online
searching procedure. The algorithm uses search heutigtied on an error analysis of lookahead
search, to guide the online search towards reachable $elisf the most potential to reduce error. In



this paper, we derive formally the heuristics from our eminimization point of view and provide
theoretical results showing that these search heuristcadmissible, and lead to complete and
optimal algorithms. This is, to the best of our knowledge, skrongest theoretical result available
for online POMDP solution methods. Furthermore the appgromorks well with factored state
representations, thus further enhancing scalabilityiggasted by earlier work [2]. We also provide
empirical evidence showing that our approach is computatip practical, and can find (provably)
near-optimal solutions within a smaller overall time thaeyious online methods.

2 Background: POMDP

A POMDRP is defined by a tupléS, A,Q, T, R, O,~) whereS is the state space] is the action
set, () is the observation sefl’ : S x A x S — [0,1] is the state-to-state transition function,
R : S x A — Ris the reward functionQ : Q@ x A x S — [0,1] is the observation function,
and~ is the discount factor. In a POMDP, the agent often does notvkhe current state with full
certainty, since observations provide only a partial iattc of state. To deal with this uncertainty,
the agent maintains a belief sté{g), which expresses the probability that the agent is in eaxth st
at a given time step. After each step, the belief skateupdated using Bayes rule. We denote the
belief update functiod’ = 7(b, a, 0), defined a$'(s") = 70(0,a,s") >, .5 T(s,a, s")b(s), where

7 is a normalization constant ensurihg, . ¢ b'(s) = 1.

Solving a POMDP consists in finding an optimal poliay, : AS — A, which specifies the best
actiona to do in every belief staté, that maximizes the expectedturn (i.e., expected sum of
discounted rewards over the planning horizon) of the ag&#. can find the optimal policy by
computing the optimal value of a belief state over the plagmorizon. For the infinite horizon, the
optimal value function is defined a&*(b) = maxaca[R(b, a) + 7> cq P(o0lb,a)V*(7(b, a,0))],
where R(b, a) represents the expected immediate reward of doing aetiombelief stateb and
P(olb, a) is the probability of observing after doing actiom in belief stateh. This probability can
be computed according ®(o|b, a) = >, c 5 O(0,a,5") > s T(s,a,s)b(s). We also denote the
value@* (b, a) of a particular actiom in belief state, as the return we will obtain if we performin

b and then follow the optimal polic®)*(b, a) = R(b,a) + v Y. cq P(o|b,a)V*(7(b,a,0)). Using
this, we can define the optimal poliay (b) = argmax,c 4 Q* (b, a).

While any POMDP problem has infinitely many belief statejas been shown that the optimal
value function of a finite-horizon POMDP is piecewise linaad convex. Thus we can define the
optimal value function and policy of a finite-horizon POMD#Sing a finite set ofS|-dimensional
hyper plans, called-vectors, over the belief state space. As a result, exathefialue iteration
algorithms are able to computé&* in a finite amount of time, but the complexity can be very high.
Most approximatefflinevalue iteration algorithms achieve computational traiditstby selecting

a small subset of belief states, and keeping only thiesectors which are maximal at the selected
belief states [1, 3, 4]. The precision of these algorithnmzedel on the number of belief points and
their location in the space of beliefs.

3 Online Search in POMDPs

Contrary to offline approaches, which compute a completEypdetermining an action for every
belief state, an online algorithm takes as input the cutpetief state and returns the single action
which is the best for thiparticular belief state The advantage of such an approach is that it only
needs to consider belief states that are reachable fronuthent belief state. This naturally provides
a small set of beliefs, which could be exploited as in offlinetinods. But in addition, since online
planning is done at every step (and thus generalizationdsstleliefs is not required), it is sufficient
to calculate only thenaximal valuefor the current belief state, not the full optimatvector. A
lookahead search algorithm can compute this value in twplsisteps.

First we build a tree of reachable belief states from theantrbelief state. The current belief is the
top node in the tree. Subsequent belief states (as caldidather (b, a, o) function) are represented
using OR-nodes (at which we must choose an action) and aarerincluded in between each layer
of belief nodes using AND-nodes (at which we must considgu@dsible observations). Note that
in general the belief MDP could have a graph structure wittleg; Our algorithm simply handle



such structure by unrolling the graph into a tree. Hencegif@ach a belief that is already elsewhere
in the tree, it will be duplicated.

Second, we estimate the value of the current belief statedpagating value estimates up from the
fringe nodes, to their ancestors, all the way to the root. ppraximate value function is generally
used at the fringe of the tree to approximate the infinitéAoorvalue. We are particularly interested
in the case where a lower bound and an upper bound on the valie dringe belief states is
available, as this allows us to get a bound on the error at payific node. The lower and upper
bounds can be propagated to parent nodes according to:

U(b if bis aleafinT,
Ur(b) = { m;x)aeA Ur(b,a) otherwise @)
Ur(b,a) = Rp(b,a) —|—’yZP(0|b, a)Ur(7(b,a,0)); (2)
0EQ
L(b if bis aleafinT,
Lr(b) = { m(awzaeA Lr(b,a) otherwise ®)
Lr(b,a) = Rp(b,a) + 7Y _ P(olb,a)Lr(7(b,a,0)); (4)
0EQ

whereUr(b) and L1 (b) represent the upper and lower boundslgi(b) associated to belief state
b in the treeT’, Ur(b,a) and L1 (b, a) represent corresponding bounds®@n(b, a), and L(b) and
U (b) are the bounds on fringe nodes, typically computed offline.

Performing a complete-step lookahead search multiplies the error bound on theajpate value
function used at the fringe by* ([13]), and thus ensures better value estimates. Howeveasi
complexity exponential i, and may explore belief states that have very small prottia@kibf oc-
curring (and an equally small impact on the value functiavell as exploring suboptimal actions
(which have no impact on the value function). We would evityeprefer to have a more efficient
online algorithm, which can guarantee equivalent or beftesr bounds. In particular, we believe
that the best way to achieve this is to have a search algovithich uses estimates of error reduction
as a criteria to guide the search over the reachable beliefs.

4 Anytime Error Minimization Search

In this section, we review the Anytime Error Minimizationgeh (AEMS) algorithm we had first
introduced in [11] and present a novel mathematical dédmadf the heuristics that we had sug-
gested. We also provide new theoretical results describirfficient conditions under which the
heuristics are guaranteed to yieldptimal solutions.

Our approach uses a best-first search of the belief reaitatgk, where error minimization (at the
root node) is used as the search criteria to select whichdnmodes to expand next. Thus we need a
way to express the error on the current belief (i.e. root hade function of the error at the fringe
nodes. This is provided in Theorem 1. Let us denot& ('), the set of fringe nodes of a trée (ii)
er(b) = V*(b) — L (b), the error function for nodgin the treeT; (iii) e(b) = V*(b) — L(b), the
error at a fringe nodé € F(T); (iv) h”TO’b, the unique action/observation sequence that leads from
the rooth, to beliefb in treeT’; (v) d(h), the depth of an action/observation sequeln¢eumber of
actions); and (ViyP(h|bg, 7*) = Hfﬁ’l) P(Ri|br=", hi)x* (bhi=1, hi), the probability of executing
the action/observation sequencéd we follow the optimal policyx* from the root nodé, (where

hi andh! refers to thei*" action and observation in the sequehcandb” is the belief obtained
after taking thei first actions and observations from belief 7* (b, a) is the probability that the
optimal policy chooses actianin beliefd).

By abuse of notation, we will uskto represent both a belief node in the tree and its associated
belief.

1We are considering using a technique proposed in the LAQdrithgn [12] to handle cycle, but we have
not investigated this fully, especially in terms of how iteits the heuristic value presented below.

%e.g. >_ve 7y Should be interpreted as a sum over all fringe nodes in tiee Wwhilee(b) to be the error
associated to the belief in fringe noble




Theorem 1. In any treeT’, ex(bo) < Xye (7 AU PRYP (b, ¥ )e(b).

Proof. Consider an arbitrary parent nodein tree T and let's denotei! = argmax, 4, Lr(b,a). We

haveer(b) = V*(b) — Lr(b). If aj = n*(b), thener(b) = v .o Plolb,m*(b))e(r(b,7*(b),0)).

On the other hand, wheal # =*(b), then we know thatLr (b, 7*(b)) < Lr(b,al) and therefore
er(b) <y ,cq Polb, 7 (b))e(r(b,7"(b), 0)). Consequently, we have the following:

e(b) it be F(T)
er(b) < { v 32 P(olb, *(b))er(r(b,w*(b),0)) otherwise
0eQ

Thener (bo) < e 71 yd(h?’b)P(h’}o”ﬂbo, 7*)e(b) can be easily shown by induction. O

4.1 Search Heuristics

From Theorem 1, we see that the contribution of each fringgerto the error inby is simply

the termyh2"") P(h% by, 7 )e(b). Consequently, if we want to minimizer(by) as quickly as
possible, we should expand fringe nodes reached by the alppioticy 7* that maximize the term
vd(hbTo’b)P(h?ﬂbo, 7*)e(b) as they offer the greatest potential to redugéb,). This suggests us

a sound heuristic to explore the tree in a best-first-seasgh Wnfortunately we do not know *

nor *, which are required to compute the tera() and P(h?ﬂbo,w*); nevertheless, we can
approximate them. First, the terefb) can be estimated by the difference between the lower and
upper bound. We defingb) = U(b) — L(b) as an estimate of the error introduced by our bounds at
fringe nodeb. Clearly,é(b) > e(b) sincelU (b) > V*(b).

To approximateP(h?ﬂbo,w*), we can view the termr* (b, a) as the probability that action

is optimal in beliefb. Thus, we consider an approximate polity that represents the proba-
bility that actiona is optimal in belief staté given the boundd.r(b,a) and Ur(b, a) that we
have onQ*(b,a) in tree T. More precisely, to computér(b,a), we considerQ*(b,a) as a
random variable and make some assumptions about its uirdgpyobability distribution. Once
cumulative distribution functionf%“, s.t. F;’“(a:) = P(Q*(b,a) < z), and their associated

density functionsf:l;’“ are determined for eactb,a) in treeT’, we can compute the probability
fr(b,a) = P(Q*(b,a) < Q*(b,a)Va' # a) = [, f4*(2) [1ar 4o F (x)dz. Computing this

integral may not be computationally efficient depending ow kve define the functionﬁ%“. We
consider two approximations.

One possible approximation is to simply compute the prdialiat the Q-value of a given action
is higher than its parent belief state value (instead of eibas’ Q-value). In this case, we get
wr(boa) = [ fr*(x)F2(z)dz, where F} is the cumulative distribution function for™(b),
given boundd.r(b) andUr(b) in treeT. Hence by considering both* (b, a) andV*(b) as random
variables with uniform distributions between their regpeclower and upper bounds, we get:

(Ur(b,a)=Lr(b)*
ir(b,a) = T -Lray 1 Ur(b,a)> Lr(b), )
0 otherwise

wheren is a normalization constant such that, . , 77 (b, a) = 1. Notice that if the density function
is 0 outside the interval between the lower and upper boureh t(b,a) = 0 for dominated
actions, thus they are implicitly pruned from the search b this method.

A second practical approximation is:

. _ | 1 if a=argmax, 4 Ur(b,d),

ir(b,a) = { 0 otherwise (6)
which simply selects the action that maximizes the uppentohis restricts exploration of the
search tree to those fringe nodes that are reached by sexjokactions that maximize the upper
bound of their parent belief state, as done in #@* algorithm [14]. The nice property of this
approximation is that these fringe nodes are the only nduscan potentially reduce the upper
bound inb,.



Using either of these two approximations for, we can estimate the error contributién(by, b) of

a fringe node on the value of root beliefy in treeT’, as:éx(by, b) = v P(h2 by, 77)é(b).

Using this as a heuristic, the next fringe nol@") to expand in tre€l’ is defined a9 (T") =
bo,b

argmax,e z ) 727 ) P(hi" by, 77 )é(b). We useAEMS12 to denote the heuristic that uses
as defined in Equation 5, atdEMS2* to denote the heuristic that uses as defined in Equation 6.

4.2 Algorithm

Algorithm 1 presents the anytime error minimization sear8lince the objective is to provide a
near-optimal action within a finite allowed online plannitige, the algorithm accepts two input
parameterst, the online search time allowed per action, anthe desired precision on the value
function.

Algorithm 1 AEMS: Anytime Error Minimization Search

Function SEARCH(t, €)
Static : 7 an AND-OR tree representing the current search tree.
to «— TIME()
while TIME() — to < t and not SOLVED(ROOT(T), €) do
b* — b(T)
EXPAND(b™)
UPDATEANCESTOR$b™)
end while
return argmax, , LT (ROOT(T'), a)

The ExPAND function expands the tree one level under the ngdiey adding the next action and
belief nodes to the tre& and computing their lower and upper bounds according to tansl-

4. After a node is expanded, theeDATEANCESTORSfunction simply recomputes the bounds of
its ancestors according to Equations determiriig ), V*(b), P(0|b, a) and@*(b, a), as outlined

in Section 2. It also recomputes the probabilities(b, a) and the best actions for each ancestor
node. To find quickly the node that maximizes the heuristibi@whole tree, each node in the tree
contains a reference to the best node to expand in theiremubrhese references are updated by
the UPDATEANCESTORSfunction without adding more complexity, such that whers thinction
terminates, we always know immediatly which node to expasd,ras its reference is stored in the
root node. The search terminates whenever there is no nmogeatiailable, or we have found an
optimal solution (verified by the @ VED function). After an action is executed in the environment,
the treeT’ is updated such that our new current belief state becomasdtt®fT’; all nodes under
this new root can be reused at the next time step.

4.3 Completeness and Optimality

We now provide some sufficient conditions under which ourriséia search is guaranteed to con-
verge to are-optimal policy after a finite number of expansions. We shbat the heuristics pro-
posed in Section 4.1 satisfy those conditions, and thezefogadmissible Before we present the
main theorems, we provide some useful preliminary lemmas.

Lemma 1. In any treeT’, the approximate error contributiofiy (bo, b;) of a belief nodé, at depth
d is bounded by 1 (bg, bg) < v? sup,, é(b).

Proof. P(h%"°|bo, 7#7) < 1 andé(b) < sup,, é(b') for all b. Thusér(bo, ba) < v sup, é(b). O

For the following lemma and theorem, we will dendtéh, |bo, ha) = [1VY P(hi|bhi~*, hi) the
probability of observing the sequence of observatibngn some action/observation sequerice
given that the sequence of actiasin h is performed from current beliéf), andF (T') C F(T)
the set of all fringe nodes i such thatP(h%”b|b0, ) > 0, for 7y defined as in Equation 6 (i.e.

3This heuristic is slightly different from the AEMS1 heuitstve had introduced in [11].
“This is the same as the AEMS?2 heuristic we had introducedih [1



the set of fringe nodes reached by a sequence of actions ghwelaich action maximizd$y (b, a)
in its respective belief state.)

Lemma 2. For any treeT', ¢ > 0, and D such thaty? sup, é(b) < ¢, if for all b € F(T), either
d(h%"") > D or there exists an ancestét of b such thater (b') < €, thenér(by) < e.

Proof. Let's denotei] = argmax,. 4 Ur(b,a). Notice that for any tre@, and parent belief € T, é7(b) =
Ur(b)—Lr(b) < Ur(b,a; )—Lr(b,a) ) =3 ,cq Plolb, af )ér(r(b,ai , 0)). Consequently, the following
recurrence is an upper bound &a(b):

&(b) it b e F(T)

s(b) < 4 € if ér(b) <e

er®) S L 5 Plofp, aT)er(r(b, T, 0)) otherwise
o€

By unfolding the recurrence fobo, we getér(bo) < 3 ,cucr wd(h;mb>P(hbT‘),;)b|bo, hi2)é(b) +
bg,b ~

€Y pener 1T P(hiY bo, ki), whereB(T) is the set of parent nodéshaving a descendant iA(7')

such tha#r (b') < e and A(T) is the set of fringe nodes’ in 7 (T") not having an ancestor iB(T). Hence

if for all b € F(T), d(h%") > D or there exists an ancestbrof b such thatér (b') < e, then this means

that for allbin A(T), d(hy*"*) > D, and thereforeér (bo) < 7" supy é(b) Xy a1 PR |bo, h50:) +

bo,b’ bo,b’ bo b’ bo b’
EZb’eB(T) P(h:ro,'o |bOahT0,a ) < EZb’eA(T)uB(T) P(hTO,o |b07h79,a ) =e O

Theorem 2. For any treeT” ande > 0, if 77 is defined such thatf, pje..z)> 77 (b, al') > 0 for
al = argmax,¢ 4 Ur(b, a), then Algorithm 1 using(7) is complete and-optimal.

Proof. If v = 0, then the proof is immediate. Consider now the case wheee (0,1). Clearly, sincel/
is bounded above anfl is bounded below, theé is bounded above. Now using € (0, 1), we can find a
positive integerD such thaty” sup, é(b) < e. Let's denoteA] the set of ancestor belief statestoin the
treeT, and given a finite setl of belief nodes, let’s definér" (A) = minye 4 ér(b). Now let’s defineZ;, =
{T|T finite,b € F(T),eéF"(AL) > €} andB = {blé(b) infrez, P(h5"|bo, #r) > 0,d(h%"") < D}.
Clearly, by the assumption thatf, 7je..)>. 77 (b, @ ) > 0, thenB contains all belief stateswithin depth
D such thag(b) > 0, P(h2:|bo, ;") > 0 and there exists a finite trééwhereb € F(T) and all ancestors
b of b haveér(b') > €. Furthermoref is finite since there are only finitely many belief states ittiepth
D. Hence there exist &y,i, = minyes 'yd(h;o'b)é(b) infrez, P(h}"°|bo, 7r). Clearly, Epin > 0 and we
know that for any tred’, all beliefsb in 5 N ]?(T) have an approximate error contributiéf(bo, b) > Emin.
SinceE,.i» > 0 andy € (0, 1), there exist a positive integdd’ such thaty”’ sup, é(b) < Emin. Hence
by Lemma 1, this means that Algorithm 1 cannot expand any addepthD’ or beyond before expanding
a treeT whereB N F(T) = (. Because there are only finitely many nodes within depththen it is clear
that Algorithm 1 will reach such tre® after a finite number of expansions. Furthermore, for teier, since
BN F(T) = 0, we have that for all beliefs € F(T), eitherd(h%*) > D or é7""(AL) < e. Hence by
Lemma 2, this implies thatr(bo) < ¢, and consequently Algorithm 1 will terminate after a finitember of
expansions (8LVED(bo, €) will evaluate to true) with arm-optimal solution (sincer (bo) < ér(bo)). o

From this last theorem, we notice that we can potentiallyettgy many different admissible
heuristics for Algorithm 1; the main sufficient conditionibg that 7r(b,a) > 0 for a =
argmax, c , Ur(b,a’). It also follows from this theorem that the two heuristicsctébed above,
AEMS1 and AEMS2, are admissible. The following corollag@sve this:

Corollary 1. Algorithm 1, usin@(T), with 77 as defined in Equation 6 is complete andptimal.

Proof. Immediate by Theorem 2 and the fact that(b, a ) = 1 for all b, T.. O

Corollary 2. Algorithm 1, usin@(T), with 77 as defined in Equation 5 is complete andptimal.

Proof. We first notice thatUr (b,a) — L7(b))?/(Ur(b,a) — Lr(b,a)) < ér(b, a), sinceLr(b) >
Lr(b,a) for all a. Furthermoreér(b,a) < sup, é(b’). Therefore the normalization constant
n > (JA|sup, é(b))~1. Foral = argmax,. 4 Ur(b,a), we haveUr(b,al) = Ur(b), and there-
fore Ur(b,al) — L1 (b) = ér(b). Hence this means thatr(b,a) = n(ér(b))?/ér(b,al) >



(b))? for all T, b. Hence, for anye > 0, inf, 7|ep () >e 7 (b, af)

(IA|(supy €(b')%) " (ér
—1¢2 > 0. Hence, corrolary follows from Theorem 2.

(| Al(supy e(b))*)~"e

Y,

5 Experiments

In this section we present a brief experimental evaluatf@kgorithm 1, showing that in addition to
its useful theoretical properties, the empirical perfonceamatches, and in some cases exceeds, that
of other online approaches. The algorithm is evaluatedrieettarge POMDP environments: Tag
[1], RockSample [3] and FieldVisionRockSample (FVRS) [Hl] are implemented using a factored
state representation. In each environments we compute lthé Bolicy® to get a lower bound
and the FIB algorithm [15] to get an upper bound. We then camparformance of Algorithm 1
with both heuristics (AEMS1 and AEMS2) to the performandeeeed by other online approaches
(Satia [7], BI-POMDP [8], RTBSS [10]). For all approaches ingose a real-time constraint of
1 sec/action, and measure the following metrics: averagreaverage error bound reductfon
(EBR), average lower bound improvemeé(itBl), number of belief nodes explored at each time
step, percentage of belief nodes reused in the next timeatelthe average online time per action
(< 1s means the algorithm found aroptimal action§. Satia, BI-POMDP, AEMS1 and AEMS2
were all implemented using the same algorithm since thdgrddnly in their choice of search
heuristic used to guide the search. RTBSS served as a bas®ilia complete:-step lookahead
search using branch & bound pruning. All results were olgtion a Xeon 2.4 Ghz with 4Gb of
RAM,; but the processes were limited to use a max of 1Gb of RAM.

Table 1 shows the average value (over 1000+ runs) of therdiffestatistics. As we can see from
these results, AEMS2 provides the best average returnageearror bound reduction and average
lower bound improvement in all considered environmentse fitgher error bound reduction and
lower bound improvement obtained by AEMS2 indicates thaait guarantee performance closer
to the optimal. We can also observe that AEMS2 has the besagweeuse percentage, which
indicates that AEMS2 is able to guide the search toward thst prmbable nodes and allows it to
generally maintain a higher number of belief nodes in the.tMotice that AEMS1 did not perform
very well, except in FVRS[5,7]. This could be explained bg fact that our assumption that the
values of the actions are uniformly distributed betweenldineer and upper bounds is not valid in
the considered environments.

Finally, we also examined how fast the lower and upper boendserge if we let the algorithm run
up to 1000 seconds on the initial belief state. This givesditation of which heuristic would be
the best if we extended online planning time past 1sec. RefrlRockSample[7,8] are presented
in Figure 2, showing that the bounds converge much more tyfickthe AEMS2 heuristic.

6 Conclusion

In this paper we examined theoretical properties of onlimgristic search algorithms for POMDPs.
To this end, we described a general online search framewntkexamined two admissible heuris-
tics to guide the search. The first assumes &, a) is distributed uniformly at random be-
tween the bounds (Heuristic AEMS1), the second favors amdigitc point of view, and assume
the Q*(b, a) is equal to the upper bound (Heuristic AEMS2). We provideeaeagal theorem that
shows that AEMS1 and AEMS2 are admissible and lead to complede-optimal algorithms. Our
experimental work supports the theoretical analysis, sfgthat AEMS?2 is able to outperform on-
line approaches. Yet it is equally interesting to note thBtS1 did not perform nearly as well.
This highlights the fact that not all admissible heurisacs equally useful. Thus it will be interest-
ing in the future to develop further guidelines and theeosdtiesults describing which subclasses of
heuristics are most appropriate.

>The policy obtained by taking the combination of thé a-vectors that each represents the value of a
policy performing the same action in every belief state.

®The error bound reduction is definedlas “%7}=2%0) | when the search process terminateson

"The lower bound improvement is definedas(bo) — L(bo), when the search process terminateson

8For RTBSS, the maximum search depth under the 1sec timeraimss show in parenthesis.



30

Figure 1: Comparison of different online search algorit!
in different environments.
Heuristic / Belief | Reuse| Time 25
Algorithm | Return| EBR (%) | LBI Nodes| (%) | (ms)
+001| +01 |+001| - +0.1 | +1
Tag([S[ = 870, [A] = 5, [Q] = 30) 20 — g
RTBSS(5) | -10.30| 22.3 3.03 | 45067] O 580 ~ || Acves
Satia & Lave| -8.35 22.9 247 | 36908| 10.0 | 856 g BI-POMDP
AEMS1 6.73 49.0 3.92 | 43693| 25.1 | 814 15| [---satia |
BI-POMDP | -6.22 76.2 781 | 79508| 54.6 | 622
AEMS2 6.19 76.3 781 | 80250| 54.8 | 623 H
RockSample[7,8][ST = 12545, [A] = 13,[Q] = 2)
Satia & Lave| 7.35 3.6 0 509 | 8.9 | 900 10 / | 1
AEMST 10.30 95 090 | 579 | 53 | 916 A S
RTBSS(2) | 10.30 9.7 1.00 | 439 0 896
BI-POMDP | 18.43 | 33.3 433 | 2152 | 29.9 | 953 55 = 5 iy ") s
AEMS2 | 20.75 | 524 | 530 | 3145 | 36.4 | 850 10 10 10 e *° 10 10
FVRS[5,7](]S] = 3201, [A] = b, [] = 128)
RTBSS(1) | 20.57 77 2.07 | 516 0 254 )
SI—POMDP 33.73 111 3.88 ggg; 8.4 323 Figure 2:Evolution of the upper / lower bounds on the initial
atia & Lave 7 11.1 .05 4 47 f i
AEMS1 2331 | 124 224 | 3856 | 1.4 | 942 belief state irRockSample(7,8]
AEMS2 2339 | 133 235 | 4070 | 1.6 | 944
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