
SIAM J. COMPUT. c© 2010 Society for Industrial and Applied Mathematics
Vol. 39, No. 5, pp. 1856–1887

EDGE DISJOINT PATHS IN MODERATELY CONNECTED GRAPHS∗

SATISH RAO† AND SHUHENG ZHOU‡

Abstract. We study the edge disjoint paths (EDP) problem in undirected graphs: Given a graph
G with n nodes and a set T of pairs of terminals, connect as many terminal pairs as possible using
paths that are mutually edge disjoint. This leads to a variety of classic NP-complete problems, for
which approximability is not well understood. We show a polylogarithmic approximation algorithm
for the undirected EDP problem in general graphs with a moderate restriction on graph connectivity;
we require the global minimum cut of G to be Ω(log5 n). Previously, constant or polylogarithmic
approximation algorithms were known for trees with parallel edges, expanders, grids, grid-like graphs,
and, most recently, even-degree planar graphs. These graphs either have special structure (e.g., they
exclude minors) or have large numbers of short disjoint paths. Our algorithm extends previous
techniques in that it applies to graphs with high diameters and asymptotically large minors.
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1. Introduction. In this paper, we explore approximation for the edge disjoint
paths (EDP) problem: Given a graph with n nodes and a set of terminal pairs, connect
as many of the specified pairs as possible using paths that are mutually edge disjoint.
The EDP problem has a multitude of applications in areas such as VLSI design, rout-
ing, and admission control in large-scale, high-speed, and optical networks. Moreover,
the EDP problem and its variants have also been prominent topics in combinatorics
and theoretical computer science for decades. For example, the celebrated theory of
graph minors of Robertson and Seymour [33] gives a polynomial time algorithm for
routing all the pairs given a constant number of pairs. However, varying the number
of terminal pairs leads to a variety of classic NP-complete problems, for which ap-
proximability is an interesting problem. In a recent breakthrough [3], Andrews and

Zhang showed an Ω(log
1
3−ε n) lower bound on the hardness of approximation for the

undirected EDP problem.
In this work, we show a polylogarithmic approximation algorithm for the undi-

rected EDP problem in general graphs with a moderate restriction on graph connec-
tivity; we require that there are Ω(log5 n) edge disjoint paths between every pair of
vertices; i.e., the global min cut is of size Ω(log5 n). If this moderately connected case
holds, we can route Ω(OPT/ polylogn) pairs using disjoint paths with congestion 1,
where OPT is the maximum number of pairs that one can route edge disjointly for
the given EDP instance. Previously, constant or polylogarithmic approximation al-
gorithms were known for trees with parallel edges, expanders, grids, grid-like graphs,
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and, most recently, even-degree planar graphs [23]. The results rely either on ex-
cluding a minor (or other structural properties) or on the fact that very short paths
exist. Our algorithm extends previous techniques; for example, our graphs can have
high diameters and contain very large minors. We are hopeful that this constraint on
the global minimum cut can be removed if congestion on each edge is allowed to be
O(log logn). Formally, we have the following result.

Theorem 1.1. There is a polylogn-approximation algorithm for the EDP prob-
lem in a general graph G with minimum cut Ω(log5 n) with high probability.

1.1. The approach. We begin with a fractional relaxation of the problem,
where each terminal pair can route a real-valued amount of flow between 0 and 1,
and this flow can be split fractionally across a set of distinct paths. This can be
expressed as a linear program (LP) and can be solved efficiently. We denote the value
of an optimal fractional LP solution as OPT∗. Our algorithm routes a polylogarith-
mic fraction of this value using integral edge disjoint paths. The algorithm proceeds
by decomposing the graph into well-connected subgraphs, based on OPT∗, so that a
subset of the terminal pairs that remain within each subgraph is “well connected,”
following a decomposition procedure of Chekuri, Khanna, and Shepherd [11]. Then,
for each well-connected subgraph G, we construct an expander graph that can be
embedded into G using its terminal set. We use a result by Khandekar, Rao, and
Vazirani in [22], where they show that one can build an expander graph H on a set
of nodes V by constructing O(log2 n) perfect matchings M1, . . . ,MO(log2 n) between

O(log2 n) sets of equal partitions of V in an iterative manner.
Our contribution along this line is to route each perfect matching Mt, ∀t, on one

of the O(log2 n) (edge disjoint) subgraphs of G. The “splitting procedure,” moti-
vated by Karger’s theorem [20], simply assigns edges of G uniformly at random into
O(log2 n) subgraphs. Using Karger’s arguments, we show that all cuts in each sub-
graph have approximately the correct size with high probability. Here we crucially use
the polylogarithmic lower bound on the min-cut. We then route each matchingMt on
a unique split subgraph using a max-flow computation with unit capacities. Thus, we
can route all O(log2 n) matchings edge disjointly in G and embed an expander graph
H integrally with congestion 1 on G.

After we construct such an expander graph H for each G, we route terminal pairs
in H greedily via short paths. This is effective since there are plenty of short disjoint
paths in an expander graph [7, 24]. Since a node in H maps to a cluster of nodes in G
that is connected by a spanning tree, we put a capacity constraint on V (H): we allow
only a single path to go through each node. We greedily connect a pair of terminals
from G via a path in H while taking both nodes and edges along the chosen path
away from H , until no short paths remain between any unrouted terminal pair. For
the pairs we indeed route, we know the congestion is 1 in the original graph G, since
we use each edge and node in H only once, and edges and nodes of H correspond to
disjoint paths of G.

We use a lemma in [17] to show that such a greedy method ensures that we route
a sufficiently large number of such pairs; we note that this method was proposed
but analyzed somewhat differently by Kleinberg and Rubinfeld [24]. Our analysis is
more like that of Obata [30] and yields somewhat stronger bounds. Our approximation
factor is O(log10 n). (A breakdown of this factor is described in Theorem 3.4.) Finally,
we note that it is possible to improve the approximation factor in this paper using
the cut-finding procedures given by Orecchia et al. [31] recently to replace that of the
KRV-FindCut procedure (cf. Figure 3.1) in our construction of the expander graph
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H . Their procedure will result in an expander with a higher expansion factor, the
details of which are beyond the scope of the current paper.

1.2. Related work. Much of the recent work on the EDP problem has focused
on understanding the polynomial time approximability of the problem. Previously,
constant or polylogarithmic approximation algorithms were known for trees with par-
allel edges [17], expanders [24, 29], grids, grid-like graphs [5, 6, 25, 26], and even-degree
planar graphs [23]. For general graphs, the best approximation ratio for the EDP
problem in directed graphs is O(min(n2/3,

√
m)) [8, 27, 28, 34, 35], where m denotes

the number of edges in the input graph. This is matched by the Ω(m
1
2−ε)-hardness of

approximation result by Guruswami et al. [19]. For undirected and directed acyclic
graphs, the upper bound has been improved to O(

√
n) [13]. For even-degree planar

graphs, an O(log2 n)-approximation [23] was obtained recently.

A variant is the EDP with congestion (EDPwC) problem, where the goal is to
route as many terminals as possible, such that at most ω demands can go through
any edge in the graph. For the undirected EDPwC problem on planar graphs, for
ω = 2 and 4, O(log n) [10, 11] and constant [12] approximations have been obtained,

respectively. For undirected graphs, the hardness results [1] are Ω(log1/2−ε n) for

the EDP problem and Ω(log(1−ε)/(ω+1) n) for the EDPwC problem. For the directed
EDPwC problem with ω > 1, O(ωn1/ω)-approximation algorithms based on ran-
domized rounding of the multicommodity flow relaxation are shown in [34, 28]. The
hardness result of nΩ(1/ω) is shown in Chuzhoy et al. [15] that for all integer-valued
ω satisfying 1 ≤ ω ≤ α logn/ log logn, where α > 0 is an absolute constant.

A closely related problem is the congestion minimization problem: Given a graph
and a set of terminal pairs, connect all pairs with integral paths while minimizing the
maximum number of paths through any edge. Raghavan and Thompson [32] show that
by applying a randomized rounding to a linear relaxation of the problem, one obtains
an O(log n/ log logn)-approximation for both directed and undirected graphs. For
hardness of approximation, Andrews and Zhang [2] show a result of Ω((log log1−εm))
for undirected and an almost-tight result [4] of Ω(log1−εm) for directed graphs, im-
proving that of Ω(log logm) by Chuzhoy and Naor [16]; Most recently, Chuzhoy et
al. [15] show an Ω(logn/ log log n) hardness result, so that the inapproximation and
approximation factors are within constant factors of each other.

Finally, the all-or-nothing flow (ANF) problem [9, 11] is to choose a subset of
terminal pairs such that for each chosen pair, one can fractionally route a unit of flow
for all the chosen pairs. The hardness result for the undirected ANF problem and the
ANF with congestion problem is the same as that of EDP and EDPwC [1]. Currently,
there exists an O(log2 n)-approximation [11] for the ANF problem. Indeed, we build
on the techniques developed in this approximation algorithm for the ANF problem.

2. Definitions and preliminaries. We work with graph G = (V,E) with unit-
capacity edges, where we allow parallel edges, unless we specify a capacity function
for edges explicitly. For a capacitated graph G = (V,E, c), where c is an integer
capacity function on edges, one can replace each edge e ∈ E with c(e) parallel edges.
An instance of a routing problem consists of a graph G = (V,E) and a set of terminal
pairs T = {(s1, t1), (s2, t2), . . . , (sk, tk)}. Nodes in T are referred to as terminals.

We note that throughout this paper, we allow a single vertex in G to appear
in at most O(log5 n) pairs in T . This restriction comes from our construction of
H , an interesting aspect of which is its relation to elements that contribute to our
approximation factor (cf. Theorem 3.1). Given an EDP instance (G, T ) with k pairs
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of terminals, each with a unit demand satisfying the restriction above, we will use the
LP relaxation as specified in (2.2a)–(2.2d) to obtain an optimal fractional solution:

OPT∗(G, T ) := max
k∑

i=1

∑
p∈Pi

f̄(p),(2.1)

where Pi, ∀i = 1, . . . , k, denotes the set of paths joining si and ti in G, and the optimal
solution f̄(p), ∀p ∈ Pi, ∀i = 1, . . . , k is obtained as follows:

max

k∑
i=1

xi s.t.(2.2a)

xi −
∑
p∈Pi

f(p) = 0, ∀1 ≤ i ≤ k,(2.2b)

∑
p:e∈p

f(p) ≤ 1, ∀e ∈ E,(2.2c)

xi, f(p) ∈ [0, 1], ∀1 ≤ i ≤ k, ∀p.(2.2d)

In the text, where we always refer to a single instance, we primarily use OPT∗.
For a cut (S, S̄ = V \ S) in G, let δG(S), or simply δ(S) when it is clear, denote

the set of edges with exactly one endpoint in S in G. Let cap(S, S̄) = |δG(S)| denote
the total capacity of edges in the cut.

Definition 2.1. A graph G = (E, V ) is an α-expander if for every set S ⊂ V ,
|S| ≤ |V |/2, we have |δG(S)| ≥ α |S| .

Given a nonnegative weight function π : Y → R
+ on a set of nodes Y in G, we

use the following definitions from [11].
Definition 2.2 (see [11]). A set Y is π-cut-linked in G if ∀S such that π(S ∩

Y ) =
∑

y∈S∩Y π(y) ≤ π(Y )/2, |δ(S)| ≥ π(S ∩ Y ); we also refer to (G, Y ) as a
π-cut-linked instance.

Definition 2.3 (see [11]). A set Y is π-flow-linked in G if there is a feasible mul-
ticommodity flow for the problem with demand dem(u, v) = π(u)π(v)/π(Y ) between
every unordered pair of terminals u, v ∈ Y .

Remark 2.4. Note that this is a product flow with dem(u, v) = w(u)w(v), where
w(u) = π(u)/

√
π(Y ).

We have the following proposition immediately from the definitions above.
Proposition 2.5 (see [11]). If a set Y is π-flow-linked in G, then it is π/2-cut-

linked. If Y is π-cut-linked in G, then it is π/β(G)-flow-linked, where β(G) is the
worst-case min-cut max-flow gap on product multicommodity flow instances on G.

Definition 2.6 (see [11]). A set of nodes Y is well linked in G if ∀S such that
|S ∩ Y | ≤ |Y |/2, |δ(S)| ≥ |S ∩ Y |.

Finally, we note that the entire set of important parameters and notation are
listed in Table 7.1 at the end of section 7 for reference.

3. Decomposition and an outline of the routing procedure. In this sec-
tion, we first present Theorem 3.1 regarding a preprocessing phase of our algorithm
that decomposes and processes (G, T ) into a collection of cut-linked instances with a
min-cut Ω(log3 n) in each subgraph. We then state our main theorem with a break-
down of the polylogn-approximation factor. Finally, we give an outline on how we
route terminal pairs in each cut-linked instance (G, T ); note that, from section 3.1
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through the end of the paper, we use G to refer to a subgraph that we obtain through
Theorem 3.1, while G refers to the original input graph.

Theorem 3.1. Suppose we are given an EDP instance (G, T ), where G has
a min-cut of size Ω(κ log2 n), where κ = Ω(log3 n), such that a solution f̄ to the
fractional EDP problem, with xi, ∀i, being specified as in (2.2a)–(2.2d), satisfies ∀u ∈
G,
∑

i:{si=u∪ti=u} xi ≤ Wβ(G)λ(n) = O(log5 n), where W = Θ(log2 n) and β, λ
are defined below. Then there is a polynomial time decomposition algorithm, which
produces a disjoint set of subgraphs G1, G2, . . ., and a weight function π : V (G) → R

+

on V (G), for which the following hold:
1. there are η1, . . . , ηk such that ∀u in a subgraph Gj,

π(u) =
∑

i:si=u,ti∈Gj

ηixi,(3.1)

which implies that ∀(si, ti) ∈ T , xi contributes the same amount of weight to
π(si) and π(ti); and π(Gj) :=

∑
u∈Gj

π(u);

2. the set of nodes V (Gj) in each subgraph Gj is π-cut-linked in Gj, ∀j;
3. each subgraph Gj has min-cut κ = Ω(log3 n);
4. ∀u in a subgraph Gj such that π(Gj) ≥ Ω(log3 n), we have for β(G) = O(log n)

as in Proposition 2.5 and λ(n) = 10β(G) logOPT∗(G, T ) = O(log2 n),

π(u) ≤
∑

i:si=u,ti∈Gj

xi/β(G)λ(n) ≤W ;

5. π(G) :=
∑

j=1,2,... π(Gj) = Ω(OPT∗/β(G)λ(n)).
Remark 3.2. These two parameters are used throughout the paper: (a) β(G) =

O(log n) is the worst-case min-cut–max-flow gap on product commodity flow instances
on G; (b) λ(n) = 10β(G) logOPT∗(G, T ); see section 8.1 for details.

The decomposition essentially says that summing across all subgraphs G, a con-
stant fraction of terminal pairs in T remains (conditions 4 and 5); indeed, we lose only
a constant fraction of all pairs (si, ti) in T , for which a zero weight ηi are assigned
in (3.1). In addition, each subgraph G is well connected with respect to Y , the set of
induced terminals of T in G, in the sense that (G, Y ) is a π-cut-linked instance. This
decomposition is based on that of Chekuri, Khanna, and Shepherd [11]; we need to
do some additional work to ensure that the min-cut condition holds. We prove a dual
(flow-based) version of this result (Theorem 8.3) in section 8.1.

3.1. An overall routing algorithm in each decomposed subgraph G. We
assume that we have the π-cut-linked subgraphs given by Theorem 3.1. We will treat
each subgraph and its induced subproblem (G, T ) independently. We use π(G) to
denote π(V (G)) in the following sections. Let Y be the set of terminals of T that
is assigned a positive weight by function π in instance G. We further assume that
π(G) = Ω(log7 n). If not, we just route an arbitrary pair of terminals in T ; otherwise,
we use Procedure EmbedAndRoute (G, T, π) in Figure 3.1 to route. We now state
Theorem 3.3, which we prove throughout the remainder of the paper until section 7.
We first summarize parameters that are related to EmbedAndRoute.

Parameters and conditions related to an induced subproblem (G, T ).
• ω log2 n is the number of matchings in Figure 3.1, where ω is a large enough
constant to guarantee the success probability in Theorem 6.2;

• min-cut κ ≥ (d+2)(lnn)(ω log2 n+1)
ε2 , where d ≥ 4 and 0 < ε < 1;
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0. Given graph G with min-cut Ω(log3 n) and a weight function π : V (G) → R
+

1. {G1, . . . , GZ} = Split(G,Z, π)
2. {X , C} = Clustering(GZ , π), where X = {X1, . . . , Xr} and C = {C1, . . . , Cr}
3. Given a set of superterminals X of size r
4. Let X map to vertex set V (H) of expander H

5. For t = 1 to ω log2 n
6. (S, S̄ = X \ S) = KRV-FindCut(X , {Mk : k < t}) s.t. |S| =

∣∣S̄∣∣ = r/2
7. Matching Mt = FindMatch(S,X \ S,Gt) s.t. Mt is routable in Gt

8. Combine M1, . . . ,Mω log2 n to form the edge set F on vertices V (H)
9. ExpanderRoute(H,T,X)
10. End

Fig. 3.1. Procedure EmbedAndRoute(G, T, π).

• sampling probability q = 1/(ω log2 n+ 1);
• the number of split subgraphs Z = 1/q = ω log2 n+ 1;
• W = Z/(1− ε) = (ω log2 n+ 1)/(1− ε) for some 0 < ε < 1;
• r ≥ max{1, (π(G)− (W − 1))/(2W − 1)}, such that ∀i ∈ [1, . . . , r], 2W − 1 ≥
π(Xi) =

∑
v∈Xi

π(v) ≥W , and π(X ) ≥ π(G)− (W − 1); i.e., at most W − 1
unit of weight is not counted in X .

Theorem 3.3. Given an induced instance (G, T ) with min-cut κ of G being
Ω(log3 n) and a weight function π : V (G) → [0,W ] such that Y is π-cut-linked in G
and π(G) = Ω(W log5 n), where W = Θ(log2 n). Procedure EmbedAndRoute routes
at least max{1,Ω(π(G)/W log5 n)} pairs of T in G edge disjointly, with probability at
least 1−O(log2 n/nd−1), where d ≥ 4. The dependence of κ on d is shown in (4.5).

Combining Theorems 3.3 and 3.1 proves Theorem 3.4.

Theorem 3.4. Given an EDP instance (G, T ), where G has a min-cut Ω(λ(n)κ),
let the approximation factor be O(λ(n)β(G)W log5 n). Then with probability at least
1−O(log2 n/nd−2), where d ≥ 4, we can route Ω(OPT∗(G, T )/g) terminal pairs edge
disjointly in G. The dependence of κ on d is shown in (4.5).

Proof. By the union bound, the approximation statement in Theorem 3.3 holds
for all node disjoint subgraphs G1, G2, . . . , G� simultaneously with probability at least
1−O

(
log2 n/nd−2

)
, where d ≥ 4, given the trivial bound of � ≤ n and the probability

of failure as bounded in Theorem 3.3 for a single graph Gj , ∀j = 1, . . . , �. Now the
bound and decomposition of the approximation factor follows from Theorem 3.3, the
definition of π(G), and its lower bound, as stated in condition 5 of Theorem 3.1.

4. Obtaining Z split subgraphs of G. In this section, we analyze a procedure
that splits a graph G, with min-cut κ = Ω(log3 n), into Z subgraphs, where Z =
ω log2 n + 1, by extending a uniform sampling scheme from Karger [20]. We thus
obtain a set of cut-linked instances as in Lemma 4.1, which follows immediately from
Theorem 4.2. Theorem 4.2 says that with high probability, all cuts can be preserved in
all split graphs G1, . . . , GZ of G we thus obtain. We prove Theorem 4.2 in section 4.1.

Procedure Split (G,Z, π): Given a graph G = (V,E) with min-cut κ = Ω(log3 n),
a weight function π : V (G) → R

+, a set of terminals Y in G such that (G, Y ) is a
π-cut-linked instance, and probability q = 1/Z.

Output: A set of randomized split subgraphs G1, . . . , GZ of G.

Each split subgraph Gj , ∀j = 1, . . . , Z inherits the same set of vertices of G; edges of
G are placed independently and uniformly at random into the Z subgraphs; and each
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e = (u, v) ∈ E is placed between the same endpoints u, v in the chosen subgraph. We
retain the same weight function π for all nodes in V in each split subgraph Gj , ∀j.

Lemma 4.1. With probability 1−O(log2 n/n3), Y is (1−ε)π
Z -cut-linked in Gj, ∀j,

for some 0 < ε < 1.

Proof. Since Y is π-cut-linked in G, then |δ(S)| ≥ π(S ∩ Y ), ∀S such that
π(S ∩ Y ) ≤ π(Y )/2 in G. Let δj(S) denote the size of cut (S, V \ S) in Gj . With

probability 1 − O(log2 n/n3), we have |δj(S)| ≥ (1 − ε)q |δ(S)| ≥ (1−ε)π(S∩Y )
Z , for all

S such that π(S ∩ Y ) ≤ π(Y )/2 and all j, as shown in Theorem 4.2 for d ≥ 4. Hence
Y is (1− ε)π/Z-cut-linked in Gj , ∀j.

Recall for S ∈ V , |δG(S)| denote the size of (S, V \ S) in G. For the same cut
(S, V \ S) we have, in Gj ,

(4.1) E[|δGj (S)|] = q |δG(S)| , ∀Gj ,

where q is the probability that an edge e ∈ E is placed in Gj , ∀j.
Theorem 4.2. Let G = (V,E) be any graph with unit-weight edges and min-cut

κ = Ω(log3 n), where n ≥ |V (G)| := n1. Let ε =
√
3(d+ 2)(lnn)/qκ, where d ≥ 4. If

ε ≤ 1, then with probability 1−O(log2 n/nd−1), every cut (S, V \S) in every subgraph
G1, G2, . . . , GZ of G has value between (1 − ε) and (1 + ε) times its expected value
q |δG(S)|, as shown in (4.1).

Remark 4.3. It is clear that a large enough min-cut (which is allowed to depend on
ε) ensures that ε ≤ 1; see (4.5) below. We emphasize here that n = |V (G)| ≥ |V (G)|
as we are working with a single piece due to the decomposition of the original graph
G as in Theorem 3.1; hence Theorem 4.2 allows us to bound the probability of failure
in the sense of the theorem across all subgraphs of G, as the total number of such
node disjoint subgraphs G can trivially be bounded by n.

4.1. Proof of Theorem 4.2. In order to prove Theorem 4.2, we need to in-
troduce a definition by Karger [20] regarding a uniform random sampling scheme on
an unweighted graph G = (V,E), from which Lemma 4.5 immediately follows. We
then state the Chernoff bound that we need in order to derive Lemma 4.7, which
shows a large deviation bound for a particular cut (S, V \ S) of G in a randomly
sampled subgraph, whose expected value is given in (4.1). Theorem 4.2 follows from
the union bound, by summing up probabilities of the large deviation events across all
split graphs, which are small due to the min-cut condition as stated in the theorem.

Definition 4.4 (see [21]). A q-skeleton of G is a random subgraph G(q) con-
structed on the same vertices of G by placing each edge e ∈ E in G(q) independently
with probability q.

Lemma 4.5. Every randomized subgraph Gj , ∀j, is a q-skeleton of G.

Proof. Recall the construction of a random subgraphGj , ∀j, of G: on the same set
of vertices as G, each edge e ∈ E of the original graph G is placed in Gj independently
with probability q. Hence, Gj , ∀j, is a q-skeleton of G by Definition 4.4.

We now define indicator variables Ije , ∀j, ∀e ∈ E, such that Ije = 1 when e is
placed in Gj , and 0 otherwise; hence Ije is a Bernoulli random variable with suc-
cess probability q, ∀j, ∀e. Note that random variables Ije , ∀j = 1, . . . , 1/q, are not

independent; in fact,
∑1/q

j=1 I
j
e = 1 ∀ e.

Now consider a cut (S, V (G)\S) of size c in G. Let Ij1 , I
j
2 , . . . , I

j
c be the indicator

variables that signal whether the unit-weight edges e1, e2, . . . , ec of the cut (S, V (G) \
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S) appear in a random subgraph Gj ; thus we have, for all j = 1, . . . , Z,

|δGj (S)| :=
c∑

y=1

Ijy .(4.2)

It is clear that Ij1 , I
j
2 , . . . , I

j
c are independently and identically distributed random

variables whose common distribution is the Bernoulli distribution with parameter q,
by the construction of a random subgraph Gj , ∀j, as shown in Lemma 4.5. One can
now apply Lemma 4.6 to obtain a large-deviation bound for |δGj (S)| as stated in
Lemma 4.7, given (4.1) and (4.2).

Lemma 4.6 (see Chernoff [14]). Let Y be a sum of m independent Bernoulli
random variables with success probability q1, . . . , qm and expected value μ =

∑m
i=1 qi.

Then for 0 ≤ σ ≤ 1, Pr[|Y − μ| ≥ σμ] ≤ 2e−σ2μ/3.

Lemma 4.7. Consider a cut (S, V (G) \ S) of size c in G. We have for all Gj ,
where j = 1, . . . , Z, where Z = ω log2 n+ 1,

Pr[||δGj (S)| − qc| ≥ εqc] ≤ 2e−ε2qc/3.(4.3)

We need the following lemma to bound the number of every set of “small” events.

Lemma 4.8 (see [21, cf. Theorem 2.1]). In an undirected graph G with minimum
cut κ and |V (G)| ≤ n1 ≤ n, the number of cuts of value less than ξκ for ξ ≥ 1 is less

than n2ξ
1 .

Proof of Theorem 4.2. Let τ = 2n1 − 2 be the number of cuts in graph G with n1

nodes (and hence also in G1, . . . , GZ). Let c1, . . . , cz be the expected values of the τ
cuts in a q-skeleton listed in nondecreasing order so that qκ = c1 ≤ · · · ≤ cz . Note
that for the uniform sampling scheme that we use, it is clear that the original cut also
follows this ordering: c1/q ≤ · · · ≤ cr/q. Given a split graph Gj , ∀j, let Ej

i , ∀j, ∀i be
the event that the value of a cut δGj (S, V/S) in Gj deviates from its expectation ci
by more than εci. First by Lemma 4.7, we have

Pr
[
Ej
i

]
≤ 2e−ε2ci/3, ∀r cuts in Gj , ∀j = 1, . . . , Z.(4.4)

Now given that every random split subgraphGj , ∀j, is a q-skeleton ofG by Lemma 4.5,
we essentially apply Karger’s theorem [21] (cf. Theorem 2.1) to each subgraph Gj

(with a small alteration on q), whose conclusion holds by summing up probabilities
of all z large-deviation events as bounded in (4.4); this is shown in Lemma 4.9 below.
We first define the following parameters for a given 1 > ε > 0 and for d ≥ 4:

(4.5) q =
3(d+ 2) lnn

ε2κ
, where κ =

3(d+ 2) lnn(ω log2 n+ 1)

ε2
.

Formally, we have the following.

Lemma 4.9 (see [21, cf. Theorem 2.1]). ∀Gj with n1 ≤ n nodes, we have for
d ≥ 4, q as in (4.5), and τ = 2n1 − 2,

τ∑
i=1

Pr
[
Ej
i

]
≤ 2

nd−1
.(4.6)
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We can now use the union bound to sum up the probabilities of bad events across
all split subgraphs G1, . . . , GZ of G, which yields following:

Z∑
j=1

τ∑
i=1

Pr
[
Ej
i

]
≤ 2(ω log2 n+ 1)

nd−1
.

The theorem thus follows.
Remark 4.10. Lemma 4.9 can be tightened up by at least a factor of 1

n using a
slighter longer argument in [21]. We include a shorter proof next for self-containment.

Note that Ej
i , ∀j = 1, . . . , Z, are not independent, since the indicator random

variables that contribute to value of |δGj (S, V/S)| are not at all independent across
all subgraphs. However, we use only a union bound that does not assume anything
about dependency among events.

Finally, we show the proof for Lemma 4.9, as our case here is slightly different
from the original setting due to the small alteration on q, as lnn depends on |V (G)|
rather than n1, the size of |V (G)| of the current graph G we are working on. This
alteration allows us to sum up bad events bounded in (4.6) across all Gj , ∀j = 1, . . . , Z
and all decomposed subgraphs G of G as given by Theorem 3.1; see also Remark 4.3.

Proof of Lemma 4.9. For a cut c of size ξκ in G, its expected value is ci := ξqκ
in a q-skeleton of G, where ξ ≥ 1 and r ≥ k ≥ 1; thus we have by (4.4) and (4.5)

Pr
[
Ej
i s.t. ci = ξqκ

]
=: Pr[ξ]

≤ 2e−ε2ci/3 = 2e−ε2ξqκ/3

= 2e−ξ(d+2) lnn

=
1

nξ(d+2)
.(4.7)

Now by taking a sequence of ξ = 3/2, 2, 5/2, . . . and applying (4.7) and Lemma 4.8,

τ∑
i=1

Pr
[
Ej
i

]
≤

∞∑
ξ=3/2,2,...

n2ξ
1 ·Pr[ξ − 1/2]

≤
∞∑

ξ=3/2,2,...

n2ξ
1

1

n(ξ−1/2)(d+2)

≤
∞∑

ξ=3/2,2,...

nd/2+1 1

ndξ

≤ 2

nd−1
≤ 2/n3

for d ≥ 4; hence the lemma holds.

5. Forming superterminals that are well linked. The procedure in this
section constructs superterminals as follows. Without loss of generality, we pick GZ

for forming edge disjoint connected components C in GZ , where π(C) = Ω(log2 n),
each connecting a subset of terminals. Note that GZ is a connected graph with a
min-cut of Ω(logn) with high probability, by Theorem 4.2. Roughly, the idea is that
these clustered terminals are better connected than individual terminals. They are
well linked in the sense that any cut that splits off K superterminals as one entity
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contains at least K edges in Gj , ∀j = 1, . . . , Z − 1. This allows us to compute
congestion-free maximum flows in section 6.1.

Given split subgraphs G1, . . . , GZ of G, each with the same weight function π on
its vertex set V (Gj) = V , ∀j, that we obtain through Procedure Split(G,Z, π),
we aim to find a set X = {X1, . . . , Xr} of node disjoint “superterminals,” where each
superterminal Xi ∈ X consists of a subset of terminals in Y and each Xi gathers a
weight between W and 2W − 1. In addition, we want to find an edge disjoint set
of clusters C = {C1, . . . , Cr}, where Ci = (Vi, Ei), such that Xi ⊆ Vi and Ci is a
connected component, where terminals in Xi are connected through Ei. We use the
following procedure to accomplish these goals.
Procedure Clustering (GZ, π): Given a split subgraph GZ and a weight function
π : V (GZ) → R

+ and π(V (GZ)) = π(G) ≥W .
Output: X = {X1, . . . , Xr} and C = {C1, . . . , Cr} as specified in Lemma 5.1.
We group subsets of vertices of V in an edge disjoint manner, following a procedure
from [9], by choosing an arbitrary rooted spanning tree ofGZ and greedily partitioning
the tree into a set C of edge disjoint connected components of GZ .

Lemma 5.1 (see [9]). Let GZ be a connected graph with a weight function π :
V (GZ) → [0,W ] such that π(V (GZ)) ≥ W . We can find r edge disjoint connected
components C1 = (V1, E1), . . . , Cr = (Vr, Er), where

(5.1) max

{
1,
π(G)− (W − 1)

2W − 1

}
≤ r ≤ max

{
π(G)

W
,n

}

such that there exist vertex disjoint subsets X1, . . . , Xr and for each i, (a) Xi ⊆ Vi;
(b) 2W − 1 ≥

∑
v∈Xi

π(v) ≥W .
Remark 5.2. It is clear that E1, . . . , Er are disjoint set of edges by construction;

however, it is worth pointing out that although sets X1, . . . , Xr are disjoint, V1, . . . , Vr
are not. Hence a terminal x ∈ Y may belong to two clusters of C while it can belong
only to one subset in X , and hence its weight contributes only to one cluster. For
example, the spanning tree Ti for connecting terminals in Xi in Ci, as constructed in
Theorem 6.1, may traverse some node in cluster Cj , where i �= j.
Result. To get an intuition of the purpose of forming such clusters, consider a
cut (U, V \ U) in a split subgraph Gj , ∀j. Let U be a subset of V (G) such that
π(U) =

∑
x∈U∩Y π(x) ≤ π(Y )/2. Let K be the number of superterminals that are

contained in U . We now show that superterminals are “well linked,” with a hint of
Definition 2.6.

Lemma 5.3. For all split subgraphs G1, . . . , GZ , where Z = ω log2 n + 1, and
∀U ⊂ V (G) such that π(U) ≤ π(Y )/2, it holds with probability 1 − O(log2 n/nd−1),
where d ≥ 4, that |δGj (U)| ≥ K, where K := |{Xi ∈ X : Xi ⊆ U}|.

Proof. With high probability, Y is (1−ε)π
(ω log2 n+1)

-cut-linked in G1, . . . , GZ , as shown

in Lemma 4.1. Thus ∀Gj , by Definition 2.2 and that of K, we have

|δGj(U)| ≥ 1− ε

ω log2 n+ 1

∑
x∈U

π(x)

≥ 1− ε

ω log2 n+ 1

∑
i:Xi⊆U

∑
x∈Xi

π(x)

≥ (1− ε)KW

(ω log2 n+ 1)
= K,

where the last line is due to the lower bound of W on
∑

x∈Xi
π(x).
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6. Constructing and embedding an expander H in G. In this section, we
use the superterminals from the previous section as nodes in an expander H that
we embed in G. The edges of H are defined using a technique in [22] that builds
an expander using O(log2 n) matchings. We embed this expander in G by routing
each matching in one of the split graphs using a maximum flow computation. This
allows us to embed H into G with no congestion. The following procedure restates
this outline. Theorem 6.1 is a main technical contribution of this paper.

0. Given a set of points V (H) of size r

1. for j = 1 to ω log2 n
2. (S, S̄ = V (H) \ S) = KRV-FindCut(V (H), {Mk : k < j})

s.t. |S| =
∣∣S̄∣∣ = r/2

3. Mj = FindMatch(S, S̄) s.t. Mj is a matching between S and S̄
4. Combine M1, . . . ,Mω log2 n to form the edge set F on vertices V (H)
5. End

Fig. 6.1. KRV-Procedure Constructing an α-Expander H.

Procedure EmbedExpander (G1, . . . , Gω log2 n,X ):

Output: An expander H = (V ′, F ) routable in G such that (a) |V ′| := r sat-
isfies (5.1), and ∀i ∈ V ′; (b) π(i) = π(Xi) and π(H) = π(X ); (c) F consists of

M1, . . . ,Mω log2 n, and thus |F | = ω log2 n
2 .

We use Steps 3–8 of Procedure EmbedAndRoute in Figure 3.1, where we substitute
Procedure FindMatch with Figure 6.2 while relying on an existing Procedure KRV-

FindCut [22]. At each round j, we use KRV-FindCut to generate an equal-sized
partition (S,X \S = S̄); we then find a matching Mj between S and S̄ by computing
a single-commodity max-flow using FindMatch(S, S̄, Gj) in Gj , which we add to F
as edges.

Theorem 6.1. With probability at least 1 − 1/n3, (a) EmbedExpander con-
structs a 1/4-expander H = (V ′, F ). (b) In addition, H is embedded into G as follows:
Each node i of H corresponds to a superterminal Xi in X in G such that all superter-
minals are mutually node disjoint and each superterminal is connected by a spanning
tree Ti in G; Each edge (i, j) in H corresponds to a path Pij from a terminal node in
Xi to a terminal node in Xj; all paths Pij and trees Ti are mutually edge disjoint in
G.

Khandekar, Rao, and Vazirani [22] show that the procedure in Figure 6.1 produces
an expander graph H with high probability, as stated in Theorem 6.2.

Theorem 6.2 (see KRV 06 [22]). Given a set of nodes V (H) of size r, ∃ a KRV-

FindCut procedure such that given any FindMatch procedure, the KRV-Procedure
in Figure 6.1 produces an α-expander graph H, for α ≥ 1/4, with probability 1− 1

nC ,
where C ≥ 3 given a large enough constant ω.

Remark 6.3. The same argument as in Remark 4.3 for bounding the probability
of failure across all decomposed graphs of G for events as described in Theorem 4.2
applies here; thus, with probability at least 1−O(1/n2), for each decomposed subgraph
G of G, we obtain an α-expander H that is embedded into G as in Theorem 6.1.

In the rest of this section, we first describe the FindMatch procedure as in
Figure 6.2, which we shall plug into the KRV-Procedure as described in Figure 6.1.
We then prove Theorem 6.1 in section 6.2.
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0. Given an equal partition (S, S̄) of X , we form a flow graph G′ from Gj

by adding auxiliary nodes and directed unit-capacity edges:
1. Add a special source node s0 and sink node t0
2. Add nodes s1, . . . , sr/2 and an edge from s0 to sk, ∀k = 1, . . . , r/2;
3. Add nodes t1, . . . , tr/2; from each tk, ∀k = 1, . . . , r/2, add an edge to t0
4. From each sk, add an edge to each terminal x ∈ Xik s.t. Xik ∈ S
5. To each node tk, add an edge from each terminal x ∈ Xjk s.t. Xjk ∈ S̄
6. Route a max-flow from s0 to t0
7. Decompose the flow to obtain a matching between S and S̄
8. End

Fig. 6.2. Procedure FindMatch(S, S̄, Gj).

6.1. Finding a matching through a max-flow construction. We now show
that given an arbitrary equal partition (S, S̄) of the set X = {X1, . . . , Xr} that
we obtain through Procedure Clustering(GZ , π), we can use the following pro-
cedure to route a max-flow of size r/2, such that the integral flow paths that we
obtain through flow decomposition induce a perfect matching between S and S̄. Let
S = {Xi1 , . . . , Xir/2} and S̄ = {Xj1 , . . . , Xjr/2}, where {i1, . . . , ir/2, j1, . . . , jr/2} is
understood to be a permutation of the original sequence {1, . . . , r} returned by Pro-
cedure KRV-FindCut as in Figure 6.1.

Lemma 6.4. In each sampled graph Gt, ∀t = 1, . . . , Z − 1, FindMatch produces
a perfect matching Mt between an equal partition (S, S̄) of X such that for each edge
in e = (i, j) ∈ Mt, there is an integral unit-flow path Pij from a terminal in Xi ∈ S
to a terminal in Xj ∈ S̄. All paths Pij , such that (i, j) ∈Mt are edge disjoint in Gt.

We first prove the following lemma.

Lemma 6.5. Every s0 − t0 cut has size at least r/2 in the flow graph G′ as in
Figure 6.2 with probability 1−O(log2 n/nd−1), where d ≥ 4.

Proof. Let (U, Ū) be a cut in the flow graph that separates s0 from t0; without
loss of generality, let U be a subset such that π(U ∩ Y ) ≤ π(Y )/2, and let s0 ∈ U
(otherwise, we can just rename all the auxiliary nodes and the two subsets S and S̄).

Consider any superterminal X ∈ X that we obtained through Lemma 5.1; if X is
contained either in U or in Ū , we call such a superterminal X uncut; otherwise, we
say that X is cut by (U, Ū).

1. LetKs
c =

∣∣{X ∈ S : X ∩ U,X ∩ Ū �= ∅}
∣∣ denote the number of superterminals

in S that are cut by (U, Ū).
2. Let Ks

uc =
∣∣{X ∈ S : X ⊆ Ū}

∣∣ be the number of superterminals in S that are
contained in Ū .

3. Let Ks
uc = |{X ∈ S : X ⊆ U}| denote the number of superterminals in S that

are contained in U ; hence Ks
uc +Ks

uc +Ks
c = r/2, where r = |X |.

4. LetKt
c =

∣∣{X ∈ S̄ : X ∩ U,X ∩ Ū �= ∅}
∣∣ denote the number of superterminals

in S̄ that are cut.
5. Let Kt

uc =
∣∣{X ∈ S̄ : X ⊆ Ū}

∣∣ denote the number of superterminals in S̄ that
are contained in U .

Given thatG is π-cut-linked, we know that the sampled graphGj is (1−ε)π/(ω log2 n+
1)-cut-linked with high probability by Lemma 4.1. Recall that in our clustering
scheme, the total weight of all terminals in one superterminal is at least W =
ω log2 n+1

1−ε . Note that there is at least one directed auxiliary edge crossing the cut
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for all superterminals except those in S that are contained in U or those in S̄ that
are contained in Ū . Thus we have

|δG′(U)| ≥ |δGj (U)|+Kt
uc +Ks

uc +Ks
c +Kt

c

≥
(1− ε)

∑
x∈U π(x)

ω log2 n+ 1
+Kt

uc +Ks
uc +Ks

c +Kt
c

≥ (1− ε)(Ks
uc +Kt

uc)W

ω log2 n+ 1
+Kt

uc +Ks
uc +Ks

c +Kt
c

≥ Ks
uc +Ks

uc +Ks
c ≥ r/2.

Hence we have shown that the size of every cut (U, Ū) in the flow graph G′ has size
at least r/2.

Proof of Lemma 6.4. By Lemma 6.5, and the fact that there exists an s0 − t0 cut
of size r/2, (e.g., ({s0}, V (G′) \ {s0})) we know the s0 − t0 min-cut is r/2. Hence by
the max-flow min-cut theorem, we know that there exists a max-flow of size r/2 from
s0 to t0. We next decompose the max-flow into r/2 integer flow paths (hence edge
disjoint), which induce a perfect matching Mt between S and S̄ as follows.

Consider an integral flow path Pk, ∀k = 1, . . . , r/2. Let the directed path Pk

start with s0 and go through sk and some terminal x ∈ Xik ∈ S; and let Pk end
with some terminal y ∈ Xjk′ ∈ S̄, tk′ and then t0 for some k′ ∈ [1, . . . , r/2]. No
other path in the max-flow can go through the same pair of superterminals Xik , Xjk′
due to the capacity constraints on edges (s0, sk) and (tk′ , t0). Hence Mt = {(ik, jk′ ),
k ∈ [1, . . . , r/2], where k′ ∈ [1, . . . , r/2]} is a perfect matching between S and S̄.

6.2. Proof of Theorem 6.1. The expander property (a) follows from Theo-
rem 6.2. Each edge e = (i, j) in the matching Mt maps to an integral flow path
that connects Xi and Xj in Gt; all such flow paths can be simultaneously routed
in Gt edge disjointly due to the max-flow computation, as we show in Lemma 6.4.
Since each matching Mt is on a unique split subgraph Gt, the entire set of edges in
M1, . . . ,Mω log2 n, which comprise the edge set F of H , corresponds to edge disjoint

paths in G1, . . . , GZ−1, where Z = ω log2 n+ 1. Finally, all spanning trees Ti, ∀i, are
constructed using a disjoint set of edges in the last split graph GZ as in Lemma 5.1.

7. Routing on an expander H node disjointly. In this section, we show
that the following greedy algorithm routes Ω(r/ log5 n) pairs of terminals in H =

(V (H), F ), where r = |V (H)| = Θ(π(G)/W ) as shown in (5.1) and |F | = rω log2 n
2

due to the construction in section 6.
Procedure ExpanderRoute (H,T,X): Given an uncapacitated expander H
with at least 512 log5 n nodes, with node degree ω log2 n. While there is a pair (s, t)
in T ⊆ T whose path length is strictly less than ν in H = (V,E), where ν = a3ω log3 n
and a3 = 32, remove both nodes and edges from H , along a path through which we
connect a pair of terminals in T .

Since we take away both nodes and edges as we route a path across the expander
H due to the node capacity constraints on V (H), routing the set P of pairs via integral
paths on H induces no congestion in G by Theorem 6.1. Hence we need only to argue
that |P | is large to finish our proof. Formally, we show the following.

Theorem 7.1. Given a degree-(ω log2 n) expander H = (V,E), where |V | =: r ≥
512 log5 n, the procedure above routes Ω(r/ log5 n) pairs, node disjointly, in H.

Let H ′ be the remaining graph of expander H = (V,E), after we take away nodes
and edges along the paths used to route terminal pairs in D. Note that all pairs
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T ′ ⊆ T that remain in H ′ must have distance at least ν. This is the main condition
that allows us to prove Theorem 7.1. Let us also define a multicut L as a set of edges
whose removal separates all pairs in T ′ that remain in H ′ = (V ′, E′).

Recall that any node-balanced cut in H must have at least Ω(r) edges. Now
suppose that we can find a node-balanced cut (U, Ū) in H such that at most half of
its edges remain inH ′ and hence Ω(r) edges have been removed when routingD. Since
routing each pair in D removes at most νω log2 n edges, where ν = a3ω log3 n for a
properly chosen constant a3, we conclude |D| must be Ω(r/ log5 n), where r = |V (H)|.

The proof of Theorem 7.1 therefore involves primarily finding such a balanced cut
in H given L. Before we go on, we first state Lemma 7.2 regarding the existence of a
small multicut L in H ′. In fact, following the construction of [18], one can find such
a multicut.

Lemma 7.2 (see [18]). If all remaining terminal pairs in T ′ ⊆ T have distances

at least ν in H ′, then there exists a multicut L in H ′ = (V ′, E′) of size
|E′| logn

ν in
H ′ that separates every source and sink pair (si, ti) ∈ T ′.

Applying Lemma 7.2 to H ′, we immediately have the following bound on |L|:

|L| ≤ rω log3 n

2ν
=

r

2a3
,(7.1)

given that |E′| ≤ |E| = rω log2 n/2.

7.1. Proof of Theorem 7.1. We prove Theorem 7.1 by first noting that con-
dition 1 of Theorem 3.1 implies that any multicut of the terminals in H ′ ensures
that no piece in H ′ separated by L contains more than half the weight of all termi-
nals in H according to π. We now alter π to obtain a new weight function π′(v),
∀v ∈ Xi ∈ V (H ′), so that we can make a stronger claim about the weight of each
cluster separated by L. We then use this fact to show that clusters separated by L
can be rearranged to find a weight-balanced cut (U ′, Ū ′) in H ′ according to π′.
Procedure Alter (π, π′): Recall that for a pair of terminals (s, t) ∈ T , the same
amount of weight wst, according to their flow in f̄ , is contributed to both π(s) and
π(t) as specified in (3.1). Now suppose that s is removed from H while routing the D
subset of terminal pairs (as s ∈ Xi ∈ V (H) \ V (H ′)), but t remains in H ′; we remove
wst from π(t). We repeat this for all t ∈ Xi ∈ V (H ′) and define this updated weight
as π′ and let π′(H ′) =

∑
u∈Xi∈V (H′) π

′(u).

Recall that initially π(H) = π(X ) ≥ π(G)− (W −1), since at most W −1 of π(G)
is not assigned to any node in H , and each node in H has weight between W and
2W − 1 as shown in proof of Lemma 5.1. Hence the total weight taken away from π
by routing |D| terminal pairs of distance at most ν is at most 2ν|D|(2W − 1). Thus
by Procedure Alter(π, π′), we have π′(Xi) ≤ π(Xi) ≤ 2W − 1 and

π′(H ′) ≥ π(G)− (W − 1)− 2ν|D|(2W − 1).(7.2)

Now it is clear that only the remaining pairs (s, t) ∈ T ′ contribute a positive
weight to π′(H ′) according to their flow in f̄ as in (3.1). Let L be the multicut that
separates all remaining terminals pairs T ′ ⊆ T in H ′. Thus L cuts the graph H ′ and
group nodes in V (H ′) into clusters such that each cluster (a connected component
in H ′) has a weight of at most π′(H ′)/2, since each individual si, ti in a pair in T ′,
each contributing the same amount of weight to π′(H ′) according to their flow xi in
f̄ , must belong to different clusters.
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We then use L to find a weight-balanced cut (U ′, V (H ′)\U ′) in H ′ such that each
side has weight at least π′(H ′)/4, where π′(H ′) ≥ π(G)− (W − 1)− 2(2W − 1)ν |D|.
Given such a weight-balanced cut (U ′, Ū ′) in H ′, it is straightforward to verify that
any partition (U, V (H) \U) in H , such that U ′ ⊆ U and (V (H ′) \U ′) ⊆ (V (H) \U),
is node-balanced in H , as we show now in Lemma 7.3.

Lemma 7.3. Let (U ′, V (H ′) \ U ′) be a (1/4, 3/4)-weight-balanced cut in H ′.
Let r ≥ 512 log5 n. Consider any cut (U, V (H) \ U) in H, such that U ′ ⊆ U and
(V (H ′) \ U ′) ⊆ (V (H) \ U) before routing the terminals in D:

min (|U | , |V \ U |) ≥ r

8
− ν|D|/2.(7.3)

Proof. If U is the smaller side, we have |U | ≥ |U ′|; otherwise, we have |V (H) \ U | ≥
|V (H ′) \ U ′|. Now given that both π′(U ′) and π′(V (H ′) \ U ′) are at least π′(H ′)/4,
the upper bound 2W − 1 on π′(Xi) ≤ π(Xi), and (7.2), we have

min (|U | , |V \ U |) ≥ min{|U ′| , |V (H ′) \ U ′|}

≥ π′(H ′)

4(2W − 1)

≥ π(G) − (W − 1)

4(2W − 1)
− ν|D|

2

≥ π(G)

8W
+
π(G)

16W 2
− 1

8
− ν|D|

2

≥ r

8
− ν|D|/2

given that π(G)
16W 2 = Ω(log3 n) ≥ 1

8 and π(G)
W ≥ r by (5.1).

Proof of Theorem 7.1. We build a (1/4, 3/4)-weight-balanced partition of H ′ from
L as bounded in (7.1) as follows: we start with two empty sides A and B and then
add the connected components (after removing the multicut L) of H ′ to the smaller
side repeatedly. Each component contains at most π′(H ′)/2 weight due to (3.1) and
Procedure Alter; in the end neither side can contain more than 3π′(H ′)/4 of weight;
indeed, consider the step where, without loss of generality, side A was put over 3/4
of π′(H ′) by adding a component d: in that step, d could not have been added to A,
since π′(A) ≥ π′(H ′)/4 ≥ π′(B) before d was added, given that d ≤ π′(H ′)/2.

By the construction of (U ′, V (H ′) \ U ′) and by (7.1), we have

|δH′(U ′)| ≤ |L| ≤ r

2a3
,(7.4)

while for any cut (U, V (H)\U) in H , such that U ′ ⊆ U and (V (H ′)\U ′) ⊆ (V (H)\U),
we have by Lemma 7.3

|δH(U)| ≥ αmin (|U | , |V \ U |) ≥ α
( r
8
− ν|D|/2

)
,(7.5)

as H is an α-expander. Note that the number of edges taken away from the balanced
cut (U, V (H) \ U) for routing the set D of unit flows is at most ν|D|ω log2 n, as each
flow is of length at most ν − 1 (hence taking away ν nodes), and each node in H has
degree ω log2 n. Combining this bound with (7.5) and (7.4), we have

α
(r
8
− ν|D|/2

)
≤ |δH(U)|

≤ |δH′(U ′)|+ ν|D|ω log2 n

≤ ωr

2a3
+ ν|D|ω log2 n.(7.6)
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Table 7.1

Parameters related to the original and decomposed EDP instances.

Parameters Meaning

α expansion factor of H
β(G) mincut-maxflow gap on product commodity flows on G
δG(S) the set of edges with exactly one endpoint in S in G
ε a constant suitably chosen in (0, 1), used throughout this table

κ min-cut of Gj ; for 0 < ε < 1 and d ≥ 4, ∼≥ (d+2)(lnn)(ω log2 n+1)

ε2

ηi ∀i = 1, . . . , k factor for xi’s contribution to π(si), π(ti)
λ(n) λ(n) = 10β(G) logOPT∗(G,T ); see section 8.1 for details
ν − 1 the maximum length of an integral flow path allowed to route in H
τ ∼:= 2n1 − 2, the number of cuts in a subgraph G with n1 nodes
ω a constant that specifies the number of matchings ω log2 n
a3 a constant defined in section 7
cap(S, S̄) ∼:= |δG(S)|; the total capacity of edges in the cut (S, V \ S) in G
f̄ an optimal fractional solution to (2.2a)–(2.2d)
g approximation factor for (G,T ), ∼= O(λ(n)β(G)W log5 n)
k the number of unit-demand pairs (si, ti) in T
n the number of nodes in G, the original input graph
p an individual path in P
q sampling probability, for d ≥ 4, ∼= (d+2)(lnn)

ε2κ
= 1

ω log2 n+1

r the number of nodes in Expander H as bounded in (5.1)
xi amount of flow in OPT∗ for (si, ti); see (2.2a)–(2.2d)
Ci ∀i = 1, . . . , r, connected components connecting nodes in Xi

D a set of terminal pairs in T that are routed greedily in H
F a set of ω log2 n matchings M1, . . . ,Mω log2 n

that comprise the set of edges for H: |F | = rω log2 n/2
G the original input graph with min-cut Ω(κ log2 n)
(G, T ) the original EDP instance
G,Gj ∀j = 1, . . . , , a subgraph of G obtained through Theorem 3.1
(G, T ) an induced EDP instance in one of the disjoint set of subgraphs

G of G in Theorem 3.1
H an α-expander constructed in Theorem 6.1
Mi ∀i = 1, . . . , ω log2 n, matchings in H
Pi ∀i = 1, . . . , k, set of paths joining si, ti in G
T a set of terminals pairs {(s1, t1), (s2, t2), . . . , (sk , tk)} in G
Y the set of induced terminals of T in G
X,Xi superterminal: a subset of terminals in Y s.t. Xi are node disjoint
X a set of node-disjoint superterminals {X1, . . . , Xr}
W minimum weight for Xi ∈ X , ∼= ω log2 n+1

1−ε
, 0 < ε < 1

Z the number of split subgraphs ∼= 1/p = ω log2 n+ 1
π(v) weight of v ∈ G assigned in Theorem 3.1
π(Xi) ∼:=

∑
v∈Xi

π(v) ∈ [W, 2W − 1], ∀i = 1, . . . , r

π(X ) ∼≥ π(G)− (W − 1)

Now by taking α = 1/4 and a3 = 32, we have by (7.6)

|D| ≥ r (α/8− 1/2a3)

a3ω log3 n(ω log2 n+ α/2)
≥ r

2048ω2 log5 n
,

where ω is a constant defined in Figure 3.1.

8. The decomposition procedure for Theorem 3.1. In this section, we first
sketch a proof of Theorem 8.3, which states a more refined and stronger version of
Theorem 3.1. The full proof of Theorem 8.3 is shown in section 10. A list of parameters
and notation used from this section until section 10 is summarized in Table 10.1.
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8.1. The CKS flow-linked decomposition theorem. We first transform
(G, T ) to a set of flow-linked instances by following a decomposition procedure in [11],
the outcome of which is summarized in the following theorem.

Theorem 8.1 (see [11]). Let OPT∗(G, T ) be a solution to the LP for a given
instance (G, T ) of the EDP problem in an input graph G. One can efficiently compute a
partition of G into node disjoint induced subgraphs G1, G2, . . . , G� and weight functions
ρi : V (Gi) → R

+ with the following properties. Let Ti be the induced pairs of T in Gi

and let Yi be the set of terminals of Ti.
1. Yi is ρi-flow-linked in Gi.
2.
∑�

i=1 ρi(Yi) = Ω(OPT∗(G, T )/λ(n)), where λ(n) = 10β(G) logOPT∗(G, T ).
Remark 8.2. Although the original statement in the Chekuri–Khanna–Shepherd

(CKS) decomposition theorem [11] (cf. Theorem 2.1) assumes that each node u belongs
to only a single terminal pair in T , which guarantees that ρi(u) = ρi(v) holds for all
(u, v) ∈ Ti, their decomposition procedure and analysis apply to the general case that
we consider in this paper; in particular, conditions 1 and 2 do not depend on such an
assumption.

Before we go on, let us define the following notation that appears in the proof
of Theorem 8.1 as in [11]. Let G1, G2, . . . , G� be the node disjoint subgraphs of G
produced by the CKS decomposition procedure in Theorem 8.1. Recall that P refers
to the entire set of paths from the original flow decomposition as in (2.2a)–(2.2d). Let

• γ(G) = OPT∗(G, T ), as in (2.1);
• γ(Gi) =

∑
p∈P:p∈Gi

f̄(p) denote the total flow induced in Gi by the original

flow f̄ ; it counts flow only on flow paths f̄(P ) from the the original flow path
decomposition that are completely contained in Gi;

• γ(u,Gi) denote the flow in Gi for u; and hence
• γ(Gi) =

1
2

∑
u∈Gi

γ(u,Gi) by definition.
Thus there exists at least one flow path with a positive amount of flow between a pair
of terminals (u, v) ∈ Ti according to the original flow path decomposition of f̄ , which
is entirely contained in Gi, if the contribution from the pair (u, v) to γ(u) and γ(v)
(and hence ρi(u) and ρi(v) in Theorem 8.1) is positive.

All subgraphs G1, G2, . . . , G� produced by the CKS decomposition procedure sat-
isfy one of the following conditions:

1. The flow is sufficiently small, in that γ(Gi) ≤ λ(n)/10. In this case, let
ρi(u) = ρi(v) = 1 for some pair (u, v) ∈ Ti with positive flow in Gi; and
ρi(y) = 0 for y �= u, v. Hence one can just route a unit flow between the
chosen pair (u, v) ∈ Ti along an integral path; such a path exists since Gi is
a connected component.

2. Else, for γ(Gi) > λ(n)/10, Yi is ρi-flow-linked in Gi, where Yi is the set of
terminals of Ti, and ρi is defined as follows for Gi:

ρi(u) = γ(u,Gi) = 0, ∀u �∈ Yi,(8.1a)

ρi(u) =
γ(u,Gi)

λ(n)
, ∀u ∈ Yi, and hence(8.1b)

ρi(Gi) = ρi(Yi) :=
∑
x∈Yi

ρi(x) =
∑
x∈Yi

γ(x,Gi)

λ(n)
=

2γ(Gi)

λ(n)
.(8.1c)

For both cases, the CKS weight function on V (Gi) satisfies ρi(Gi) = Ω(γ(Gi)
λ(n) ). From

now on, we refer to both (Gi, Ti) and (Gi, Yi) as ρi-flow-linked instances without
differentiation.
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Throughout the rest of the paper, we use remaining-flow to keep track of the total
remaining flow of f̄ between terminal pairs in Ti, across all i, where Ti are the induced
pairs of T in Gi. By the end of the CKS flow decomposition, we lose at most half
of f̄ , where

∣∣f̄ ∣∣ = OPT∗(G, T ), as the number of edges that were cut during flow
decomposition is at most OPT∗/2 (cf. the proof of Theorem 8.1 in [11]); hence

remaining-flow :=

�∑
i=1

γ(Gi) ≥ OPT∗(G, T )/2.(8.2)

Note that remaining-flow is the lower bound on
∑

i |Ti|. Thus condition 2 of Theo-
rem 8.1 also holds, given (8.2), and hence

�∑
i=1

ρi(Yi) ≥
�∑

i=1

2γ(Gi)

λ(n)
= Ω(OPT∗(G, T )/λ(n)).(8.3)

The proof of the theorem appears in [11]. They use this procedure as the first
step in a two-step transformation from the optimal multicommodity flow solution f̄
to obtain sets of well-linked terminal sets, which eventually leads to an O(log2K)-
approximation for the ANF problem described in section 1, where K = |T |.

8.2. A modified flow-linked decomposition theorem. Let G1, G2, . . . , G�

be the node disjoint subgraphs of G produced by the CKS decomposition procedure.
We treat the induced subproblems (Gi, Ti), ∀i independently. Given (Gi, Yi) such
that Yi is ρi-flow-linked in Gi, there are two postprocessing stages needed in order to
repair the min-cut conditions while maintaining the flow-linked conditions across Gi,
∀i.

1. Min-cut processing stage. Formally, let V (Gi) be the current set of ver-
tices of Gi. We keep cutting off the smaller side S of a minimum cut, in terms
of weight ρi, from Gi when cap(S, V (Gi) \S) is less than ĉ, until every cut in
Gi is at least ĉ, where we set ĉ = Ω(log3 n).
By cutting off, we remove both nodes in S and edges that are adjacent to
S in current Gi; this includes the cases when we get rid of any single node
whose degree falls below ĉ from its original degree of Ω(log5 n). We call such
a stage a min-cut processing stage. Lemmas 10.3 and 10.4 bound the total
number of edges that we lose from G1, . . . , G� and the flow that we further
lose from remaining-flow (and hence OPT∗(G, T )) as in (8.2).

2. Sparsest-cut processing stage. In order to guarantee that we have an
instance Y ′

i that is �i-flow-linked in Gi for a new weight function �i, we
need to further “mute” some terminals with a positive weight under ρ by
setting their weight to zero under �i. This way, we can guarantee that every
cut in Gi is good with respect to a product multicommodity flow demand that
is defined based on the new weight function �i. We emphasize that we do not
remove any nodes or edges in this stage; hence the min-cuts are guaranteed
to be ĉ = Ω(log3 n). Lemma 10.4 bounds the flow that we further lose from
OPT∗(G, T ), and Lemma 10.6 shows the final bound on remaining-flow.

We have the following theorem about the instances that we have by the end of
this postprocessing stage. The proof of this theorem is in section 10.

Theorem 8.3. Suppose we are given a graph G with min-cut value C0 ≥
(4a0λ(n) + a0 + 2)ĉ for some a0 ≥ 2. By the end of the sparsest-cut processing,
we obtain a set of node-disjoint induced subgraphs Ǧ1, . . . , Ǧ�, all with min-cut at
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least ĉ, and the corresponding disjoint subsets T ′
1 , . . . , T ′

� of T , such that terminal
pairs in T ′

i belong to Ǧi and there exists a set of weight functions �i : V (Ǧi) → R
+

with the following properties:
1. there are η1, . . . , ηk such that ∀u in a subgraph Ǧi, �i(u) =

∑
i:si=u,ti∈Ǧi

2ηixi;
note that this implies that ∀(si, ti) ∈ T ′

i , xi contributes the same amount of
weight to �i(si) and �i(ti);

2. Y ′
i is �i-flow-linked in G′

i, where Y
′
i is the set of terminals of T ′

i ;
3. ∀u in a subgraph Ǧi s.t. �i(Y

′
i ) ≥ Ω(log3 n), �i(u) ≤

∑
i:si=u,ti∈Ǧi

xi

β(G)λ(n) ;

4.
∑�

i=1�i(Y
′
i ) = Ω(OPT∗(G,T )

λ(n)β(G) ), where λ(n) = β(G) logOPT∗(G, T ) and β(G)

is the worst-case min-cut–max-flow gap on product multicommodity flow in-
stances on G.

8.3. Defining weights for Theorem 3.1. Finally, we define a weight function
π on V (G) as follows: (a) ∀i, ∀u ∈ Ǧi, where Ǧi is a subgraph of G, we assign
π(u) = �i(u)/2; and (b) we assign π(u) = 0 for nodes of V (G) not in any Ǧi. We
thus have defined the weight function π : V (G) → R

+ on the entire set of nodes of G as
required by Theorem 3.1 with the same decomposition as we obtain for Theorem 8.3.

9. Details regarding CKS flow-linked decompositions. Recall that all sub-
graphs G1, G2, . . . , G� produced by the recursive decomposition procedure in Theo-
rem 8.1 satisfy one of the following conditions:

1. The flow is sufficiently small, in that γ(Gi) ≤ λ(n)/10.
2. Else, f0dem(u, v) units of flow can be simultaneously routed ∀uv in Gi with

congestion 1 in Gi, where

f0 =
1

2λ(n)
,(9.1)

and the product demands are specified based on the original induced flow
values γ(u,Gi) at each node u ∈ V (Gi) of f̄ in Gi, ∀i as follows:

∀u, v ∈ V (Gi), dem(u, v) =
γ(u,Gi)γ(v,Gi)

γ(Gi)
.(9.2)

It is clear from (9.2) and (9.1) that for a scaled-down product flow problem demρi(u, v),
such that each demand is f0 of the original, ∀uv ∈ V (Gi),

demρi(u, v) =
ρi(u)ρi(v)

ρi(Yi)
=
γ(u,Gi)γ(v,Gi)

2λ(n)γ(Gi)
=

dem(u, v)

2λ(n)
= f0dem(u, v),

there is a feasible flow in Gi since the concurrent max-flow value is at least 1. This
actually applies to the case when γ(Gi) ≤ λ(n)/10. Depending on the context, we
may prefer to use the original product flow dem(u, v) instead of the feasible product
flow demρi(u, v), or the other way around.

10. Proof of Theorem 8.3. The analysis of this section will lead to the proof
of Theorem 8.3 eventually. Throughout this section, we keep reducing the set of
terminal pairs of Ti that are relevant, in the sense that these pairs will remain to
be candidate pairs that we eventually route edge disjointly in G. Therefore, we keep
track of the following set of parameters in each subgraph Gi that we obtain through
flow decomposition:

• Ti: the induced pairs of T in Gi that we still consider to route edge disjointly;
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• a weight function ρi defined on the V (Gi), with positive values only on ter-
minals Xi of Ti; it evolves from ρi to �i, upon which π is defined;

• finally, we use remaining-flow as defined and initially bounded in (8.2) to keep
track of the total remaining flow of f̄ between terminal pairs in Gi, across all
i; note that remaining-flow is the lower bound on

∑
i |Ti|.

We are going to keep computing the original flow of f̄ that we lose during the post-
processing stages. We specify the following parameters that are related to min-cuts:

1. ĉ: the smallest minimum cut value that we allow in Gi, ∀i, which is Θ(log3 n).
2. C0: the minimum cut value in the original graph G, which is Ω(log5 n).
3. LOSS ≤ OPT∗(G, T )/2: the number of edges that are cut during the CKS

flow-decomposition process.
We analyze the min-cut processing in the next two sections. Formally, let V (Gi)

be the current set of vertices of Gi, which keeps shrinking as follows. We keep cut-
ting off the smaller side S of a minimum cut, in terms of weight ρi, from Gi when
cap(S, V (Gi) \ S) is less than ĉ, until every cut in Gi is at least ĉ. By cutting off, we
remove both nodes in S and edges that are adjacent to S in current Gi.

Let S1
i , S

2
i , . . . , S

xi

i be the sets of vertices that we take away from Gi and in that
order. We define the following notation to track this process of updating Gi.

• G0
i = (V 0

i , E
0
i ): the subgraph Gi before any of St

i , t = 1, . . . , xi, has been
taken out.

• Y 0
i : the set of terminals of G0

i right after flow decomposition, such that Y 0
i

is ρi-flow-linked in G0
i , as guaranteed by the CKS decomposition.

• Gt
i = (V t

i , E
t
i ), ∀t = 1, . . . , xi: the remaining subgraph of G0

i after removing

S1
i , . . . , S

t
i and their adjacent edges; hence V t

i = V 0
i \ ∪j=1,...,tS

j
i .

• Let the remaining subgraph of G0
i by the end of the min-cut processing stage

be

Ǧi = (V̌i, Ěi) := Gxi

i = (V xi

i , Exi

i ).(10.1)

10.1. Bound edges lost due to the min-cut processing. Denote the number
of edges that we take away from G0

i due to the min-cut processing by edge-lossi, ∀i.
Definition 10.1. edge-lossi is the sum of capacities of the minimum cuts that

have caused S1
i , . . . , S

xi

i to be cut off from Gi, ∀i. Denote the sum of edge-lossi across
all i by edge-loss:

edge-loss =
∑

i=1,2,...

edge-lossi =
∑

i=1,2,...

∑
t=1,...,xi

cap(St
i , V

t
i ).

In addition, we define the total flow of f̄ that we lose during this process by flow-loss1.
Remark 10.2. Note that the number of edges that we take away from the final

set of nodes V (Gi) = V xi

i = V 0
i \ ∪j=1,...,xiS

j
i due to the min-cut processing is upper

bounded and in fact may be smaller than edge-lossi, ∀i.
We prove the following lemma in this section.
Lemma 10.3. The total number of edges that we take away from decomposed

subgraphs G0
i , G

1
i , . . . for C

0 > 2ĉ is at most

edge-loss =
∑

i=1,2,...

edge-lossi ≤
2 · LOSS · ĉ
C0 − 2ĉ

.(10.2)

Proof. We use a potential function ψ(Gi) to count the number of edges we lose
from nodes currently in Gi, as compared to the original graph G = (V,E), while Gi
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keeps shrinking due to its min-cut processing. The counting process is as follows. We
start with a component Gi such that ψ0

i = LOSSi denotes the number of edges that
we initially lose from nodes in G0

i right after the CKS flow decomposition procedure.
Hence

ψ0
i = ψ(G0

i ) = LOSSi ≥ 0 and
∑

i=1,2,...

LOSSi = 2 · LOSS.(10.3)

When a subset S is cut off, it claims away some credit from the current ψ(Gi), since
S is cut off because cap(S, V (G) \ S) has decreased from above C0 to its current size
in Gi, cap(S, V (Gi) \ S), which is ≤ ĉ, due to edges lost from nodes in S during the
CKS flow decomposition. That is, edges lost from nodes in S have contributed to the
current value of ψ(Gi).

Let ψt
i be the value of ψ(Gi) after taking t sets of vertices S1

i , . . . , S
t
i and their

adjacent edges away from Gi. Let (St+1
i , V t

i \ St+1
i ) be the minimum cut in Gt

i and
St+1
i be the (t+1)st set of vertices that we cut off fromGi because cap(S

t+1
i , V t

i \St+1
i )

is less than ĉ. Let us denote the size of the original cut (St+1
i , V \ St+1

i ) in G with

�t+1
i := cap(St+1

i , V \ St+1
i ) ≥ C0.(10.4)

The amount of credit St+1
i takes away from ψ(Gi) is (cap(St+1

i , V \ St+1
i ) −

cap(St+1
i , V t

i \ St+1
i )), and the credit it puts back is cap(St+1

i , V t
i \ St+1

i ), since we
remove edges in (St+1

i , V t
i \ St+1

i ) from Gt
i, in addition to the subgraph induced by

St+1
i in Gt

i. Hence, we update ψ(Gi) as follows:

ψt+1
i = ψt

i − (cap(St+1
i , V \ St+1

i )− cap(St+1
i , V t

i \ St+1
i )) + cap(St+1

i , V t
i \ St+1

i )

= ψt
i − (�t+1

i − cap(St+1
i , V t+1

i )) + cap(St+1
i , V t+1

i ).

Since cap(St+1
i , V t+1

i ) ≤ ĉ, we have ψt+1
i ≤ ψt

i − (�t+1
i − ĉ) + ĉ.

Since the credit that a cut puts back is much less than the credit that it spent,
there is only a finite number xi of such small cuts in Gi, ∀i. By the end of xi rounds,
there must be a nonnegative credit in ψ(Gi), since nodes in current Gi can never gain
any edges. Hence

0 ≤ ψ(Gi) = ψx
i ≤ LOSSi − (�1i − ĉ) + ĉ− (�2i − ĉ) + ĉ− · · · − (�xi

i − ĉ) + ĉ.

Summing the above inequalities over all i, we have by (10.4) and (10.3)∑
i=1,2,...

xi · C0 ≤
∑

i=1,2,...

∑
j=1,2,...,xi

�ji ≤ 2 · LOSS+ 2
∑

i=1,2,...

xi · ĉ.

Hence the total number of minimum cuts across all Gi that we process is

∑
i=1,2,...

xi ≤
2 · LOSS
C0 − 2ĉ

.(10.5)

Now summing edge-lossi across all i as in Definition 10.1, we have

edge-loss =
∑

i=1,2,...

edge-lossi =
∑

i=1,2,...

∑
t=1,...,xi

cap(St
i , V

t
i ) ≤

∑
i=1,2,...

xi · ĉ.(10.6)

Plugging (10.5) into (10.6) shows that (10.2) holds.
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10.2. Bound the flow loss due to the min-cut processing. In this section,
we compute the total amount of flow that we lose from f̄ due to the min-cut processing
in the previous section.

For a set of nodes St
i ∈ V 0

i for t = 1, . . . , xi, in G
0
i = (V 0

i , E
0
i ), we denote the size

of cut (St
i , V

0
i \St

i ) with Δ(St
i ) := cap(St

i , V
0
i \St

i ). As we shall see, Δ(St
i ) determines

the amount of flow of f̄ that we take away from γ(Gi) when we remove St
i from Gi

as the smaller side (in terms of weight ρi) of a min-cut (St
i , V

t
i ) in G

t−1.
Thus we first derive an upper bound on Δ(St

i ) by the following observation: Edges

in Δ(St
i ) come either from previous min-cuts, {(Sj

i , V
j
i ) for j < t}, or from a set of

new edges that contribute to cap(St
i , V

t
i ); however, each edge e counted in edge-lossi

can be used at most twice toward
∑xi

t=1 Δ(St
i )—once for each of the two neighboring

sets in {St
i , t = 1, . . . , xi} that share e ∈ G0

i . Thus we have

xi∑
t=1

Δ(St
i ) ≤ 2

xi∑
t=1

cap(St
i , V

t
i ) = 2 · edge-lossi

and
∑

i=1,2,...

xi∑
t=1

Δ(St
i ) ≤ 2 · edge-loss.(10.7)

Lemma 10.4. The total flow of f̄ that we lose from min-cut processing is

flow-loss1 ≤ edge-loss · (2λ(n) + 1/2).

Proof. We first derive a lower bound on Δ(St
i ) based on the fact that Y 0

i is
ρi-flow-linked and hence Y 0

i is also ρi/2-cut-linked in G0
i by Proposition 2.5. Hence

Δ(St
i ) := cap(St

i , V
0
i \ St

i ) ≥
ρi(S

t
i ∩ Y 0

i )

2
=

∑
u∈St

i
γ(u,Gi)

2λ(n)
,(10.8)

where the equality is due to (8.1a) and (8.1b).
Now fix Δ(St

i ) for some t. We now calculate the amount of flow of f̄ that we lose
by cutting off St

i . The flow that we lose falls into one of four types:
1. flow whose paths are entirely contained in the subgraph of Gi induced by St

i ;
2. flow that has to go through edges that are counted in Δ(St

i ) but not counted
in (St

i , V
t
i );

3. flow that has to cross (St
i , V

t
i ) with at least one endpoint in St

i ;
4. flow with both endpoints u′v′ belonging to V t

i such that the flow path inter-
sects the min-cut (St

i , V
t
i ) at least twice.

Flow of type 1 is counted in
∑

u∈St
i
γ(u,Gi) twice. Flow of type 2 has been counted

before when Sj
i were cut off for some j < t. Flow of type 3 contributes its flow

amount once to
∑

u∈St
i
γ(u,Gi) and once to the usage of cap(St

i , V
t
i ). Flow of type 4

is counted twice in the usage of cap(St
i , V

t
i ). Note that flow that crosses cut (St

i , V
t
i )

either has been counted in
∑

u∈St
i
γ(u,Gi) at least once or crosses (St

i , V
t
i ) at least

twice. Hence we obtain an upper bound on the amount of flow that we lose from f̄
which has not been counted earlier (i.e., of types 1, 3, and 4) due to cutting off the
induced subgraph of St

i from Gt−1
i by

1

2

∑
u∈St

i

γ(u,Gi) +
1

2
cap(St

i , V
t
i ) ≤

1

2
ρi(S

t
i ∩ Y 0

i )λ(n) +
1

2
cap(St

i , V
t
i )

≤ Δ(St
i )λ(n) +

1

2
cap(St

i , V
t
i ),
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where the last inequality is due to (10.8). Summing over all St
i , ∀t, we obtain

flow-loss1 ≤
∑

i=1,2,...

xi∑
t=1

1/2

⎛
⎝∑

u∈St
i

γ(u,Gi) + cap(St
i , V

t
i )

⎞
⎠

≤
∑

i=1,2,...

xi∑
t=1

(
Δ(St

i )λ(n) +
1

2
cap(St

i , V
t
i )

)

=
∑

i=1,2,...

xi∑
t=1

Δ(St
i )λ(n) +

1

2
edge-loss.

Thus the lemma holds given (10.7).
Let 1/a0 denote an upper bound on the ratio between the flow of f̄ that we lose

during min-cut processing and LOSS in the CKS flow decomposition, flow-loss1
LOSS ≤ 1

a0
,

which indeed holds for C0 ≥ (4a0λ(n) + a0 + 2) · ĉ, given Lemma 10.4 and (10.2):

flow-loss1 ≤ 2edge-loss · λ(n) + 1

2
edge-loss

≤ 2LOSS · ĉ
C0 − 2ĉ

(2λ(n) + 1/2) ≤ LOSS

a0
.(10.9)

Finally, plugging C0 ≥ (4a0λ(n)+a0+2) · ĉ into (10.2), we obtain the following bound
on edge loss due to the min-cut processing in Gi:

edge-loss ≤ 2LOSS · ĉ
C0 − 2ĉ

≤ 2LOSS · ĉ
a0(4λ(n) + 1) · ĉ =

LOSS

a0(2λ(n) +
1
2 )
.(10.10)

10.3. Obtaining the final set of terminals. Recall that G0
i = (V 0

i , E
0
i ) de-

notes the subgraph Gi we obtain through the CKS flow decomposition before any
subset of nodes has been removed. Recall that the set of terminals Yi of Gi is ρi-
flow-linked in Gi. Now Ǧi = (V̌i, Ěi), ∀i are the remaining subgraphs of Gi, ∀i at the
end of the min-cut processing stage as in (10.1). In the sparsest-cut processing, we
remove regions Q1

i , . . . , Q
yi

i from the graph Ǧi (and in that order) that do not meet a
certain sparsest-cut condition using the algorithm shown in Figure 10.1. In the end,
we have a subgraph

G′
i := Ǧi

⎡
⎣V̌i \ yi⋃

j=1

Qj
i

⎤
⎦

that does meet the sparsest-cut condition on the demands in the remaining subgraph
(cf. (10.12) and (10.11)).

Now we assign a zero weight to all vertices in the removed regions so that demands
on these regions are zero; we then put Q1

i , . . . , Q
yi

i all back in. This graph Ǧi is more
connected only with regard to the remaining demands induced by f̄ inside G′

i, ∀i.
Hence we emphasize that Ǧi, ∀i = 1, . . . , � is the set of subgraphs that we pass on
to the next stage. We give an algorithm for computing the final disjoint subsets
T ′
1 , . . . , T ′

� of T such that terminal pairs in T ′
i belong to G′

i, and hence Ǧi, ∀i, and
assigning a positive weight �i to the set of terminals in T ′

i , ∀i (cf. (10.19)). In the rest
of this section, we prove Theorem 8.3 by first describing our algorithm and setting up
the corresponding notation.
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0. Given a subgraph Ǧi.
1. If γ(Ǧi) ≤ (a1/4)βλ(n), �i(u) = �i(v) = 1 for some pair uv ∈ T ′

i

with positive flow in Ǧi; and �i(y) = 0 for y �= u, v.
Hence we can just route a unit flow between the chosen pair uv ∈ T ′

i

along an integral path; such a path exists since Ǧi is a connected component.
2. Suppose that γ(Ǧi) > (a1/4)βλ(n). For dem(u, v) = γ(u, Ǧi)γ(v, Ǧi)/γ(Ǧi),

let f ′ be the maximum concurrent flow for this instance.

(a) if f ′ ≥ f1, set �i(u) =
γ(u,Ǧi)

(a1/2)βλ(n)
∀u ∈ V̌i and stop.

(b) else f ′ < f1, find an approximate sparsest cut s.t.
cap(S,V (Ǧi)\S)

dem(S,V (Ǧi)\S)
≤ βf ′; set �i(u) = 0, ∀u ∈ S,

where S is the smaller side in terms of weight ρi,
and shut off edges in δ0(S) = (S, V̌i \ S)
so that we recurse on Ǧi[V (Ǧi) \ S].

3. End

Fig. 10.1. Algorithm Finding Sparsest Cuts.

Given a subgraph Ǧi = (V̌i, Ěi) := Ǧ0
i , we use the procedure in Figure 10.1 to

update Ǧi recursively by muting regions that do not satisfy the sparsest-cut condition;
by “muting” a region Q, we treat nodes in Q and their adjacent edges as if they
were removed from Ǧi during the sparsest-cut processing stage, although in the end,
we retain these regions entirely in Ǧi. We define the following parameters given a
remaining subgraph Ǧt

i of G
i after muting some regions, Q1

i , . . . , Q
t
i, where t ≥ 1:

1. Ǧt
i = (V̌ t

i , Ě
t
i ): the remaining subgraph of Ǧi after muting nodes inQ1

i , . . . , Q
t
i

and their adjacent edges; V̌ t
i = V̌i \∪j=1,...,tQ

j
i is the remaining set of vertices

in Ǧi at stage t;
2. δt(S) = cap(S, V̌ t

i \ S): the size of a new cut (S, V̌ t
i \ S) in subgraph Ǧt

i;
3. Δ(S) = cap(S, V 0

i \S): the size of an original cut (S, V 0
i \S) in subgraph G0

i ;
note that Δ(S) determines the amount of flow of f̄ that we take away from
γ(Ǧi) when we set �i(u) = 0, ∀u ∈ S in Figure 10.1.

In order for subgraph Ǧt
i to satisfy a flow-linked property, we define

f1 =
1

a1β(G)λ(n)
, where a1 > 8,(10.11)

as the minimum concurrent flow value that one needs to obtain for demt(u, v) in Ǧt
i,

where

∀u, v ∈ V̌ t
i , demt(u, v) =

γ(u, Ǧt
i)γ(v, Ǧ

t
i)

γ(Ǧt
i)

(10.12)

specifies demands between any unordered pair of vertices based on their induced flow
values γ(u, Ǧt

i) at each node u ∈ V̌ t
i of f̄ in Ǧt

i. When the actual flow value f ′ < f1,
we can find a set Qt+1

i such that

δt(Qt+1
i ) := cap(Qt+1

i , V̌ t
i \Qt+1

i ) ≤ demt(Qt+1
i , V̌ t

i \Qt+1
i )βf ′.(10.13)

We say that Qt+1
i does not meet the sparsest-cut condition for the demands demt(u, v)

in subgraph Ǧt
i, and we set �i(u) = 0, ∀u ∈ Qt+1

i in Ǧt
i and recurse on

Ǧt+1
i := Ǧi[V̌

t
i \Qt+1

i ].(10.14)
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When the flow value f ′ ≥ f1, we stop the recursion and assign

�i(u) =
γ(u, Ǧt

i)

(a1/2)βλ(n)
∀u ∈ V̌ t

i .(10.15)

We need to tune two parameters, a0 and a1, to balance the initial min-cut condition
and remaining-flow in Lemma 10.6. We first give a bound on flow-loss due to the
sparsest-cut processing.

Lemma 10.5. The amount of flow that we lose from
∑�

i=1 γ(Ǧi) due to the
sparsest-cut processing is, for a1 > 8,

flow-loss2 ≤ LOSS

2a0(1− 8/a1)
.

The proof of Lemma 10.5 is given in section 10.5. Now it is clear that remaining-flow,
the total amount of flow of f̄ that we retain by the end of min-cut and sparsest-cut
processing stages, is the sum of flow of f̄ induced in G′

i across all i:

remaining-flow :=

�∑
i=1

γ(G′
i) =

�∑
i=1

γ(Ǧi)− flow-loss2.(10.16)

We have the following guarantee by the end of the sparsest-cut processing stage for
a1 > 8.

Lemma 10.6. Given a graph G with min-cut value C0 ≥ (4a0λ(n) + a0 + 2)ĉ,
where a0 > 2, we have for a1 > 8

remaining-flow ≥ OPT∗(G, T )

2

(
1− 1

a0
− 1

2a0(1− 8/a1)

)
.(10.17)

Proof. The total flow of f̄ that remains by the end of the min-cut processing stage
is the sum of flow of f̄ induced in Ǧi, across all i; thus we have by definition of LOSS,
which is ≤ OPT∗(G, T )/2,

�∑
i=1

γ(Ǧi) ≥
OPT∗(G, T )

2
− flow-loss1 ≥ 1

2
OPT∗(G, T )

(
1− 1

a0

)
,(10.18)

where flow-loss1 ≤ LOSS/a0 by (10.9). Combining this initial condition with Lemma
10.5 and (10.16), we conclude that (10.17) holds.

Let the set of terminal pairs T ′
i be the subset of Ti that is contained in subgraph

G′
i. Let Y ′

i be the set of terminals of T ′
i . Hence by the end of the sparsest-cut

processing stage, we get a new instance Y ′
i on Ǧi = (V̌i, Ěi) with min-cut at least ĉ =

Ω(log3 n), such that Y ′
i is�i-flow-linked in Ǧi, which can be only more connected than

G′
i. Properties regarding the set of Y ′

i are summarized in the proof of Theorem 8.3.

10.4. Proof of Theorem 8.3. Let G′
i = Ǧyi

i = (V̌ yi

i , Ěyi

i ) be the remaining
subgraph of Ǧi by the end of the sparsest-cut processing stage after muting nodes
in Q1

i , . . . , Q
yi

i , and let their adjacent edges be as described and bounded in (10.11)–
(10.17).

Now if γ(G′
i) ≤ (a1/4)βλ(n) when the algorithm terminates, we have obtained

a terminal pair T ′
i to route in G′

i and a weight assignment that satisfies all three
conditions in the theorem following step 1 of Figure 10.1; hence we are done with this
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subgraph. When γ(G′
i) > (a1/4)βλ(n), a product flow based on the flow of f̄ induced

in G′
i is routable with throughput at least f1 as in (10.11). Hence by assigning a new

weight �i(V̌i) → R
+,

�i(u) =
γ(u,G′

i)

(a1/2)βλ(n)
, ∀u ∈ V (G′

i) and �i(u) = 0, ∀u ∈ V̌i \ V (G′
i),(10.19)

for which we can define a multicommodity flow problem: for any unordered pair of
vertices u, v ∈ V (G′

i), dem
�i(u, v) = �i(u)�i(v)/�i(Y

′
i ), there is a feasible flow in

both G′ and Ǧi. Hence Y
′
i is �i-flow-linked in Ǧi, ∀i.

Finally, we put Qt
i, ∀t back in Ǧi with zero node weight, while retaining the same

weight assignment for nodes in G′
i. Hence the sum of the total weight is

�i(Ǧi) = �i(G
′
i) =

∑
u∈G′

i

γ(u,G′
i)

(a1/2)βλ(n)
=

γ(G′
i)

(a1/4)βλ(n)
.(10.20)

Hence for both terminating conditions of the algorithm, we have �i(G
′
i) ≥

γ(G′
i)

(a1/4)βλ(n)
, and thus

�∑
i=1

�i(Y
′
i ) ≥

�∑
i=1

γ(G′
i)

(a1/4)βλ(n)
≥ OPT∗(G, T )

16βλ(n)
,

where
∑�

i=1 γ(G
′
i) ≥ OPT∗(G, T )/4 by taking a0 = 4 and a1 = 16 in Lemma 10.6.

Remark 10.7. We note that only those pairs (u, v) ∈ T ′
i have their flow of f̄ that

is entirely contained in G′ contributing to �i in Ǧi. In particular, for all pairs v ∈ G′
i

of a node u ∈
⋃yi

j=1Q
j
i has zero contribution from x(u,v) toward �i(v) (cf. condition 1

of Theorem 8.3).

10.5. Proof of Lemma 10.5. The structure of this proof is exactly the same
as that of Lemmas 10.3 and 10.4. To analyze the amount of flow that we lose from
the sparsest-cut processing stage, we use a potential function ϕ(Ǧi) to keep track of
the edges of G0

i = (V 0
i , E

0
i ) that we lose from nodes currently in Ǧi. Recall that G

0
i =

(V 0
i , E

0
i ) denotes the subgraph Gi we obtain through the CKS flow decomposition,

where the subset of terminals Yi is ρi-flow-linked in Gi.
Let Ǧi = (V̌i, Ěi), ∀i be the remaining subgraphs of Gi, ∀i at the end of the

min-cut processing stage as in (10.1). Initially, some nodes in Ǧi have lost their edges
due to the min-cut processing, and hence we have ∀i

ϕ0
i = edge-lossi ≥ 0.

We update this function during the sparsest-cut processing stage as follows.
Let ϕt

i be the value of ϕ(Ǧi) after removing t sets of vertices Q1
i , . . . , Q

t
i and

their adjacent edges from Ǧi, which remains nonnegative since nodes currently in Ǧt
i,

∀t ≥ 0, can never gain any internal edges. Note that those lost edges connect to other
nodes in V 0

i from nodes internal to Ǧt
i at stage t.

Now let Qt+1
i be the (t + 1)st set of vertices, where t ≥ 0, that we shut off

from Ǧi, as the initial boundary capacity of Qt+1
i has decreased from Δ(Qt+1

i ) to
δt(Qt+1

i ) ≤ demt(Qt+1
i , V̌ t

i \Qt+1
i )βf ′. We update ϕ(Gi) as

ϕt+1
i = ϕt

i − (Δ(Qt+1
i )− δt(Qt+1

i )) + δt(Qt+1
i ),



1882 SATISH RAO AND SHUHENG ZHOU

where the two types of cuts are bounded as follows.
Fixing Qt+1

i for some i, t ∈ [0, . . . , yi − 1], we have the following two lemmas,
whose proofs are provided at the end of this section.

Lemma 10.8. For all i and all t ∈ [0, . . . , yi − 1],

Δ(Qt+1
i ) = cap(Qt+1

i , V 0
i \Qt+1

i ) ≥
∑

u∈Qt+1
i

γ(u, Ǧt
i)

2λ(n)
.

Lemma 10.9. For all i and all t ∈ [0, . . . , yi − 1], and for a1 ≥ 8,

(10.21) δt(Qt+1
i ) ≤ 4Δ(Qt+1

i )

a1
≤ Δ(Qt+1

i )

2
.

Since the credit δt(Qt+1
i ) that a cut puts back is less than the credit Δ(Qt+1

i )−
δt(Qt+1

i ) that it spends, and ϕt
i ≥ 0, ∀t ≥ 1, there is only a finite number yi of such

small cuts. In summary, we have for all i

ϕ(Ǧi) = ϕyi

i

= edge-lossi − (Δ(Q1
i )− δ0(Q1

i )) + δ0(Q1
i )− (Δ(Q2

i )− δ1(Q2
i )) + δ1(Q2

i )

− · · · − (Δ(Qyi

i )− δyi−1(Qyi

i )) + δyi−1(Qyi

i )

≥ 0.

Now summing the above inequalities over all i, we have

�∑
i=1

yi∑
j=1

(Δ(Qj
i )− 2δj−1(Qj

i )) ≤ edge-loss ≤ LOSS

a0(2λ(n) +
1
2 )
.(10.22)

Plugging (10.21) into (10.22), we get
∑�

i=1

∑yi

j=1 Δ(Qj
i )(1−8/a1) ≤ LOSS

a0(2λ(n)+1/2) and

�∑
i=1

yi∑
j=1

Δ(Qj
i ) =

LOSS

a0(2λ(n) +
1
2 )(1 − 8/a1)

.(10.23)

Now fix Ǧt
i = (V̌ t

i , Ě
t
i ) for some t ∈ [1, . . . , yi]. We now calculate the amount of

flow of f̄ that we lose from
∑�

i=1 γ(Ǧi) by shutting off Qt+1
i in Ǧi. The flow that we

lose falls into one of four types:
1. its path is entirely contained in the subgraph of Ǧi induced by nodes in Qt+1

i ;
2. its path contains edges counted in Δ(Qt+1

i ) but not those in δt(Qt+1
i );

3. its path contains edges counted in δt(Qt+1
i ) but with at least one endpoint in

Qt+1
i ;

4. flow with both endpoints u′v′ ∈ V̌ t+1
i , such that its path intersects edges

counted in δt(Qt+1
i ) at least twice.

Flow of type 1 contributes to the sum
∑

u∈Qt+1
i

γ(u, Ǧt
i) twice. Flow of type 3 con-

tributes its flow value to
∑

u∈Qt+1
i

γ(u, Ǧt
i) once and to the usage of δt(Qt+1

i ) =

cap(Qt+1
i , V̌ t+1

i ) at least once. Flow of type 4 contributes its flow amount at least
twice to the usage of cap(Qt+1

i , V̌ t+1
i ). Flow of type 2 has been counted before when

Qj
i were muted for some j ≤ t from Ǧi. Note that those flow that cross (Qt+1

i , V t+1
i )

either have been counted in
∑

u∈Qt+1
i

γ(u, Ǧt
i) at least once or go through the cut

(Qt+1
i , V t+1

i ) in Ǧt
i at least twice.
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Hence the total amount of flow of f̄ that we lose from γ(Ǧi), that have not been
counted in stages earlier than t, by muting the induced subgraph of Qt+1

i and its
adjacent edges in Ǧt

i, is bounded by

1

2

⎛
⎝ ∑

u∈Qt+1
i

γ(u, Ǧt
i) + cap(Qt+1

i , V t+1
i )

⎞
⎠ ≤ Δ(Qt+1

i )λ(n) +
1

2
δt(Qt+1

i )

by Lemma 10.8. Now summing over all Qt
i, ∀t, ∀i, the total amount of flow lost in the

sparsest-cut processing stage is bounded as follows for a1 ≥ 8:

flow-loss2 ≤ 1

2

�∑
i=1

yi∑
t=1

⎛
⎝∑

u∈Qt
i

γ(u, Ǧt−1
i ) + cap(Qt

i, V
t
i )

⎞
⎠

≤
�∑

i=1

yi∑
t=1

Δ(Qt
i)(λ(n) + 2/a1)

≤ (λ(n) + 2/a1)LOSS

2a0(λ(n) + 1/4)(1− 8/a1)

≤ LOSS

2a0(1− 8/a1)

by Lemma 10.9 and (10.23). Thus Lemma 10.5 holds.
Proof of Lemma 10.8. Note that in Ǧt

i, Q
t+1
i is the smaller side of the cut

(Qt+1
i , V̌ t+1

i ) in terms of weight. Thus we have for V̌ t
i = Qt+1

i

⋃
V̌ t+1
i∑

u∈Qt+1
i

γ(u, Ǧt
i) ≤

1

2

∑
u∈V̌ t

i

γ(u, Ǧt
i) = γ(Ǧt

i).(10.24)

Next let us define a2 as the additional flow of f̄ for node u ∈ Qt+1
i induced in G0

i

as compared to that induced in subgraph Ǧt
i; hence by definition of a2 and the fact

that Qt+1
i ⊆ V̌ t

i ⊆ V (G0
i ), we have

a2 +
∑

u∈Qt+1
i

γ(u, Ǧt
i) :=

∑
u∈Qt+1

i

γ(u,G0
i ), and hence(10.25)

∑
u∈V̌ t

i

γ(u, Ǧt
i) + a2 =

∑
u∈Qt+1

i

γ(u, Ǧt
i) + a2 +

∑
u∈V̌ t

i \Qt+1
i

γ(u, Ǧt
i)

≤
∑

u∈Qt+1
i

γ(u,G0
i ) +

∑
u∈V̌ t

i \Qt+1
i

γ(u, Ǧ0
i )

=
∑
u∈V̌ t

i

γ(u,G0
i ) ≤

∑
u∈Y 0

i

γ(u,G0
i ).(10.26)

Thus we have by (10.25), (10.24), and (10.26)∑
u∈Qt+1

i

γ(u,G0
i ) =

∑
u∈Qt+1

i

γ(u, Ǧt
i) + a2(10.27)

≤
∑

u∈V̌ t
i
γ(u, Ǧt

i)

2
+
a2
2

+
a2
2

≤
∑
u∈Y 0

i

γ(u,G0
i )

2
+
a2
2
.(10.28)
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We have by Theorem 8.1 and Proposition 2.5 that G0
i is a ρi

2 -cut-linked instance.

• Now if Qt+1
i ⊆ V̌ t

i ⊆ V 0
i is the smaller side of the cut (Qt+1

i , V 0
i \Qt+1

i ) in G0
i

in terms of weight ρi, we have

Δ(Qt+1
i ) = cap(Qt+1

i , V 0
i \Qt+1

i )

≥ 1

2
ρi(Q

t+1
i ∩ Y 0

i ) =

∑
u∈Qt+1

i
γ(u,G0

i )

2λ(n)
(10.29)

≥
∑

u∈Qt+1
i

γ(u, Ǧt
i)

2λ(n)
,(10.30)

where (10.29) is by definition of ρi in (8.1a) and (8.1b).
• Otherwise, suppose we have

∑
u∈Qt+1

i
γ(u,G0

i ) ≥ 1
2

∑
u∈V 0

i
γ(u,G0

i ) such that

ρi(Q
t+1
i ∩ Y 0

i ) ≥ 1
2ρi(Y

0
i ). First we have by (10.28)

∑
u∈V 0

i \Qt+1
i

γ(u,G0
i ) =

∑
u∈V 0

i

γ(u,G0
i )−

∑
u∈Qt+1

i

γ(u,G0
i )

≥
∑

u∈Qt+1
i

γ(u,G0
i )− a2.(10.31)

We then apply the ρi/2-cut-linked condition to ρi(V
0
i \Qt+1

i ) to obtain

Δ(Qt+1
i ) = cap(Qt+1

i , V 0
i \Qt+1

i )

≥ ρi((V
0
i \Qt+1

i ) ∩ Y 0
i )

2
=

∑
u∈V 0

i \Qt+1
i

γ(u,G0
i )

2λ(n)

≥
∑

u∈Qt+1
i

γ(u,G0
i )− a2

2λ(n)

=

∑
u∈Qt+1

i
γ(u, Ǧt

i)

2λ(n)
,

where the last two (in)equalities are due to (10.31) and (10.25).
Proof of Lemma 10.9. By the terminating condition 2(b) in Figure 10.1, (10.13),

and (10.11), we have for demt(Qt+1
i , V̌ t

i \Qt+1
i ) as defined in (10.12)

δt(Qt+1
i ) ≤ demt(Qt+1

i , V̌ t
i \Qt+1

i )βf1

≤
∑

u∈Qt+1
i

γ(u, Ǧt
i) ·
∑

v∈V̌ t+1
i

γ(v, Ǧt
i)

a1λ(n) · γ(Ǧt
i)

≤
2
∑

u∈Qt+1
i

γ(u, Ǧt
i)

a1λ(n)
=

4

a1

(∑
u∈Qt+1

i
γ(u, Ǧt

i)

2λ(n)

)

≤ 4

a1
Δ(Qt+1

i ),

where the last two inequalities are due to the fact that
∑

v∈V̌ t+1
i

γ(v, Ǧt
i) ≤ 2γ(Ǧt

i)

and to Lemma (10.8).
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Table 10.1

Parameters related to decomposition of an EDP instance (G, T ).

Parameters Meaning

a0 ∼> 2; a0 = 4 suffices for Theorem 8.3 to hold
a1 ∼> 8; a1 = 16 in Figure 10.1 suffices for Theorem 8.3 to hold
ĉ the smallest min-cut value that we allow in Gi, ∀i
edge-lossi sum of min-cuts removed from in Gi: ∼:=

∑xi
t=1 cap(S

t
i , V

t
i )

f0 := 1
2λ(n)

concurrent flow value in the CKS flow-linked decomposition

f1 = 1
a1β(G)λ(n)

the minimum concurrent flow value for demands in (10.12)

in order for subgraph Ǧt
i to satisfy the flow-linked property

f̄ an optimal fractional solution to (2.2a)–(2.2d)
flow-loss1 ∼≤ LOSS/a0, the flow lost from min-cut processing

flow-loss2 ∼≤ LOSS
2a0(1−8/a1)

, the flow lost from sparsest-cut processing

 the number of node-disjoint subgraphs G of G
n the number of nodes in G, the input graph
remaining-flow remaining flow of f̄ between terminal pairs in Ti, ∀i
xi amount of flow in OPT∗ for (si, ti); see (2.2a)–(2.2d)
γ(G) ∼:= OPT∗(G, T ) as in (2.1)
γ(Gi) the total flow induced in Gi by the original flow f̄

∼:=
∑

p∈P:p∈Gi
f̄(p) = 1

2

∑
u∈Gi

γ(u,Gi)

γ(u,Gi) the flow induced in Gi for u by the original flow f̄
ρi(v) ∀i = 1, . . . , , weight of v ∈ G assigned in Theorem 8.1 on Gi

�i(v) ∀i = 1, . . . , , weight of v ∈ Ǧi in (10.19) for Theorem 8.3

π(v) weight in Theorem 3.1: ∼= �i(v)
2

, ∀v ∈ Ǧi,∀i; else ∼= 0
Δ(Si) ∼:= cap(Si, V

0
i \ Si) in Gi

C0 the min-cut value in G: ∼≥ (4a0λ(n) + a0 + 2)ĉ for some a0 ≥ 2
G the original input graph with min-cut Ω(κ log2 n)
(Gi,Ti), ∀i EDP instances in disjoint subgraphs of G in Theorem 8.1
G0

i := (V 0
i , E0

i ) the subgraph Gi obtained in Theorem 8.1
Gt

i = (V t
i , E

t
i ) the remaining subgraph of G0

i after removing S1
i , . . . , S

t
i and

their adjacent edges ∀t = 1, . . . , xi; hence V t
i = V 0

i \ ∪j=1,...,tS
j
i

Ǧi = (V xi
i , Exi

i ) remaining subgraph by the end of min-cut processing
Ǧi := Gxi

i , which we return in Theorem 3.1
Ǧt

i = (V̌ t
i , Ě

t
i ) the remaining subgraph of Ǧi after muting nodes in Q1

i , . . . , Q
t
i

and their adjacent edges during sparsest-cut processing
LOSS ∼≤ OPT∗(G, T )/2: the number of edges that are cut

during the CKS flow-decomposition process in Theorem 8.1
Q1

i , . . . , Q
yi
i the sets of regions whose demands are set to 0 in Ǧi

S1
i , . . . , S

xi
i the sets of vertices taken away from G0

i and in that order
T ′
i , i = 1, . . . ,  subsets of disjoint terminals pairs in T with a positive weight �i

V̌ t
i ∼:= V̌i \ ∪j=1,...,tQ

j
i ; the remaining set of vertices in Ǧi at stage t

Y 0
i the set of terminals of G0

i right after CKS flow decomposition
s.t. Y 0

i is ρi-flow-linked in G0
i

Y ′
i terminals in T ′

i s.t. Y ′
i is �i-flow-linked in Ǧi
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