
Abstract 
This paper addresses the problem of concept sam-
pling. In many real-world applications, a large col-
lection of mixed concepts is available for decision 
making. However, the collection is often so large 
that it is difficult if not unrealistic to utilize those 
concepts directly, due to the domain-specific limi-
tations of available space or time. This naturally 
yields the need for concept reduction. In this paper, 
we introduce the novel problem of concept sam-
pling: to find the optimal subset of a large collection 
of mixed concepts in advance so that the perform-
ance of future decision making can be best pre-
served by selectively combining the concepts re-
mained in the subset. The problem is formulized as 
an optimization process based on our derivation of a 
target function, which ties a clear connection be-
tween the composition of the concept subset and the 
expected error of future decision making upon the 
subset. Then, based on this target function, a sam-
pling algorithm is developed and its effectiveness is 
discussed. Extensive empirical studies suggest that, 
the proposed concept sampling method well pre-
serves the performance of decision making while 
dramatically reduces the number of concepts 
maintained and thus justify its usefulness in han-
dling large-scale mixed concepts. 

1 Introduction 
In many real-world applications people in machine learning 
community are confronted with large numbers of mixed 
concepts1, upon which the final decision is made. The in-
herent reason leading to this situation is that, in many cases, 
the concept underlying the data evolves due to the changes of 
hidden contexts [Widmer et al., 1996]. 
 Example 1. Concepts related to stock trading strategies are 
influenced by many time-related factors which are hardly 
                                                 

1 In the field of machine learning, a concept corresponds to a 
learned description of a subset of instances defined over a large set 
[Mitchell, 1997]. More generally, concepts can be deemed as map-
pings from instance space to label space and represented by classi-
fiers. 

accessible, such as macro economic environments and po-
litical events [Harries et al., 1998]. On this occasion, one has 
to break training data into segments over short time intervals 
in order to extract stable concept from each interval, and then 
decision making is made upon the resulting large collection 
of diverse concepts. This strategy is widely used in on-line 
learning over data streams [Street et al., 2001; Wang et al. 
2003] and result in unlimited numbers of mixed concepts. 

Example 2. Consider the problem of detecting credit card 
frauds. The characteristics of the fraud events depend on 
some hidden contexts, such as the policies of the specific 
bank branch, the economic conditions, and the new law in the 
local area. Thus the concepts, i.e. the fraud patterns under-
lying the data, from different branches or even from different 
periods of the same branch may differ. Therefore, it is highly 
desirable to systematically analyze all these records. How-
ever, for privacy preserving, different branches can not share 
their records. In this case, one possible solution is that each 
branch periodically contributes the concept describing its 
recent records, and the models for decision making can be 
constructed upon the large collection of available concepts. 
 The typical way to utilize mixed concepts, when there are 
some data to be classified, is to select some “suitable” con-
cept(s) and combine them by some strategies, which will 
involve searching within the large concept collection. 
However, such solutions are usually inefficient or even in-
feasible, because firstly, sometimes the collection is too large 
to be held in main memory, and secondly, the time com-
plexity of decision making among large numbers of concepts 
is unacceptable for many efficiency-critical applications, 
such as online prediction of network intrusion.  
 This yields the need for concept reduction, the main focus 
of this paper. But is it possible to remove a large part of 
concepts in the collection while preserve the performance of 
decision making? The theory of ensemble learning (i.e. 
combining multiple concepts) [Kuncheva et al., 2003; Ruta 
et al., 2002] suggests that a concept can be approximated by 
an ensemble of similar concepts. Thus, the removed concepts 
can be estimated by selectively combining the remains. 
 While some literatures addressed the problem that seems 
similar to this topic, e.g. data sampling, to the best of our 
knowledge, concept sampling has not been explored. The 
main contributions of this paper are: (1) we propose the 
problem of concept sampling: to find the optimal subset of a 
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large collection of mixed concepts so that the performance of 
future decision making can be preserved. (2) We formally 
derive a target function that ties a clear connection between 
the composition of the subset and the expected error of the 
decision making upon this subset. Using this function, we 
formulize the problem of concept sampling as an optimiza-
tion process. (3) We design a sampling procedure to deter-
mine the concept subset. The empirical results suggest that 
the proposed method well preserves the performance of de-
cision making while dramatically reduces the number of 
concepts maintained, and thus justify its usefulness in han-
dling large-scale mixed concepts. 

2 Related Work 
The existence of mixed concepts has long been accepted in 

machine learning, such as in the on-line learning problem 
over changing hidden contexts [Widmer et al., 1996], or in 
the discussion of extracting stable concepts when hidden 
contexts evolve [Harries et al., 1998]. Recently, on-line 
learning over data streams with evolving concept becomes an 
active field. Many algorithms in this field extract stable 
concepts from short time intervals and engage various for-
getting policies to emphasize the recent concepts [Street et al., 
2001; Wang et al. 2003]. In fact, all this work is to deal with 
the mixed concepts. In this paper, we propose concept sam-
pling, which plays an active role in managing large-scale 
mixed concepts. Even in data streams scenario, our method 
can act as an offline component to extract useful information 
from huge collection of historical concepts and thus com-
plements the existing on-line learning styles. 
 Existing sampling techniques in machine learning mainly 
focus on instance space, which is to reduce the number of 
instances. General sampling methods often engage some 
empirical criteria on data distribution, e.g. density conden-
sation [Mitra et al., 2002], entropy-based data reduction 
[Huang et al., 2006]. Similarly, specific methods, such as 
those for instance-based learning [Wilson et al., 2000], also 
rely on some empirical criteria, e.g. assuming that object with 
the same label as its k neighbors is redundant. 

Different from data sampling, this paper proposes a new 
problem of concept sampling, which is to preserve the quality 
of decision making upon the reduced concept set. More im-
portantly, we derive a target function that ties a clear con-
nection between the composition of the reduced set and the 
performance of decision making, and formulize the sampling 
as an optimization rather than relying on empirical criteria. 
 One of the foundations of our work is the theory of com-
bining multiple concepts. Since different concepts exist, the 
diversity between concepts [Kuncheva et al., 2003] must be 
considered when pursuing the consensus. Further, theoretical 
analysis about the performance of the ensemble classifiers 
[Ruta et al., 2002] is engaged in our paper. 

3 General Framework of Concept Sampling 
Consider a large collection of mixed concepts S = {c1, 

c2, …, cn}, where each concept ci is represented by a classifier, 
and Q denotes the unknown set of instances to be classified in 

the future. Essentially, S contains all the concepts so far 
observed, and we assume that for each future instance Qq∈ , 
the correct concept cq can be found in S2. 
 However, S is often too large to be directly used due to the 
limitations of resources. Thus only a subset R whose size is 
much smaller is permitted. Since many concepts in S have to 
be removed, the right concepts cq for many potential Qq∈  
are not in R, and thus the performance of decision making 
declines. This calls for concept sampling, which is to reduce 
the number of concepts maintained but preserve the per-
formance of decision making. This idea is possible because 
the theory of ensemble learning [Kuncheva et al., 2003; Ruta 
et al., 2002] suggests that a concept c can be approximated by 
an ensemble composed of its similar concepts. 
 The problem of concept sampling is formally defined as to 
find the optimal subset R with predefined size V0 that satisfies 
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where the target function E(R,Q) is the expected error rates of 
using concept set R to classify instances in Q. Note that for 
many q in Q, the best fitted concepts cq in the original set S 
have been removed, and we want to approximate these con-
cepts by selectively combining the remained ones. Therefore, 
the target function E(R, Q) can be further defined as: 
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Qq
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Here p(q) is the probability of observing q in Q, ),( qRϕ  is 
the set of concepts in R that are selected to classify q (i.e. the 
ensemble for classifying q), and )),,(( qqRe ϕ  is the ex-
pected error of this classification. 

4 Concept Sampling Method 
This section presents our concept sampling method. To 
minimize the target function mentioned in (2), the following 
key problems should be solved. First, the objective function 
(2) involves Q, the set of unlabeled instances in future, which 
is unseen in the time of sampling. Thus, the relationship 
between the composition of the subset R and the expected 
error defined in (2) is not clear. Second, sampling should be 
efficient to handle large concept collection. In section 4.1, we 
derivate an equivalent target function of (2) to deal with the 
first problem. In section 4.2, we design an efficient method to 
optimize this target function and discuss its effectiveness. 

4.1 The Target Function 
In this section, we derivate an equivalent target function for 
(2), which is computable given the subset R and the entire set 
S, and thus ties a clear connection between the composition 
of R and the expected error of future decision making upon R. 
 To handle the problem that Q is unknown, we define Qc as 
the set of instances q in Q whose inherent concept cq is c in S: 

                                                 
2 In fact, handling the new concept never observed in S is in-

vestigated in the field of on-line learning with concept drift [Wid-
mer et al., 1996; Street et al., 2001; Wang et al. 2003] and is beyond 
the scope of this paper. 
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Recall from section 3, the correct concept cq of an unla-
beled instance q in Q can be found in S. Thus, }|{ ScQc ∈ is 
a partition of Q. Then it holds that:  
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 According to the definition of Qc, the inherent concept cq 
for each instance q in Qc is the concept c in S. Thus, the 
ensemble of concepts that are selected by ),( qRϕ for clas-
sifying q should be the set of concepts that are chosen for 
approximating concept c. Moreover, the expected error of 
classifying q, termed )),,(( qqRe ϕ , can be represented by 
the expected error of the approximation on concept c. 
Therefore, given that ),( cRπ  is the set of concepts in R that 
are selected to approximate concept c, and )),,(( ccRπθ re-
fers to the expected error of this approximation, it holds that: 
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where three notations need investigation: )(cp , ),( cRπ and 
)),,(( ccRπθ . 

 First, concepts in S are collected independently and as-
sumed to be equally important. Thus, )(cp is calculated as: 
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 Second, ),( cRπ  defines the ensemble of concepts that 
can be used to approximate concept c. Since concept c can be 
approximated by combining multiple concepts similar to c 
given that these similar concepts make different mistakes 
[Kuncheva et al., 2003; Ruta et al., 2002], ),( cRπ is defined 
as the concepts in R that are, “by and large”, similar to c: 

}),'(|'{),( 0dccRccR <∈= θπ  (7) 

Here threshold d0 controls the strictness level of allowing a 
concept to be used as the ensemble member for approxi-
mating c. It is set as 0.15 in our empirical studies. Also note 
that ),'( ccθ , the expected error of using concept c’ to ap-
proximate concept c, will be defined later. According to (7), 
concepts obviously inconsistent with c will be excluded, 
while concepts with slight deviation from c are permitted, in 
order to ensure the diversity in the ensemble. 

Third, for )),,(( ccRπθ , we start the discussion with the 
case that ),( cRπ returns a single concept c’. Thus, ),'( ccθ  is 
the estimated error of using c’ to approximate c and can be 
obtained from empirical test. Given D, a set of instances that 
represents the instance distribution (labels are ignored), we 
use concept c to label the instances in D, and denote the 
labeled dataset as cD . Then, ),'( ccθ is naturally defined as: 

),'(1),'( cDccc ρθ −=  (8) 

where ),'( cDcρ measures the consistency (e.g. accuracy) of 
concept c’ on cD . Note that D can be obtained by random 
sampling on all the available instances, and can be incre-
mentally maintained in dynamic situations [Vitter, 1985]. 
 However, if ),( cRπ  returns a group of concepts C*, how 
to compute the expected error )*,( cCθ ? In this paper we use 
the majority voting as the combination strategy since it is 
both theoretically sound and practically powerful [Kuncheva 
et al., 2003; Ruta et al., 2002]. It is true that )*,( cCθ can be 
tested on cD as in (8). But it is very time consuming: con-
sider when searching the optimal R that minimizes (5), large 
numbers of possible combinations of ),( cRπ will be exam-
ined, and for each possible combination, we need com-
pute )),,(( ccRπθ . Fortunately, if the empirical error of each 
single concept c’ on c has been calculated as (8), the ex-
haustive testing of )*,( cCθ for all possible C* can be re-
placed by theoretical estimation [Ruta et al., 2002]: consider 
using an ensemble C* of M concepts to approximate concept 
c. And ei is the probability that the ith concept in C* gives the 
incorrect label in each voting, which is obtained by (8). Ac-
cording to [Ruta et al., 2002], the distribution of the nor-
malized incorrect rates of these M concepts in each voting, 
defined as the number of incorrect votes divided by M, can be 
approximated by the probability density function of the 
normal distribution )(xf whose mean and variance are: 
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Based on the above notions, )*,( cCθ , the expected error of 
the ensemble C* via majority voting, is the probability that 
more than half of the M votes are incorrect: 
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 Finally, by combining (5), (6), (7), (8) and (10), we get a 
computable target function which is equivalent to (2):  
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where ),( cRπ is defined as (7), )),,(( ccRπθ  is computed 
as (8) when ),( cRπ  returns a single concept and is estimated 
as (10) when ),( cRπ is an ensemble C*. 

Function (11) indicates that ),( QRE can be computed 
given the entire concept set S and a subset R. In this sense, it 
ties a clear connection between the composition of R and the 
performance of future decision making based on R. As a 
result, the sampling problem in (1) can be solved as an op-
timization process. 



Intuitively speaking, which concepts should be in R? For 
each concept c in S, )*,( cCθ computed as (9) and (10) re-
veals the relationship between the approximation error on c 
and the size M of the ensemble C* to approximate c: ifμ  
largely remains constant and is smaller than 0.5, the larger 
the M, the lower theν , and thus the lower the approximation 
error in (10). In this sense, we want that each concept c in S 
has an ensemble C* with enough qualified members from R. 

On the one hand, the size of R is limited. Thus, the more 
ensembles that a concept r can join simultaneously, the more 
likely r should be in R. Note that whether a concept r can join 
the ensemble of a concept c is determined according to (7). 

On the other hand, based on (9) and (10), the smaller the 
size M of the ensemble C* of a concept c, the more dramatic 
the decrease of ν  when inserting a new member to C*, and 
thus the more substantial the decrease of the approximation 
error on c. Thus, the concept that can enter the ensembles that 
few other concepts can enter should be deemed valuable, and 
the concept that mainly joins the ensembles that many other 
concepts can also join is more or less trivial. 

4.2 The Sampling Procedure 
Clearly, it is very difficult to directly solve the optimization 
problem in (11) due to its nature of combinational optimiza-
tion: there are almost infinite possible combinations of R 
given S. In this section, we proposed a feasible approach that 
iteratively improves the subset R, which is similarly in gen-
eral to the methods designed for similar optimization prob-
lem, e.g., as in [Huang et al., 2006]. More specifically, this 
method begins with a randomly selected subset R, and then 
successively improves it by firstly inserting into R an outside 
concept whose insertion maximizes the reduction of (11), and 
secondly, removing from R an inside concept whose deletion 
minimize the increase of (11). This process is repeated until 
the subset is invariant (e.g. invariant in 10 continuous itera-
tions). The detailed algorithm is shown in figure 1. 

 According to the discussion at the end of section 4.1, the 
value of a concept r is determined by, firstly, whether it can 
join many ensembles for concepts in S, and secondly, 
whether there exist many other concepts in R that can also 
join these ensembles. In this sense, the step 3.1-3.4 of the 
algorithm repeatedly insert the concepts that join many en-
sembles that are in short of members, and remove the con-
cepts in R that can enter few ensembles or that mainly enter 
the ensembles that already have sufficient members. Thus, 
the quality of R is continuously improved. Note that step 3.5 
is used to avoid being trapped in the local minima. 

Before formally analyzing the time complexity, we men-
tion two points. Firstly, we assume that for each concept r, 
the notion }),(|{)( 0dcrScrNb <∈= θ  can be efficiently 
accessed: it can be computed before the sampling, and thus 
each time concept sampling is executed, Nb(r) can be ac-
cessed directly. In fact, an equivalent notion of Nb(r) is 
that )},(|{)( cRrScrNb π∈∈= : the concepts whose en-
sembles admit r. Thus, when r is inserted into or removed 
from R, only concepts in Nb(r) will have their ensemble 
changed. This will dramatically facilitate the evaluation of 
the change of (11) for possible insertions or deletions in R. 
 Secondly, the time-consuming integral computation in (10) 
depends on two variables, meanμ  and varianceν of normal 
distribution )(xf . Thus we can discretize these two vari-
ables and then produce an integral table beforehand, from 
which (10) can be accessed directly. 
 Accordingly, time complexity of the proposed method is 
O(nN), where n is number of iterations, and N is the size of S: 
• Step 1: O(N). 
• Step 2: O(N). Firstly, for each r in R, updateμ  andν for 

concepts in Nb(r); then for each c in S, com-
pute )),,(( ccRπθ as (8) or (10); at last, compute (11). 
So the time complexity is O(N). 

• Step 3.1: O(N). For each concept c’ in S, inserting it to R 
only affects the concepts in Nb(c’), thus the reduction 
of (11) can be estimated quickly. 

• Step 3.2: O(|Nb(c’)|).  
• Step 3.3: O(K). For each r in R, the increase of (11) is 

computed rapidly based upon Nb(r). K is the size of R. 
• Step 3.4: O(|Nb(r)|). 
• Step 3.5: O(1). 

5 Empirical Results 
In this section, we present our empirical results. The goals of 
our experiments are: (1) to demonstrate the ability of our 
concept sampling method to preserve the performance of 
decision making while reducing the number of concepts 
maintained. (2) To justify the superiority of the proposed 
method over the straightforward selection method in terms of 
both performance and stability. We compared three methods: 
decision making upon the entire concept set S (ES), upon the 
reduced set obtained by concept sampling (CS); and upon the 
reduced set from random sampling (RS). 

Input:   the concept collection S 
            the desired size of the reduced set, denoted by K 
            the empirical error between concepts as in (8) 
            the threshold d0 in (7) 
Output: the subset R 
 
Algorithm: 
1. R  randomly sampling K concepts from S 
2. Compute )),,(( ccRπθ  for each c in S 
3. Repeat until R is invariant 

3.1 Find the concept c’ in S, that the reduction of (11) is 
      largest if inserting c’ into R 
3.2 Insert c’ into R and update )),,(( ccRπθ  for each 
      c in S 
3.3 Find the concept r in R that the increase of (11) is  
      smallest if removing r from R 
3.4 Remove r from R and update )),,(( ccRπθ for 

each c in S 
3.5 The removed r is labeled so that it will not be in-

serted into R again. 
Figure 1: Concept sampling algorithm  

 



Given a concept set, the decision making strategy was: (1) 
for each instance q to be classified, a few evaluation data DE 
(50 instances in our experiments) corresponding to the in-
herent concept cq was given3; (2) based on DE, the following 
“suitable concepts” were selected: the concept c* that had the 
highest )*,( cDcρ  (see (8)) plus all the concepts c satisfy-
ing )*,(9.0),( EE DcDc ρρ > . (3) The selected concepts 
were combined by majority voting. In our experiments, each 
concept was represented by a C4.5 tree [Quinlan, 1993]. 

To comprehensively examine the performance of our 
concept sampling method in various applications, three 
typical scenarios were included in our empirical studies: (1) 
“distinct concepts scenario” and (2) “miscellaneous concepts 
scenario” are two boundary cases. Many real-world large 
collections of mixed concepts can be deemed as the “inter-
polations” of these two synthetic cases. Then, in (3) 
“real-world scenario”, the real-world “Adult” dataset was 
tested, in order to evaluate the effectiveness of the proposed 
method in real-life applications. 

Distinct Concepts Scenario: As in figure 2, 25 circle cen-
ters were produced. A concept was generated based on one of 
the centers: 2D points (x and y coordinates were both in [0, 3]) 
that fell into the circle around the center (with radius 1) were 
positive examples and otherwise negative. “Distinct concepts 
scenario” means that large numbers of concepts in the entire 
concept set S could be divided into distinct classes: concepts 
in the same class were similar, while concepts in different 
classes were distinct. Each of the 25 circle centers in figure 2 
indicated a distinct class. For each class, 20 concepts were 
produced, each of which was trained from 200 random 2D 
points, and 5% noise on labels was added when training each 
concept. Thus, even concepts in the same class (i.e. deter-
mined by the same circle center) would be slightly different. 
Finally, 500 concepts in 25 distinct classes were generated, 
which formed the complete concept set S.  

The entire set S, reduced sets R  (generated by CS) and R’ 
(generated by RS) were tested on 25 testing datasets, each 
containing 500 2D points corresponding to one distinct con-
cept class. We focused on the average classification accura-
cies over these 25 datasets. For totally 500 concepts in S, 
diverse sampling rates were tested for both CS and RS, which 

                                                 
3 In real-life applications, cq is often estimated from evaluation 

data: in data stream scenario, the concept cq of the current instance q 
is estimated from recent training examples. And in the credit card 
fraud scenario, the concept cq of query q is estimated from recent 
labeled records from the branch where q is generated. 

resulted in concept subsets with 5, 10, 20, 50, 100 concepts, 
respectively. The final results were averaged over 10 inde-
pendent runs. 

Clearly, the ideal sampling algorithms should sensibly 
determine the number of remained concepts for each class. 
The results are shown in figure 3. It can be observed that: (1) 
CS method outperformed RS, on all the sampling rates, in 
term of the performance of decision making upon the reduced 
concept set. (2) The lower the sampling rate, the more ob-
vious was the superiority of CS over RS. This is because 
when the number of concepts that can be retained is quite 
limited, the effectiveness of the sampling strategy becomes 
crucial: even the unsuitable allocation of one position will 
lead to remarkable performance degradation. (3) CS method 
with a sampling rate at 20% could provide largely the same 
classification accuracy as the original set S without sampling. 

Miscellaneous Concepts Scenario: As in figure 4, 500 
concepts were generated. But different from figure 2, no 
distinct class existed and the 500 concepts were miscella-
neous, each of which corresponded to a random center circle. 
The entire set S, reduced set R and R’ were tested on 500 
testing datasets, each containing 500 examples correspond-
ing to one concept. We compared the average classification 
accuracy over these 500 datasets. Also, different sampling 
rates were tested and the final results were averaged over 10 
independent runs. From figure 5 we can observe the similar 
results as those in figure 3 (i.e. in distinct concepts scenario). 
And this justifies the superiorities of CS method over RS 
when concepts in the complete set S are miscellaneous. 

Real-world Scenario: In this scenario, we tested the three 
methods on the real-world “Adult” dataset from UCI re-
pository. We divided both the training and the testing data-
sets into eight groups, based on the value of “workclass” 
attribute. Two groups with very few examples were omitted. 
We extracted concepts from each of the remained six groups 
in the training dataset. Since each concept was trained from 
100 examples in a group, groups with more examples pro-
duced more concepts. Totally 322 concepts were generated 
from the six groups, and formed the complete concept set S. 

Testing dataset without the two omitted groups was di-
rectly used for test. This is reasonable because the proportion 
among the size of six remained groups is similar between the 
training dataset and the testing dataset. Thus, groups gener-
ating more concepts would have more instances in the testing 
dataset, which is consistent with the assumption that concepts 
in the complete set S should have the same probability to be 
useful “in future” (i.e. in testing dataset). 

   

Figure 2: Distinct concepts 
scenario (scenario 1) 

Figure 3: Accuracy in sce-
nario 1 

Figure 4: Miscellaneous con-
cepts scenario (scenario 2) 

Figure 5: Accuracy in sce-
nario 2 
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Since label distribution in “Adult” dataset is unbalanced 
(24% positive examples), the “accuracy” was defined as: the 
average of the accuracy on the positive examples and the 
accuracy on the negative examples. Please note that this new 
measure should also be engaged as ),'( cDcρ in (8). 

The final results averaged over 10 independent runs are 
shown in figure 6. Clearly, CS method obviously outper-
formed RS method, especially when the sampling rate is low. 
Secondly, using CS method, a subset of 20 concepts offered 
competent performance compared with the complete set of 
322 concepts. This justified the usefulness of our approach in 
real world applications: well preserving the performance of 
the decision making while dramatically reducing the number 
of concepts maintained. 

Performance Variance: Stability is very important for 
sampling methods. While figure 3, 5 and 6 showed the av-
erage performance of CS and RS in 10 independent runs, 
figure 7(a), 7(b) and 7(c) focus on the variances of the per-
formance in 10 runs. These results demonstrate that CS 
method is much more reliable than RS method. It is because 
the optimization of the proposed target function always 
guarantees the high quality of the reduced concept set. 

6 Conclusion 
In this paper, we introduced the novel problem of concept 
sampling: to retain an optimal subset from a large collection 
of mixed concepts to ensure efficient usage while guarantee 
that the performance of future decision making can be pre-
served by selectively combining the remained concepts. We 
provided a general framework of the problem, a target func-
tion that ties a clear connection between the composition of 
the concept subset and the error of future decision making, 
and an efficient sampling method based on the target function. 
The effectiveness and efficiency of the proposed method 
were discussed. Extensive empirical studies suggested that (1) 
the proposed method can well preserves the performance of 
decision making while dramatically reduce the number of 
concepts maintained; (2) it has superiorities over straight-
forward method in terms of both performance and stability. 
Through these studies, we demonstrated the usefulness of the 
proposed concept sampling method in handling large-scale 
mixed concepts. 
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