
Recitation 1

Priority Queues and Hashing

1.1 Announcements

• PASLLab is due this Friday, December 9.

• The final exam is Tuesday, December 13.

• A review session for the final is on Sunday, December 11, 4-6pm, in Rashid.

• A practice final and its solutions are up on the website and on Piazza.

1

2 RECITATION 1. PRIORITY QUEUES AND HASHING

1.2 Leftist Heaps

Task 1.1. Identify the defining properties of a leftist heap.

A leftist heap is a binary tree given by

datatype tree = Leaf | Node of key × tree × tree

which satisfies

(a) the heap property, requiring that the key stored at each node is smaller1 than any descen-
dent key, and

(b) the leftist property, requiring that for every Node(, L,R), we have rank(L) ≥ rank(R).
We define the rank of a heap to be the number of nodes in its right spine, i.e.,

rank(Leaf) = 0

rank(Node(, L,R)) = 1 + rank(R)

Task 1.2. What is an upper bound on the rank of the root of a leftist heap?

For a leftist heap containing n entries, the rank of the root is at most log2(n + 1).

1We assume a min-heap. In a max-heap, each key is larger than its descendents.

Built: December 5, 2016

1.2. LEFTIST HEAPS 3

1.2.1 Building A Leftist Heap

Consider the following pseudo-SML code implementing leftist heaps.

Data Structure 1.3. Leftist Heap

1 datatype PQ = Leaf | Node of int × key × PQ × PQ
2
3 fun rank Q =
4 case Q of
5 Leaf ⇒ 0
6 | Node (r,_,_,_) ⇒ r
7
8 fun makeLeftistNode (k,A,B) =
9 if rank A < rank B

10 then Node (1 + rank A, k, B, A)
11 else Node (1 + rank B, k, A, B)
12
13 fun meld (A,B) =
14 case (A,B) of
15 (_, Leaf) ⇒ A
16 | (Leaf, _) ⇒ B
17 | (Node (_,ka,La,Ra), Node (_,kb,Lb,Rb)) ⇒
18 if ka < kb
19 then makeLeftistNode (ka, La, meld (Ra, B))
20 else makeLeftistNode (kb, Lb, meld (A,Rb))
21
22 fun singleton k = Node (1,k,Leaf,Leaf)
23
24 fun insert (Q, k) = meld (Q, singleton k)
25
26 fun fromSeq S = Seq.reduce meld Leaf (Seq.map singleton S)
27
28 fun deleteMin Q =
29 case Q of
30 Leaf ⇒ (NONE, Q)
31 | Node (_,k,L,R) ⇒ (SOME k, meld (L,R))

Built: December 5, 2016

4 RECITATION 1. PRIORITY QUEUES AND HASHING

Task 1.4. Diagram the process of executing the code

fromSeq 〈3, 5, 2, 1, 4, 6, 7, 8〉

3 5 2 1 4 6 7 8

3 1 4 7
/ / / /

5 2 6 8

1 4
/ \ / \
2 3 6 7

/ /
5 8

1
/ \
3 2
/ \
4 5
/ \
6 7

/
8

Task 1.5. What are the work and span of (fromSeq S) in terms of |S| = n?

Notice that meld only traverses the right spines of its arguments, each of which are logarithmic
in length, and therefore meld(A,B) requires O(log |A|+ log |B|) work and span and returns a
heap of size |A|+ |B|. This suggests the recurrences

W (n) = 2W (n/2) + O(log n)

S(n) = S(n/2) + O(log n)

both of which we have seen before; they solve to O(n) work and O(log2 n) span, respectively.

Built: December 5, 2016

1.3. REMOVING DUPLICATES 5

1.3 Removing Duplicates

Removing duplicates is a crucial substep of many interesting algorithms. For example, in BFS,
consider the step where we construct a new frontier. One viable method would to be to generate
the sequence of all out-neighbors, and then remove duplicates:

F ′ = removeDuplicates
〈
v : u ∈ F, v ∈ N+

G (u)
〉

So, how fast is it to remove duplicates? Can we do it in parallel?

1.3.1 Sequential

Before we think about parallelism, we should acquaint ourselves with a good sequential algo-
rithm solving the same problem. This way, we know what to shoot for in terms of work bounds,
since we want our parallel algorithm to be asymptotically work-efficient.

Task 1.6. Describe a sequential algorithm which performs expected O(n) work to re-
move duplicates from a sequence of length n. Also argue that Ω(n) work is necessary in
order to solve this problem, and conclude that your algorithm is asymptotically optimal.

Hint: try hashing elements one at a time.

We can iterate left-to-right across the sequence, maintaining a set of all elements seen so
far. At each element, we check to see if it’s present in the set. If it is, we ignore it. If it isn’t,
we insert it into the set and also write it to the output. Using a hash set, we can check for
membership and do insertions both in expected constant time. So, this algorithm has expected
O(n) work.

Removing duplicates requires at least Ω(n) work because we have to inspect every element.
Here’s a sketch of a proof by contradiction: suppose there was an algorithm for removing
duplicates which used only o(n) work. Then there must be at least one element of the input
which the algorithm did not inspect. If the algorithm would blindly include this element in the
output, then we can adversarily choose that element to be a duplicate. If instead the algorithm
blindly excludes the element from the output, then we can adversarily choose the element to be
distinct. Thus clearly the given algorithm does not properly remove duplicates.

Since Ω(n) work is necessary and our algorithm has O(n) work, we know it is asymptoti-
cally optimal in terms of runtime.

Built: December 5, 2016

6 RECITATION 1. PRIORITY QUEUES AND HASHING

1.3.2 Parallel

Task 1.7. Implement a function

val removeDuplicates : (α × int → int) → α Seq.t → α Seq.t

where (removeDuplicates h S) retuns a sequence of all unique elements of S,
given that h(e,m) hashes the element e to a uniform random integer in the range [0,m)
(thus the probability of collision for any two distinct elements is 1/m).

Hint: as a first attempt, try simultaneously hashing as many elements as possible all at
the same time. What do you do when elements collide?

We can use inject to simultaneously insert as many keys as possible into an initially
empty hash table T of some size m > n (we’ll decide on a value for m later). Specifically, for
every 0 ≤ i < |S|, we attempt to insert the pair (i, S[i]) at the location T [h(S[i],m)].

Every pair (i, S[i]) then compares itself against the value (j, S[j]) stored at T [h(S[i],m)].
If i = j, then S[i] is “accepted,” and will be included in the output. Otherwise, if S[i] 6= S[j],
then S[i] is passed on to be retried in the next round. We continue retrying until no elements
remain.

Why is this algorithm correct? Consider some key k; we never discard k until k is accepted,
so we only need to argue that we never accept the same key twice. Consider some round and
two indices i 6= j such that S[i] = S[j]. If S[i] is accepted then S[j] won’t be (since i 6= j), and
furthermore it won’t be retried on the next round. Therefore S[j] will never be accepted.

How many elements are retried each round? Consider:

Pr [S[i] is retried] = Pr [∃j.S[i] 6= S[j] ∧ h(S[i],m) = h(S[j],m)]

≤
∑

S[i]6=S[j]

Pr [h(S[i],m) = h(S[j],m)]

≤ |S|
m

If we chose m = 3|S|/2, then |S|/m = 2/3, and by linearity of expectation, we have that the
number of retried elements is at most 2|S|/3 in expectation.

Since we need O(|S|) work and O(log |S|) span on each round, we expect a logarithmic
number of rounds with a geometrically decreasing input. We’ve seen such recurrences before;
they solve to expected linear work and log-squared span.

Built: December 5, 2016

1.3. REMOVING DUPLICATES 7

Algorithm 1.8. Removing duplicates with hashing.

1 fun removeDuplicates S =
2 if |S| = 0 then 〈〉 else
3 let
4 val E = Seq.enum S
5
6 val m = 3|S|

2
7 val base = 〈NONE : 0 ≤ i < m〉
8 val updates = 〈(h(k,m), SOME(i, k)) : (i, k) ∈ E〉
9 val T = Seq.inject (base, updates)

10
11 fun accept (i, k) =

(
T [h(k,m)] = SOME (i, k)

)
12 val A = 〈k : (i, k) ∈ E |accept(i, k)〉
13
14 fun retry k = let val SOME(_,k′) = T [h(k,m)] in k 6= k′ end
15 in
16 Seq.append (A, removeDuplicates 〈k ∈ S |retry(k)〉)
17 end

Built: December 5, 2016

8 RECITATION 1. PRIORITY QUEUES AND HASHING

1.4 Additional Exercises

Exercise 1.9.
Task 1.10. Design a data structure which supports the following operations:

Work Span Description

fromSeq S O(|S|) O(log2 |S|) Constructs a dynamic
median data structure
from the collection of
keys in S

median M O(1) O(1) Returns the median of
all keys stored in M

insert (M,k) O(log |M |) O(log |M |) Inserts k into M

For simplicity, you may assume that all elements inserted into such a structure
are distinct.

Exercise 1.11. Prove a lower bound of Ω(log n) for deleteMin in comparison-based
meldable priority queues. That is, prove that any meldable priority queue implementa-
tion which has a logarithmic meld cannot support deleteMin in faster than loga-
rithmic time.

Built: December 5, 2016

