Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Spring 2013)

Lecture 4 — Divide and Conquer
Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2013)

Lectured by Margaret Reid-Miller — 24 January 2013

Material in this lecture:
- Maximum Contiguous Subsequence Sum (MCSS) problem with two different divide-and-
conquer solutions.
- Solving recurrences using substitution
- Euclidean Traveling Salesperson Problem using divide and conquer.

1 Example I: The Maximum Contiguous Subsequence Sum Problem

We now consider an example problem for which we can find a couple divide-and-conquer solutions.

Definition 1.1 (The Maximum Contiguous Subsequence Sum (MCSS) Problem). Given a sequence
of numbers s = (sq,...,s,), the maximum contiguous subsequence sum problem is to find

J
mcss(s)zmax{Zsk : 1§i§n,i§j§n}.

k=i

(i.e., the sum of the contiguous subsequence of s that has the largest value).

Let’s look at an example. For s = (1, —5,2, —1, 3), we know that (1), (2,—1,3), and (-5, 2) are all
contiguous subsequences of s—whereas (1,2, 3) is not. Among such subsequences, we’re interested
in finding one that maximizes the sum. In this particular example, we can check that mcss(s) = 4,
achieved by taking the subsequence (2, —1, 3).

We have to be careful about what our MCSS problem returns given an empty sequence as input.
Here we assume the max of an empty set is —oo so it returns —oo. We could alternatively decide it is
undefined.

1.1 Algorithm 1: Brute Force

Immediate from the definition is an algorithm with O(n®) work and O(logn) span. This algorithm
examines all possible contiguous subsequences and for each one of them, it computes the sum. It
then takes the maximum of these sums. Note that every subsequence of s can be represented by a
starting position i and an ending position j.

The pseudocode for this algorithm using our notation exactly matches the definition of the
problem. For each subsequence i..j, we can compute its sum by applying a plus reduce. This

fLecture notes by Umut A. Acar, Guy E Blelloch, Margaret Reid-Miller, and Kanat Tangwongsan.

1 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Spring 2013)

does O(j — i) work and has O(log(j — i)) span. Furthermore, all the subsequences can be examined
independently in parallel (using, e.g., tabulate). This leads to the following bounds:

Wn) = 1+ D Weueel —1) S 140 Wyeguee(n) = 1402 0(n) = O(n®)
1<i<j<n
S(n) = 1+ max Sreduce(j - i) <1+ Sreduce(n) = O(logn)
1<i<j<n

These are cost bounds for enumerating over all possible subsequences and computing their sums.
The final step of the brute-force solution is to find the max over these O(n?) combinations. Since
max reduce for this step has O(n?) work and O(logn) span', the cost of the final step is subsumed by
other costs analyzed above. Overall, we have an O(n®)-work O(log n)-span algorithm.

As you might notice already, this algorithm is clearly inefficient. We’ll apply divide and conquer
to come up with a more efficient solution.

1.2 Algorithm 2: Divide And Conquer — Version 1.0

In coming up with a divide-and-conquer algorithm, an important first step lies in figuring out how to
properly divide up the input instance.

What is the simplest way to divide a sequence? Let us divide the sequence in half, recursively
solve the problem on both halves and see what we can do. For example, imagine we divide the
sequence in the middle and we get the following answers:

(L I R)
I

L={(-) R=(...)

D —

mcss=56 mcss=17

How would we use this to create a divide-and-conquer algorithm? So far, we have suggested a
simple way to divide the input sequence. Assuming that we can recursively solve the problem, by
calling the algorithm itself on smaller instances, we need answer the next question, how to combine
the answers to the subproblems to obtain the final answer?

Our first (blind) guess might be to return max(mcss(L), mcss(R)). This answer is incorrect,
unfortunately. We need a better understanding of the problem to devise a correct combine step.
Notice that the subsequence we’re looking for has one of the three forms: (1) the maximum sum lies
completely in the left subproblem, (2) the maximum sum lies completely in the right subproblem,
and (3) the maximum sum spans across the divide point. The first two cases are easy and have
already been solved by the recursive calls. The more interesting case is when the largest sum goes
between the two subproblems.

How do we tackle this case? It is not hard to see that the maximum sum going across the divide
is the largest sum of a suffix on the left and the largest sum of a prefix on the right. Cost aside, this
leads to the following algorithm:

INote that it takes the maximum over (;) < n? values, but since logn® = alogn, this is simply O(logn)

2 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Spring 2013)

1 function mcss(s) =

2 case (showt s)

3 of EMPTY = —o0

4 | ELT(x)=x

5 | NODE(L,R) =

6 let (m;,mg)=(mcss(L) || mcss(R))
7 m, =bestAcross(L,R)

8 in max{m;,mg,myu}

9 end

Is this algorithm correct? Does it always find the maximum contiguous subsequence sum? Before
we show a proof of correctness, what do we consider a proof that an algorithm is correct.

Proofs of correctness. As was the case in 15-150, you are familiar with writing detailed proofs
that reason about essentially every step down to the most elementary operations. You would prove
your ML code was correct line by line. Although proving you code is correct is still important, in this
class we will step up a level of abstraction and prove that the algorithms are correct. We still expect
your proof to be rigorous. But we are more interested in seeing the critical steps highlighted and the
standard or obvious steps summarized, with the idea being that if probed, you can easily provide
detail on demand. The idea is that we want to make key ideas in an algorithm stand out as much as
we can. It will be difficult for us to specify exactly how detailed we expect the proof to be, but you
will pick it up by example.

We’'ll now prove that the mcss algorithm above computes the maximum contiguous subsequence
sum. Specifically, we're proving the following theorem:

Theorem 1.2. Let s be a sequence. The algorithm mcss(s) returns the maximum contiguous subsequence
sum in s—and returns —oo if s is empty.

Proof. The proof will be by (strong) induction on length. We have two base cases: one when the
sequence is empty and one when it has one element. On the empty sequence, it returns —oo as we
stated. On any singleton sequence (x), the MCSS is x, for which

J 1
max{Zsk : 1§i§1,1§j§1}225k251:x.

k=i k=1

For the inductive step, let s be a sequence of length n > 1, and assume inductively that for any
sequence s’ of length n” < n, mess(s’) correctly computes the maximum contiguous subsequence
sum. Now consider the sequence s and let L and R denote the left and right subsequences resulted
from dividing s in half (i.e., NODE(L, R) = showt s). Furthermore, lets; ; be any contiguous
subsequence of s that has the largest sum, and this value is v. Note that the proof has to account
for the possibility that there may be many other subsequences with equal sum. Every contiguous
subsequence must start somewhere and end after it. We consider the following 3 possibilities
corresponding to how the sequence s;_ ; lies with respect to L and R:

e If the sequence s; ; starts in L and ends R. Then its sum equals its part in L (a suffix of L) and
its part in R (a prefix of R). If we take the maximum of all suffixes in R and prefixes in L and

3 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Spring 2013)

add them this must equal the maximum of all contiguous sequences bridging the two since
max{a+b:a €A, beB}} =max{a € A} +max{b € B}. By assumption this equals the sum of
s;.j which is v. Furthermore by induction m; and my are sums of other subsequences so they
cannot be any larger than v and hence max{m;, mg, my} =v.

e Ifs; ; lies entirely in L, then it follows from our inductive hypothesis that m; = v. Furthermore
mp and my correspond to the maximum sum of other subsequences, which cannot be larger
than v. So again max{m;, mg, mu} = v.

e Similarly, if 5; ; lies entirely in R, then it follows from our inductive hypothesis that my =

max{m;,mg,my} =v.

We conclude that in all cases, we return max{m;, mg, my} = v, as claimed. O

Cost analysis: What is the work and span of this algorithm? We will soon show you how to
compute the max prefix and suffix sums in parallel. For now, we will take it for granted that they can
be done in O(n) work and O(logn) span. We’'ll also assume that dividing takes O(logn) work and
span. This yields the following recurrences:

W(n) = 2wW(n/2)+0(n)
S(n) = S(n/2)+0(logn)

Using the definition of big-O, we know that
W) < 2W(n/2)+k; -n+ky,

where k; and k, are constants.

We have solved this recurrence using the recursion tree method. We can also arrive at the same
answer by mathematical induction. If you want to go via this route (and you don’t know the answer
a priori), you’ll need to guess the answer first and check it. This is often called the “substitution
method.” Since this technique relies on guessing an answer, you can sometimes fool yourself by
giving a false proof. The following are some tips:

1. Spell out the constants. Do not use big-O—we need to be precise about constants, so big-O
makes it super easy to fool ourselves.

2. Be careful that the inequalities always go in the right direction.

3. Add additional lower-order terms, if necessary, to make the induction go through.

Let’s now redo the recurrences above using this method. Specifically, we'll prove the following
theorem using (strong) induction on n.

Theorem 1.3. Let a constant k > 0 be given. If W(n) <2W(n/2)+k-n forn>1and W(1) < k for
n <1, then we can find constants K, and K such that

W(n) < k;-nlogn+xs.

4 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Spring 2013)

Proof. Let k; = 2k and k, = k. For the base case (n = 1), we check that W(1) = k < k5. For the
inductive step (n > 1), we assume that

W(n/2) <y -5log(3)+ Ko,

And we’ll show that W(n) < k; - nlogn+ k5. To show this, we substitute an upper bound for W(n/2)
from our assumption into the recurrence, yielding

W(n) < 2W(n/2)+k-n
2(xy - 5log(5) +xa) +k-n
= kn(logn —1)+ 2k, +k-n

kinlogn+x,+(k-n+xy—Kq-n)

=<
=<

< kynlogn+k,,

where the final step follows because k-n+ k5 —k;-n <0 aslongasn > 1. O

Is it possible to do better than O(nlogn) work using divide and conquer?

1.3 Algorithm 3: Divide And Conquer — Version 2.0

As it turns out, we can do better than O(nlogn) work. The key is to strengthen the (sub)problem—i.e.,
solving a problem that is slightly more general—-to get a faster algorithm. Looking back at our
previous divide-and-conquer algorithm, the “bottleneck” is that the combine step takes linear work.
What information from the subproblems would be help to make the combine step take constant work
instead of linear work?

In the design of our previous algorithm, if we knew max suffix sum and max prefix sums of the
subproblems, we could produce the max subsequence sum in constant time. The expensive part was
computing these prefix and suffix sums—we had to spend linear work because we didn’t know how
generate the prefix and suffix sums for the next level up without recomputing these sums. Can we
easily fix this?

The idea is to return the max prefix and suffix sums in addition to the max subsequence sum. Is
this enough? As we showed above, these are sufficient to find the final mcss. But can we find the
max prefix and max suffix that we also need to return? No, as the max prefix or max suffix could
span across the divide point. For example, the max prefix could either be the a prefix of the left
subproblem as before, or it could be all of the left subproblem and a prefix of the right subproblem.
Therefore, we also need the overall sum of each subproblem.

So, we need to return a total of four values: the max subsequence sum, the max prefix sum, the
max suffix sum, and the overall sum. Having this information from the subproblems is enough to
produce a similar answer tuple for all levels up, in constant work and span per level. More specifically,
we strengthen our problem to return a 4-tuple (mcss, max-prefix, max-suffix, total), and
if the recursive calls return (mq, p1,51, t1) and (imy, py, s, to), then we return

(max(s; + pa, my, my), max(py, ty + py), max(s; + ty,s2), t1 + to)
This gives the following pseudocode:

5 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Spring 2013)

1 function mcss(a) =

2 let

3 function mcss’(a)

4 case (showt a)

5 of EMPTY = (—o0, —00, —00,0)

6 | ELT(x) = (x,x,x,x)

7 | NODE(L,R) =

8 let

o (M1, P1,51, £1), (M, P2y 52, £)) = (mess(L) || mess(R))
10 in
11 (max(s; + py, my, my), max(pq, t; + py), max(s; + ty,s,), t1 + ty)
12 end
13 (m,p,s,t) = mcss’(a)

14 in m end

You should verify the base cases are doing the right thing. The SML code for this algorithm is at
the end of these notes.

Cost Analysis. Assuming showt takes O(logn) work and span, we have the recurrences

wW(n) = 2W(n/2)+ 0(logn)
S(n) = S(n/2)+0(logn)

Note that the span is the same as before, so we’ll focus on analyzing the work. Using the tree method,
we have

kq log (n/2)

(k log (n/4)) (ky log (n/4)) (ky log (n/4)) (k; log (n/4)) - - - - ky 4log (nd)
o o o o

kq log (n/2)

oo
oo
oo
oo

Therefore, the total work is upper-bounded by

logn
W) < > ki2'log(n/2")
=0

It is not so obvious to what this sum evaluates. The substitution method seems to be more
convenient. We’ll make a guess that W(n) < k;n — kylogn — k3. More formally, we’ll prove the
following theorem:

6 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Spring 2013)

Theorem 1.4. Let k > 0 be given. If W(n) <2W(n/2)+k-logn forn>1and W(n) <k forn <1,
then we can find constants k1, k4, and k3 such that

W(n) < k;-n—ky-logn—Ks.

Proof. Let k; = 3k, k5 =k, k3 = 2k. We begin with the base case. Clearly, W(1) =k < k] — k3 =
3k — 2k = k. For the inductive step, we substitute the inductive hypothesis into the recurrence and
obtain

Wn) < 2W(n/2)+k-logn
< 2(K1§ —Kkylog(n/2) — k3)+k-logn
= Kkn—2ky(logn—1)—2x3+k-logn
= (k;n—kylogn —x3)+ (klogn — xylogn+ 2Ky — K3)
< Kkjn—kylogn — ks,

where the final step uses the fact that (klogn — kylogn + 2x4 — k3) = (klogn — klogn + 2k — 2k) =
0 < 0 by our choice of «’s. O

7 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Spring 2013)

Finishing the tree method. It is possible to solve the recurrence directly by evaluating the sum
we established using the tree method. We didn’t cover this in lecture, but for the curious, here’s
how you can “tame” it.

logn

W) < Y ki2'log(n/2")
i=0

logn
= Zkl (2‘logn— i ~2‘)
i=0
logn logn
_ (Zz)bgn_klzl y
logn
= ky(2n—1)logn—k; » i-2',
i=0
We're left with evaluating s = Ziogoni 2!. Observe that if we multiply s by 2, we have
logn 1+logn
25=) i-2M = Z (i—1)2i,
i=0
so then
1+logn logn
s o= 2s-s= Y (i-1)20-)i2
i=1 i=0
logn

((1+1logn) — 1) 21 +leen — % "o
i=1
= 2nlogn— (2n—2).

Substituting this back into the expression we derived earlier, we have W(n) < k;(2n —1)logn —
2k;(nlogn —n+ 1) € O(n) because the nlogn terms cancel.

8 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Spring 2013)

Example II: The Euclidean Traveling Salesperson Problem

We’ll now turn to another example of divide and conquer. In this example, we will apply it to devise
a heuristic method for an NP-hard problem. The problem we’re concerned with is a variant of the
traveling salesperson problem (TSP) from Lecture 1. This variant is known as the Euclidean traveling
salesperson (eTSP) problem because in this problem, the points (aka. cities, nodes, and vertices) lie
in a Euclidean space and the distance measure is the Euclidean measure. More specifically, we're
interested in the planar version of the eTSP problem, defined as follows:

Definition 1.5 (The Planar Euclidean Traveling Salesperson Problem). Given a set of points P in the
2-d plane, the planar Euclidean traveling salesperson (eTSP) problem is to find a tour of minimum total
distance that visits all points in P exactly once, where the distance between points is the Euclidean
(i.e. £,) distance.

Not counting bridges, this is the problem we would want to solve to find a minimum length route
visiting your favorite places in Pittsburgh. As with the TSR it is NP-hard, but this problem is easier?
to approximate.

Here is a heuristic divide-and-conquer algorithms that does quite well in practice. In a few
weeks, we will see another algorithm based on Minimum Spanning Trees (MST) that gives a constant-
approximation guarantee. This divide-and-conquer algorithm is more interesting than the ones we
have done so far because it does work both before and after the recursive calls. Also, as we will see,
the recurrence it generates is root dominated.

The basic idea is to split the points by a cut in the plane, solve the TSP on the two halves, and
then somehow merge the solutions. For the cut, we can pick a cut that is orthogonal to the coordinate
lines. In particular, we can find in which of the two dimensions the points have a larger spread, and
then find the median point along that dimension. We’ll split just below that point.

To merge the solutions we join the two cycles by making swapping a pair of edges.

To choose which swap to make, we consider all pairs of edges of the recursive solutions consisting of
one edge e, = (uy, v;) from the left and one edge e, = (u,, v,) from the right and determine which

2Unlike the TSP problem, which only has constant approximations, it is known how to approximate this problem to
an arbitrary but fixed constant accuracy ¢ in polynomial time (the exponent of n has 1/¢ dependency). That is, such an
algorithm is capable of producing a solution that has length at most (1 + ¢) times the length of the best tour.

9 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Spring 2013)

pair minimizes the increase in the following cost:
swapCost((ut, v, (a1 2) = e = e+ e =] = e = vel| - s = |
where ||u — v|| is the Euclidean distance between points u and v.

Here is the pseudocode for the algorithm

function eTSP(P) =
case (|P|)

of 0,1 = raise TooSmall

| 2 = {(P[0],P[1]),(P[1],P[0])}

| n = let
(P;,P,) =splitLongestDim(P)
(L,R) = (eTSP(P,) || eTSP(P,))
(c,(e,e’)) =minValg;, g {(swapCost(e,e’),(e,e’)):e€ L,e’ €R}

O 00O NN O U1 W N

in
swapEdges(append(L,R),e,e’)
end

==
= O

The function minVale; . uses the first value of the pairs to find the minimum, and returns the (first)
pair with that minimum. The function swapEdges(E, e, ¢’) finds the edges e and ¢’ in E and swaps
the endpoints. As there are two ways to swap, it picks the cheaper one.

Cost analysis Now let’s analyze the cost of this algorithm in terms of work and span. We have
wW(n) = 2wW(n/2)+0(n?)
S(n) = S(n/2)+ 0(logn)
We have already seen the recurrence S(n) = S(n/2) + O(logn), which solves to O(log® n). Here we’ll

focus on solving the work recurrence.

In anticipation of recurrences that you’ll encounter later in class, we’ll attempt to solve a more
general form of recurrences. Let € > 0 be a constant. We’ll solve the recurrence
W) = 2W(n/2)+k-n'*¢
by the substitution method.

Theorem 1.6. Let ¢ > 0. If W(n) < 2W(n/2)+k-n'*¢ for n > 1 and W(1) < k for n < 1, then for
some constant K,
W(n) < x-n'*e.

Proof. Letk = 1_11/25 - k. The base case is easy: W(1) =k <k, as 1_11/28

we substitute the inductive hypothesis into the recurrence and obtain

Wn) < 2W(n/2)+k-n'"e

> 1. For the inductive step,

n 1+E
< ZK(E) +k-ntte

1+e n e 1+ 1+
= K-n '+ ZK(E) +k-nf—x-n"t
S K'Tl1+€,

10 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Spring 2013)

where in the final step, we argued that

n 1+¢ .
ZK(E) +k-n1+€—1<-n1+€ = k-2 8-n1+€+k-n1+€—K-n1+€
— K'Z_E'Tl1+£+(1—2_8)K'n1+8—K'Tl1+£

< 0.

Solving the recurrence directly. Alternatively, we could use the tree method and evaluate
the sum directly. As argued before, the recursion tree here has depth logn and at level i (again,
the root is at level 0), we have 2! nodes, each costing k - (n/21)}*¢. Thus, the total cost is

logn

. n 1+¢ .
Zk_zl_(_.) _ k,nm_zz_l.g
. 2! .
i=0 i=0
i
k- nl+e . 2—1’«5.
i=0

Hence, we conclude W(n) € O(n'™®).

IA

1
1-1/2¢"

But the infinite sum Zzo 270 is at most

11 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Spring 2013)

2 SML Code

Note that the following code for Algorithm 3 for the MCSS problem uses SML records to give names
to each of the four fields. When passing around multiple values, such records can make your code
more clear and less prone to errors than using unnamed tuples. It is easy to forget the order you
store things in tuples, and harder for people who are reading your code to know the order. Fields of
a record can be extracted using pattern matching. Unlike tuples, you can extract only the fields that
you need by including ellipse (...) at the end of the pattern. As with tuples you can accessed a single
field using #fieldname record, as can be seen at the end of the code.

functor mcssDivConq(Seq : SEQUENCE) =
struct
fun MCSS (A) =
let
fun MCSS’ A =
case Seq.showt A
of Seq.ELT(v) => {mcss = v, prefix = v, suffix = v, total = v}
| Seq.NODE(A1,A2) =>
let
val (B1l, B2) = Primitives.par(fn () => MCSS’(Al),
fn () => MCSS’(A2))

val {mcss = M1, prefix = P1, suffix = S1, total = T1} = Bl

val {mcss = M2, prefix = P2, suffix = S2, total = T2} = B2
in

{mcss = Int.max(S1 + P2, Int.max(M1, M2)),

prefix = Int.max(P1, T1 + P2),

suffix = Int.max(S2, S1 + T2),

total = T1 + T2}
end

in
case Seq.showt A
of Seq.EMPTY => NONE
| => SOME (#mcss(MCSS? A))
end
end

12 Version 1.0

	Example I: The Maximum Contiguous Subsequence Sum Problem
	Algorithm 1: Brute Force
	Algorithm 2: Divide And Conquer — Version 1.0
	Algorithm 3: Divide And Conquer — Version 2.0

	SML Code

