
Recitation 3 — Scan

Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2013)

January 30, 2013

1 Announcements

• HW 2 is due next Monday. Hopefully you have all started by now; if not, now would be a good
time.

• Questions from lecture or homework?

2 Scan

Yesterday, we covered the function scan. We’ll recap the definition of scan briefly today, and show
you how to solve interesting problems with it.

scan takes a function as one of its arguments. All of the text below makes the assumption that this
function is associative. Recall the mathematical definition that a function f is said to be associative if
and only if

∀a∀b∀c. f (f (a, b), c) = f (a, f (b, c))

We also make the assumption that the initial value is a left-identity of the functional argument. Recall
the mathematical definition that I is a left-identity of f if and only if

∀a. f (I , a) = a

We don’t need these assumptions in general, and we’ll come back to a version of scan later that
doesn’t have them, but it’s a cleaner way to start thinking about scan with these properties.

With the assumption that f is associative, (scan f b) is logically equivalent to (iterh f b) in
the same way that (reduce f b) is logically equivalent to (iter f b).

Specifically, if f is a function that takes no more than a constant number of steps on all input, (iterh
f) and (iter f) have both work and span in O(n), whereas reduce and scan both have work in
O(n) and span in O(lg n).

It’s worth noting that while reduce and scan are highly parallel, unlike iter and iterh, they pay
the price by having slightly less general types.

2.1 Note on Terminology

If f is a function and I is a relevant identity for f , we’ll often say “ f -scan” to mean

Parallel and Sequential Data Structures and Algorithms — Recitation 3 15-210 (Spring 2013)

fn s => scan f I

For example, a “+-scan” is

fn s => scan (op +) 0

2.2 Recap

If s = 〈1,6, 3,−2,9, 0,−4〉, then

(scan Int.min Int.maxInt s) yields the following:

(〈Int.maxInt, 1, 1, 1,−2,−2,−2〉,−4)

Remember that in the result, location i stores the “sum” of the values at locations before i in the
original sequence. There is a variant of scan called scanI which sums the values at locations before
and including i.

2.3 Example Uses of Scan

At first glance, scan seems to offer not much that isn’t already available through reduce. With
clever choices of associative functions, though, scan can be used to compute some surprising things
efficiently in parallel.

2.3.1 Histogram

Consider the following problem:

Given a histogram, if we were to pour water over it, how much water (in terms of area) would it hold?
Fof simplicity we will represent a histogram as a sequence of non-negative integers. For example the
histogram shown below is represenented by the sequence s = 〈2, 3, 4, 7, 5, 2, 3, 2, 6, 4, 3, 5, 2, 1〉, and
holds 15 units of water.

2

Parallel and Sequential Data Structures and Algorithms — Recitation 3 15-210 (Spring 2013)

Any ideas on how we might solve this problem?

The idea is to single out one bar bi. If we know the maximum of the bar heights to the left of bi
(maxl) and the maximum of the bar heights to the right of bi (maxr), given that maxl > height(bi)
and maxr > height(bi) then the water bi will hold above it is min(maxl ,maxr)− height(bi).

Do we know of any functions that could be useful for generating these sequences of max-bar-heights?
How about scan. Using a few scan’s, a map and a reduce, this problem becomes very simple.

fun rev s =
let val n = length s
in tabulate (fn i => nth s (n - i - 1)) n
end

fun histogramFill (hist : int seq) =
let

val (lHeights, _) = scan Int.max 0 hist
val (rHeightsRev, _) = scan Int.max 0 (rev hist)
val heights = map2 Int.min lHeights (rev rHeightsRev)

fun nonNegative (maxHeight, thisHeight) =
Int.max (maxHeight - thisHeight, 0)

in
reduce op+ 0 (map2 nonNegative heights hist)

end

To get the maximum height to the left of each position, we use a scan with the Int.max operator.
How about getting the maximum height to the right of each position? Use a scan on the reverse of
the list, and then reverse it again! We can then compute the total fill with a map and a reduce.

2.3.2 Computing Fibbonacci Numbers

With a carefully chosen matrix, we can use scan to compute the Fibonnaci numbers. In the extremely
unlikely event that you’ve forgotten, the Fibbonacci numbers are defined as follows:

Definition: The Fibbonacci numbers are an integer sequence given by the following recurrence1

• F−1 = 1

• F0 = 0

• F1 = 1

• Fn = Fn−1+ Fn−2

1It is slightly contrived, but harmless, to define the −1st element of the Fibbonacci sequence. The other base cases are
such that the recursive case will never use it, so this could be any constant and produce the same sequence of integers.
This one happens to make the proof work, though.

3

Parallel and Sequential Data Structures and Algorithms — Recitation 3 15-210 (Spring 2013)

We make the following claim about this definition, which we will prove by induction:

Claim:

For all natural numbers n,
�

1 1
1 0

�n

=

�

Fn+1 Fn
Fn Fn−1

�

Proof: We’ll prove this by induction on n.
Base Case: n= 0

Any n× n matrix to the zero power is the n× n identity matrix, so
�

1 1
1 0

�0

=

�

1 0
0 1

�

=

�

F1 F0
F0 F−1

�

which is exactly as desired.

Inductive Case:

Assume that
�

1 1
1 0

�n

=

�

Fn+1 Fn
Fn Fn−1

�

We want to show that
�

1 1
1 0

�n+1

=

�

Fn+2 Fn+1
Fn+1 Fn

�

It suffices to show that
�

Fn+1 Fn
Fn Fn−1

�

·
�

1 1
1 0

�

=

�

Fn+2 Fn+1
Fn+1 Fn

�

Recall matrix multiplication, specifically in the case of taking the product of two 2× 2
matrices:

�

a b
c d

�

·
�

e f
g h

�

=

�

ae+ bg a f + bh
ce+ d g c f + dh

�

Therefore,
�

Fn+1 Fn
Fn Fn−1

�

·
�

1 1
1 0

�

=

�

Fn+1+ Fn Fn+1
Fn+ Fn−1 Fn

�

=

�

Fn+2 Fn+1
Fn+1 Fn

�

This is exactly as desired and concludes the proof.

4

Parallel and Sequential Data Structures and Algorithms — Recitation 3 15-210 (Spring 2013)

Remember that matrix multiplication is an associative operation on square matrices. We’ll only need
2× 2 int matrices, so for simplicity let’s represent them as values of type int ∗ int ∗ int ∗ int.

The above proof means that we can compute the Fibbonacci numbers by applying scan to a matrix
multiplication function:

(* very simple representation of 2x2 matrices *)
fun mmult ((a,b,c,d),(e,f,g,h)) = (a*e + b*g, a*f + b*h,

c*e + d*g, c*f + d*h)

(* returns the first n fibbonacci numbers *)
fun fib n =

let
val s = tabulate (fn _ => (1,1,1,0)) n
val (ans,_) = scan mmult (1,0,0,1) s

in
map (fn (_,x,_,_) => x) ans

end

Since the matrices are of a constant 2× 2 size, the matrix multiplication is just the cost of a constant
number of integer additions and multiplications. If we do not include the complexity of additions
and multiplications, then the work is O(n) and span is O(log n), as we are just using scan. You will
explore the complexity of integer addition and multiplication in HW 3.

2.3.3 Matching Parentheses

We can use scan to solve the parenthesis matching problem that we went over two weeks ago. The
idea is that we first map each open parenthesis to 1 and each close parenthesis to −1. We then do a
+-scan on this integer sequence. The elements in the sequence returned by scan exactly correspond
how many unmatched parentheses there are in that prefix of the string.

For example:
〈(,), (, (,),),)〉

becomes
〈1,−1, 1,1,−1,−1,−1〉

and then
〈0, 1,0, 1,2, 1,0,−1〉

and then fails, because the counter went negative at some point indicating an imbalance.

fun match s =
let

fun paren2int OPAREN = 1
| paren2int CPAREN = ~1

5

Parallel and Sequential Data Structures and Algorithms — Recitation 3 15-210 (Spring 2013)

val C = map paren2int s
val (S,total) = scan (op+) 0 C
val SOME(maxint) = Int.maxInt

in
(reduce Int.min maxint S) >= 0 andalso total = 0

end

6

	Announcements
	Scan
	Note on Terminology
	Recap
	Example Uses of Scan
	Histogram
	Computing Fibbonacci Numbers
	Matching Parentheses

