TABLE
signatureTables are mappings of keys to values. They can be defined formally as a set of key-value pairs, but we choose to notate tables as sets of mappings $(k \mapsto v)$. The key type is fixed by the Key substructure while the value type is polymorphic. Tables do not contain duplicate keys, and therefore each table associates a unique value with each key it contains. We include a Set substructure to reinforce the relationship between tables and sets.
We use a number of notational conventions which can be seen here. For example, we write $|t|$ for the number of key-value pairs in a table $t$, and the empty table is denoted either $\{\}$ or $\emptyset$.
structure Key : EQKEY
structure Seq : SEQUENCE
type α t
type α table = α t
structure Set : SET where Key = Key and Seq = Seq
val size : α table → int
val domain : α table → Set.t
val range : α table → α Seq.t
val toString : (α → string) → α table → string
val toSeq : α table → (Key.t * α) Seq.t
val find : α table → Key.t → α option
val insert : α table * (Key.t * α) → α table
val insertWith : (α * α → α) → α table * (Key.t * α) → α table
val delete : α table * Key.t → α table
val empty : unit → α table
val singleton : Key.t * α → α table
val tabulate : (Key.t → α) → Set.t → α table
val collect : (Key.t * α) Seq.t → α Seq.t table
val fromSeq : (Key.t * α) Seq.t → α table
val map : (α → β) → α table → β table
val mapKey : (Key.t * α → β) → α table → β table
val filter : (α → bool) → α table → α table
val filterKey : (Key.t * α → bool) → α table → α table
val reduce : (α * α → α) → α → α table → α
val iterate : (β * α → β) → β → α table → β
val iteratePrefixes : (β * α → β) → β → α table → (β table * β)
val union : (α * α → α) → α table * α table → α table
val intersection : (α * β → γ) → α table * β table → γ table
val difference : α table * β table → α table
val restrict : α table * Set.t → α table
val subtract : α table * Set.t → α table
val $ : (Key.t * α) → α table
structure Key :
EQKEY
Key
substructure defines the key type of
tables, providing equality and other useful functions.
structure Seq :
SEQUENCE
Seq
substructure defines the sequence type to
and from which tables can be converted.
structure Set :
SET where Key = Key and Seq = Seq
Set
substructure contains operations on
sets with elements of type Key.t
.
type α t
type α table =
α t
α t
, for readability.
val size :
α table → int
val domain :
α table → Set.t
val range :
α table → α Seq.t
val toString :
(α → string) → α table → string
(toString f t)
evaluates to a string representation of $t$
where each key is converted to a string with Key.toString
and each value is converted with $f$. For example, the table
$\{ (1 \mapsto 2), (3 \mapsto 42) \}$ might be represented by the string
“{(1->2),(3->42)}
“. The ordering of key-value
pairs in the resulting string is implementation-defined.
val toSeq :
α table → (Key.t * α) Seq.t
val find :
α table → Key.t → α option
(find t k)
returns (SOME
$v$) if
$(k \mapsto v) \in t$, and NONE
otherwise.
val insert :
α table * (Key.t * α) → α table
(insert (t, (k, v)))
returns the table
$t \cup \{(k \mapsto v)\}$ where $v$ is given precedence over $v'$ if
there already exists a $(k \mapsto v') \in t$.
val insertWith :
(α * α → α) → α table * (Key.t * α) → α table
(insertWith f (t, (k, v)))
returns the table
$t \cup \{(k \mapsto v)\}$ if $k$ is not already a member of $t$,
otherwise it returns $t \cup \{(k \mapsto f (v', v))\}$ where
$(k \mapsto v') \in t$.
val delete :
α table * Key.t → α table
(delete (t, k))
deletes $k$ only if it is present in $t$.
That is, it evaluates to $t \setminus \{(k \mapsto v)\}$
if $(k \mapsto v) \in t$. Otherwise, it evaluates to $t$.
val empty :
unit → α table
val singleton :
Key.t * α → α table
(singleton (k, v))
evaluates to the singleton table
$\{(k \mapsto v)\}$.
val tabulate :
(Key.t → α) → Set.t → α table
(tabulate f x)
evaluates to the table
$\{ (k \mapsto f(k)) : k \in x \}$.
val collect :
(Key.t * α) Seq.t → α Seq.t table
(collect s)
is logically equivalent to
(fromSeq (Seq.collect Key.compare s))
.
val fromSeq :
(Key.t * α) Seq.t → α table
val map :
(α → β) → α table → β table
(map f t)
returns the table
$\{ (k \mapsto f(v)) : (k \mapsto v) \in t \}$.
val mapKey :
(Key.t * α → β) → α table → β table
(mapKey f t)
returns the table
$\{ (k \mapsto f(k, v)) : (k \mapsto v) \in t \}$.
val filter :
(α → bool) → α table → α table
(filter p t)
returns the table containing every
$(k \mapsto v) \in t$ which satisfies $p(v)$.
val filterKey :
(Key.t * α → bool) → α table → α table
(filterKey p t)
returns the table containing every
$(k \mapsto v) \in t$ which satisfies $p(k, v)$.
val reduce :
(α * α → α) → α → α table → α
(reduce f b t)
is logically equivalent to
(Seq.reduce f b (range t))
.
val iterate :
(β * α → β) → β → α table → β
(iterate f b t)
is logically equivalent to
(Seq.iterate f b (range t))
.
val iteratePrefixes :
(β * α → β) → β → α table → (β table * β)
(iteratePrefixes f b t)
is logically equivalent to
(fromSeq p, x)
where
$(p, x)$ = (Seq.iteratePrefixes f b (range t))
.
val union :
(α * α → α) → α table * α table → α table
(union f (a, b))
evaluates to $a \cup b$. For keys $k$ where
$(k \mapsto v) \in a$ and $(k \mapsto w) \in b$, we have
$(k \mapsto f (v, w))$ in the resulting table.
val intersection :
(α * β → γ) → α table * β table → γ table
(intersection f (a, b))
evaluates to the table $a \cap b$.
Every intersecting key $k$ is mapped to $f (v, w)$, where
$(k \mapsto v) \in a$ and $(k \mapsto w) \in b$.
val difference :
α table * β table → α table
(difference (a, b))
evaluates to the table $a \setminus b$.
val restrict :
α table * Set.t → α table
restrict
is basically an alias for intersection
in that it restricts a table's domain by the elements of a set.
The name is motivated by the interpretation of a table as a function,
and therefore (restrict (t, x))
evaluates to $t\,|_x$.
val subtract :
α table * Set.t → α table
subtract
is basically an alias for difference
in that it removes all mappings whose keys are given in a set. The name
is once again motivated by the interpretation of a table as a function,
where (subtract (t, x))
performs the domain subtraction
of $t$ by $x$. This is also sometimes referred to as the domain
anti-restriction.
val $ :
(Key.t * α) → α table
singleton
.