Saturday, January 31, 1998

Homework 1 Solutions

1. There are two important thing to remember on this problem: First, the DFSA must provide
for the case where you start down the automata but find that it is a partial match. For
instance, caricature will not be accepted if the All else transtions back to ¢g are not present.
Second, words like imboccatura (Italian for “mouth”) and cacatia (Spanish for “cockatoo”)
require transitions from ¢; and ¢y to ¢y.

All Else
N e a0
a G All Else
All Else C

2. This shows the extraordinary power of representing finite state automatasin non-deterministic
terms. While we know that NFSAs aren’t any better than DFSAs, the NFSA representation
is often much simpler.

W) W)

All All

3. It was possible to do this question without using the formal constructive proof found in Lewis
and Papadimitriou, Theorem 2.2.1, but it is also very easy to get it wrong. By using that
construction, we can develop a DFSA to recognize anaan. [’ve included the state sets that
resulted from that construction.

The construction, if done exactly as specified, will produce a DFSA with ten states. However,
according to a sentence at the top of page 109 in Lewis and Papadimitriou (section 2.6, not
assigned), an NFSA that is designed for the purpose of recognizing substrings always has a
corresponding DFSA with the same number of states (though the DFSA invariably has many
more transitions). Looking at the ten states, then, we can eliminate four as unnecesary (the
six essential states are inside of the dotted line).

15-212: Fundamentals of Computer Science II, Java, Spring 1998
Professors Mosur and Tygar



Saturday, January 31, 1998

4. Regular expressions are very well suited for substring matching. The two expressions are:
3*catd* and X *anaand*. Note the close correspondence between the regular expression
form and the NFSA form.

5. The problem with this approach is the way in which partial matches are taken care of. For
instance, consider the substring aaaaab working on a file containing anaaaaaaaaaaaaaaaac.
The pattern matcher would consider most of the a’s in the file five times (only the last four
towards the end would be considered fewer times). This results in more characters being
considered than are actually in the file.

6. We have actually solved this problem already for the substring anaan, above. One approach
is to have a three step process. First, create an NFSA to handle the substring. This is a
simple:

(
(

a) Assume the substring has n characters
b) Create an NFSA with n 4 1 states, labeled ¢o through ¢,
(c) From each state ¢; to g1, create a transition on character ¢ + 1
(d) Create an All transition from state g to itself
)

(e) Create an All transition from state g, to itself

This will produce a result much like the answer to question 2, above. Second, apply the
construction of Lewis and Papadimitriou, Theorem 2.2.1 to translate the NFSA into the
equivalent DFSA. Third, implement the DFSA as a program, which they are well suited for
(while NFSAs are not).

7. There are two stages to the construction of section 2.3. First, each state must be expanded
along its epsilon transitions. A DFSA has no epsilon transition, however, so this step has
no effect. Second, while the construction creates transitions between sets of states, a DFSA
has no cloning, and will therefore only have sets containing one state. The transitions and
states in the new machine, therefore, will be the same as those in the original machine. The
construction, when applied to a DFSA, produces a machine identical to the one with which
it started.

15-212: Fundamentals of Computer Science II, Java, Spring 1998
Professors Mosur and Tygar



Saturday, January 31, 1998

8. The easiest way to prove this is a proof by contradiction, using the fact that regular langauges
are closed under intersection:

Assume that a"ba™ba™*" is a regular. We know that the language a*bba* is regular. There-
fore, the intersection of the two must also be regular. This intersection can be expressed as
a"bba™, which we know is not regular. Therefore, our assumption is wrong, and a"ba™ba™*"
is not regular.

15-212: Fundamentals of Computer Science II, Java, Spring 1998

Professors Mosur and Tygar smile.



