Saturday, February 7, 1998

Homework 2 Solutions

1. In the following answers, I assume an understanding of proof by contradiction using the

closure properties of regular langauges. If this is an incorrect assumption, please meet with
the instructor of your section.

(a) Assume by way of contradiction that L is regular. Define L; = a*b*a*, which is regular

(can you think of a three-state DFSA that accepts it?). Now, define Ly = L N L. Since
Ly is regular and L is assumed to be regular, Ly must be regular, since regular languages
are closed under intersection. Now, Ly = a*b’a*. Since L, is regular, by the pumping
theorem there must exist a number n > 0 such that any string w € L, longer than n
symbols can be written w = zyz such that:

o |zy|<n

o yFe

e zy'z € Ly forany i > 0

Let’s take some string w in L, with k > n. Then, w = a*ba”* can be broken into z, y
and z parts such that = and y consist only of a’s (why?). Say that y has length |y|. We
know by the pumping lemma that zz is also in Ly. But 2z is k — |y| a’s followed by j
b’s, followed by k «’s. This string is not in Ly. So we’ve arrived at a contradiction, and
thus our original assumption, that L was regular, must have been false.

Though we don’t show it, a similar proof can be used for each of the remaining parts.
Almost everyone got this problem wrong, and it’s suggested that you re-read L&P to
make sure you understand how to apply the pumping lemma.

2. We can show that the language specified is regular by constructing it, using closure properties,

3.

from other regular languages. First, a DFSA recognizing the language, L1, strings of numbers
divisible by 3, is shown on page 87 of Lewis and Papadimilriou. Second, we can specify a
regular expression that accepts strings that have double numbers in them as follows: Lo =
¥*(00|11]22]33]44|55|66|77|88]99|00)2*. Third, because regular languages are closed
under complement, we know that Ls = L,, which accepts strings that do not have double
numbers in them, is regular. Fourth, and finally, the language we are trying to construct, L,
is simply L = Ly N Lo, which is therefore regular.

(a) We can break this into two cases, one where m < n, and one where m > n. In both

cases, the string is made up of one substring, F containing an equal number of a’s and
b’s, and another containing m — n a’s (A) or n —m b’s (B). Written out, this becomes:

S —s AE|EB
A — daAla
B — Bblb
E — aFble

15-212: Fundamentals of Computer Science II, Java, Spring 1998
Professors Mosur and Tygar

Saturday, February 7, 1998

(b) This question also required growth regulation on @ and b; a had to grow at least as
b, but no more than twice as fast as b. Similar to above, the intuitive rule to use is
S — aSb|aaSh|e. The tricky part, however, is to look at the base case. The shortest
string that satisfies the m < n < 2m requirement is aabbb; anything shorter is either
n = m or m = 2n. So, we start with the base case and grow as we would expect:

S — aaS;bbb
S; — aSib|aaSib|e

(c) In this case, the requirement moves from left to right, so our construction rules should
as well. In particular, the “prefix” must have as many a’s as b’s. Well, then, make sure
that everything left of a string, S, does just that:

S — aS|abS|e

4. For one example, there are two distinct parse trees for (()):

SS=55=(9)S=((9)S=(0)S= ()
SS=85=5(5=5((9)=500))=(0)

To disambiguate this CFG, we start by observing that the beginning of any string, S, must
be an open parentheses: S — (R. For the right side of that string, R, we can either close
the string, R —), close it and open a new one, R —)(R, or leave it open and insert a valid
string inside of our current one, R — (S)R. By dealing with th left and right side of a valid
string separately, we ensure that the parse tree must move from left to right. Putting it all
together,

S — S(9)|e

Note that a derivation is not the same as a parse tree; a string that has more than one
derivation but only one parse tree does not make a CFG ambiguous.

5. In order to solve this problem, you must use an NPDA (remember that an NPDA is more
powerful than a DPDA, unlike the same relationship for FSAs or Turing Machines). The key
is to recognize that there is no way for a DPDA to recognize when it has come to the middle
of a string, while an NPDA can try all of the possibilities by cloning.

We can build this PDA in four stages. This PDA is so simple that you might describe it
entirely through it’s transition function. First, we consider the “left half of the palindrome”
state, sg, that allows us to push characters into the stack:

((507 a, 6), (507 a))
((507 b, 6), (507 b))

15-212: Fundamentals of Computer Science II, Java, Spring 1998
Professors Mosur and Tygar

Saturday, February 7, 1998

Second, we consider the center of an odd palindrome that requires us to discard the center
character and move to the right side of the palindrome:

((507 a, 6), (517 6))
((807 b, 6), (517 e))

Third, we consider the center of an even palindrome that requires us to move from the left
side of the palindrome to the right side of the palindrome without using any characters in w.
This transition will also take care of the empty string, which is a degenerate palendrome of
sorts:

((507 €, 6), (517 6))

Fourth, we consider the “right side of the palindrome” state, sy, that allows us to read
characters only so long as they match what we pop from the stack:

((517 a, a)v (517 e))
((517 b, b)7 (517 e))

Of course, the only accept stateis /' = s;. We can draw this NPDA just as easily (input/pop/push):

elele

alele

> b/ele
alela alale
b/e/lb b/b/e

A few notes about this problem that should clarify some misconceptions:

e We do not have to check for an empty stack at the end, since the accept condition for a
PDA requires both being in an accept state and having an empty stack.

e We can tell that this is an NPDA (rather than a DPDA) because there are multiple
transitions from sg for both of the input characters, a and b.

e This problem is similar to examples 3.3.1 and 3.3.2 in Lewis and Papadimitriou.
6. One of the more fortuitous mistakes in Lewis and Papadimitriou is in example 4.1.8. Rather

than implement a “left-shifting machine” as they say they are, they create a palindrome
maker that performs f(w) = ww®. By using their machine and removing the initial w, we

15-212: Fundamentals of Computer Science II, Java, Spring 1998
Professors Mosur and Tygar

Saturday, February 7, 1998

have our flipping machine. In the drawing below, the top part of the diagram is the machine,
while the bottom scans to the left and erases the original string.

Y
sL-Y, URalla—

LJ

15-212: Fundamentals of Computer Science II, Java, Spring 1998

Professors Mosur and Tygar smile.

