
Verifying Programs with BDDsVerifying Programs with BDDs

TopicsTopics
Representing Boolean
functions with Binary
Decision Diagrams
Application to program
verification

class-bdd.ppt

15-213
“The course that gives CMU its Zip!”

15-213, F’08 – 2 –

Verification ExampleVerification Example

Do these functions produce Do these functions produce
identical results?identical results?

How could you find out?How could you find out?

How about exhaustive testing?How about exhaustive testing?

int abs(int x) {
int mask = x>>31;
return (x ^ mask) + ~mask + 1;

}

int test_abs(int x) {
return (x < 0) ? -x : x;

}

– 3 –

More ExamplesMore Examples

int addXY(int x, int y)
{

return x+y;
}

int addYX(int x, int y)
{

return y+x;
}

?

=

int mulXY(int x, int y)
{

return x*y;
}

int mulYX(int x, int y)
{

return y*x;
}

?

=

– 4 –

How Can We Verify Programs?How Can We Verify Programs?

TestingTesting
Exhaustive testing not generally feasible
Currently, programs only tested over small fraction of
possible cases

Formal VerificationFormal Verification
Mathematical “proof” that code is correct

Did Pythagoras show that a2 + b2 = c2 by testing?

a

b

c

– 5 –

Bit-Level Program VerificationBit-Level Program Verification

View computer word as 32 separate bit values
Each output becomes Boolean function of inputs

abs

x0

x1

x2

•

•

•

x31

y0

y1

y2

•

•

•

y31

•

•

•

•

•

•

x0

x1

x2

•

•

•

x31

•

•

•

yiabsi

int abs(int x) {
int mask = x>>31;
return (x ^ mask) + ~mask + 1;

}

– 6 –

Extracting Boolean RepresentationExtracting Boolean Representation

Do these functions produce Do these functions produce
identical results?identical results?

int bitOr(int x, int y)
{

return ~(~x & ~y);
}

int test_bitOr(int x, int y)
{

return x | y;
}

y
x

v1 = ~x
v2 = ~y
v3 = v1 & v2
v4 = ~v3
v5 = x | y
t = v4 == v5

Straight-Line Evaluation

– 7 –

Tabular Function RepresentationTabular Function Representation

List every possible function value

ComplexityComplexity
Function with n variables

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
0
1

x1 x2 x3 f

– 8 –

Algebraic Function RepresentationAlgebraic Function Representation

f(x1, x2, x3) = (x1 + x2) · x3

Boolean Algebra

ComplexityComplexity
Representation
Determining properties of function

E.g., deciding whether two expressions are equivalent

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
0
1

x1 x2 x3 f

x1 · x3

x2 · x3

– 9 –

Tree RepresentationTree Representation

Truth Table Decision Tree

Vertex represents decision
Follow green (dashed) line for value 0
Follow red (solid) line for value 1
Function value determined by leaf value

ComplexityComplexity

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
0
1

x1 x2 x3 f

– 10 –

Ordered Binary Decision DiagramsOrdered Binary Decision Diagrams

Initial Tree Reduced Graph

Canonical representation of Boolean functionCanonical representation of Boolean function
Two functions equivalent if and only if graphs isomorphic

Can be tested in linear time
Desirable property: simplest form is canonical.

x2

0 1

x3

x1

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1
(x1 + x2) · x3

– 11 –

Example FunctionsExample Functions
Constants

Unique unsatisfiable function

Unique tautology1

0

Variable

Treat variable
as function

0 1

x

Odd Parity

Linear
representation

x2

x3

x4

10

x4

x3

x2

x1

Typical Function

x2

0 1

x4

x1 (x1 + x2) · x4

No vertex labeled x3

independent of x3

Many subgraphs shared

– 12 –

More Complex FunctionsMore Complex Functions

b3 b3

a3

Cout

b3

b2 b2

a2

b2 b2

a2

b3

a3

S3

b2

b1 b1

a1

b1 b1

a1

b2

a2

S2

b1

a0 a0

b1

a1

S1

b0

10

b0

a0

S0

FunctionsFunctions
Add 4-bit words a and b
Get 4-bit sum S
Carry output bit Cout

Shared RepresentationShared Representation
Graph with multiple roots
31 nodes for 4-bit adder
571 nodes for 64-bit adder
Linear growth!

– 13 –

Symbolic ExecutionSymbolic Execution (3-bit word size)

x x2

10

x1

10

x0

10

y y2

10

y1

10

y0

10

v1 = ~x x2

01

x1

01

x0

01

v2 = ~y y2

01

y1

01

y0

01

– 14 –

Symbolic Execution (cont.)Symbolic Execution (cont.)
v3 = v1 & v2 x2

y2

01

x1

y1

01

x0

y0

01

v4 = ~v3 x2

y2

10

x1

y1

10

x0

y0

10

v5 = x | y x2

y2

10

x1

y1

10

x0

y0

10

t = v4 == v5 1

– 15 –

Counterexample GenerationCounterexample Generation

Find values of Find values of xx & & yy for which for which
these programs produce these programs produce
different resultsdifferent results

int bitOr(int x, int y)
{

return ~(~x & ~y);
}

int bitXor(int x, int y)
{

return x ^ y;
}

y
x

v1 = ~x
v2 = ~y
v3 = v1 & v2
v4 = ~v3
v5 = x ^ y
t = v4 == v5

Straight-Line Evaluation

– 16 –

Symbolic ExecutionSymbolic Execution

v4 = ~v3 x2

y2

10

x1

y1

10

x0

y0

10

v5 = x ^ y x2

y2

10

y2

x1

y1

10

y1

x0

y0

10

y0

t = v4 == v5

x2

y2

x1

y1

x0

y0

01

x = 111
y = 001

– 17 –

Performance: GoodPerformance: Good
int addXY(int x, int y)
{

return x+y;
}

int addYX(int x, int y)
{

return y+x;
}

0

100

200

300

400

500

600

700

800

900

1000

0 8 16 24 32

Word Size

Se
co

nd
s

Enumerate
BDD

– 18 –

Performance: BadPerformance: Bad
int mulXY(int x, int y)
{

return x*y;
}

int mulYX(int x, int y)
{

return y*x;
}

0

100

200

300

400

500

600

700

800

900

1000

0 8 16 24 32

Word Size

S
ec

on
ds

Enumerate
BDD

– 19 –

Why Is Multiplication Slow?Why Is Multiplication Slow?
Multiplication function

intractable for BDDs
Exponential growth,
regardless of variable ordering

145604188
1552144

MultMultAddAddBitsBits

Multiplication-4Add-4

Node Counts

– 20 –

What if Multiplication were Easy?What if Multiplication were Easy?

int factorK(int x, int y)
{

int K = XXXX...X;
int rangeOK =

1 < x && x <= y;
int factorOK =

x*y == K;
return

!(rangeOK && factorOK);
}

int one(int x, int y)
{

return 1;
}

– 21 –

Dealing with ConditionalsDealing with Conditionals

During Evaluation, Keep Track of:During Evaluation, Keep Track of:
Current Context: Under what condition would code be
evaluated
Definedness (for each variable)

Has it been assigned a value

int abs(int x)
{

int r;
if (x < 0)

r = -x;
else

r = x;
return r;

}

t1 = x<0
x

v1 = -x
r = v1

v2 = r
r = x

1
1

t1
t1

1
!t1

0
0

0
t1

1
1

0
0

0
t1?v1:0

t1?v1:x
t1?v1:x

Context
r

defined
r

value

– 22 –

Dealing with LoopsDealing with Loops

UnrollUnroll
Turn into bounded
sequence of conditionals

Default limit = 33
Signal runtime error if don’t
complete within limit

int ilog2(unsigned x)
{

int r = -1;
while (x) {

r++; x >>= 1;
}
return r;

}

int ilog2(unsigned x)
{

int r = -1;
if (x) {

r++; x >>= 1;
} else return r;
if (x) {

r++; x >>= 1;
} else return r;
. . .
if (x) {

r++; x >>= 1;
} else return r;
error();

}

Unrolled

– 23 –

EvaluationEvaluation

StrengthsStrengths
Provides 100% guarantee of correctness
Performance very good for simple arithmetic functions

WeaknessesWeaknesses
Important integer functions have exponential blowup
Not practical for programs that build and operate on large
data structures

– 24 –

Some HistorySome History

OriginsOrigins
Lee 1959, Akers 1976

Idea of representing Boolean function as BDD
Hopcroft, Fortune, Schmidt 1978

Recognized that ordered BDDs were like finite state machines
Polynomial algorithm for equivalence

Bryant 1986
Proposed as useful data structure + efficient algorithms

McMillan 1987
Developed symbolic model checking
Method for verifying complex sequential systems

Bryant 1991
Proved that multiplication has exponential BDD
No matter how variables are ordered

