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Verification ExampleVerification Example

Do these functions produce Do these functions produce 
identical results?identical results?

How could you find out?How could you find out?

How about exhaustive testing?How about exhaustive testing?

int abs(int x) {
int mask = x>>31;
return (x ^ mask) + ~mask + 1;

}

int test_abs(int x) {
return (x < 0) ? -x : x; 

}
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More ExamplesMore Examples

int addXY(int x, int y)
{

return x+y;
}

int addYX(int x, int y)
{

return y+x;
}

?

=

int mulXY(int x, int y)
{

return x*y;
}

int mulYX(int x, int y)
{

return y*x;
}

?

=
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How Can We Verify Programs?How Can We Verify Programs?

TestingTesting
Exhaustive testing not generally feasible
Currently, programs only tested over small fraction of 
possible cases

Formal VerificationFormal Verification
Mathematical “proof” that code is correct

Did Pythagoras show that a2 + b2 = c2 by testing?

a

b

c
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Bit-Level Program VerificationBit-Level Program Verification

View computer word as 32 separate bit values
Each output becomes Boolean function of inputs
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int abs(int x) {
int mask = x>>31;
return (x ^ mask) + ~mask + 1;

}
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Extracting Boolean RepresentationExtracting Boolean Representation

Do these functions produce Do these functions produce 
identical results?identical results?

int bitOr(int x, int y)
{

return ~(~x & ~y);
}

int test_bitOr(int x, int y)
{

return x | y;
}

y
x

v1 = ~x
v2 = ~y
v3 = v1 & v2
v4 = ~v3
v5 = x | y
t  = v4 == v5

Straight-Line Evaluation
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Tabular Function RepresentationTabular Function Representation

List every possible function value

ComplexityComplexity
Function with n variables
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Algebraic Function RepresentationAlgebraic Function Representation

f(x1, x2, x3) = (x1 + x2) · x3

Boolean Algebra

ComplexityComplexity
Representation
Determining properties of function

E.g., deciding whether two expressions are equivalent
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Tree RepresentationTree Representation

Truth Table Decision Tree

Vertex represents decision
Follow green (dashed) line for value 0
Follow red (solid) line for value 1
Function value determined by leaf value

ComplexityComplexity
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Ordered Binary Decision DiagramsOrdered Binary Decision Diagrams

Initial Tree Reduced Graph

Canonical representation of Boolean functionCanonical representation of Boolean function
Two functions equivalent if and only if graphs isomorphic

Can be tested in linear time
Desirable property: simplest form is canonical.
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Example FunctionsExample Functions
Constants

Unique unsatisfiable function

Unique tautology1

0

Variable

Treat variable
as function
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More Complex FunctionsMore Complex Functions
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FunctionsFunctions
Add 4-bit words a and b
Get 4-bit sum S
Carry output bit Cout

Shared RepresentationShared Representation
Graph with multiple roots
31 nodes for 4-bit adder
571 nodes for 64-bit adder
Linear growth!
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Symbolic ExecutionSymbolic Execution (3-bit word size)
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Symbolic Execution (cont.)Symbolic Execution (cont.)
v3 = v1 & v2 x2

y2

01

x1

y1

01

x0

y0

01

v4 = ~v3 x2

y2

10

x1

y1

10

x0

y0

10

v5 = x | y x2

y2

10

x1

y1

10

x0

y0

10

t  = v4 == v5 1

– 15 –

Counterexample GenerationCounterexample Generation

Find values of Find values of xx & & yy for which for which 
these programs produce these programs produce 
different resultsdifferent results

int bitOr(int x, int y)
{

return ~(~x & ~y);
}

int bitXor(int x, int y)
{

return x ^ y;
}

y
x

v1 = ~x
v2 = ~y
v3 = v1 & v2
v4 = ~v3
v5 = x ^ y
t  = v4 == v5

Straight-Line Evaluation
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Symbolic ExecutionSymbolic Execution
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Performance: GoodPerformance: Good
int addXY(int x, int y)
{

return x+y;
}

int addYX(int x, int y)
{

return y+x;
}
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Performance: BadPerformance: Bad
int mulXY(int x, int y)
{

return x*y;
}

int mulYX(int x, int y)
{

return y*x;
}
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Why Is Multiplication Slow?Why Is Multiplication Slow?
Multiplication function 

intractable for BDDs
Exponential growth, 
regardless of variable ordering

145604188
1552144

MultMultAddAddBitsBits

Multiplication-4Add-4

Node Counts
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What if Multiplication were Easy?What if Multiplication were Easy?

int factorK(int x, int y)
{

int K = XXXX...X;
int rangeOK =

1 < x && x <= y;
int factorOK =

x*y == K;
return

!(rangeOK && factorOK);
}

int one(int x, int y)
{

return 1;
}
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Dealing with ConditionalsDealing with Conditionals

During Evaluation, Keep Track of:During Evaluation, Keep Track of:
Current Context: Under what condition would code be 
evaluated
Definedness (for each variable)

Has it been assigned a value

int abs(int x)
{

int r;
if (x < 0)

r = -x;
else

r =  x;
return r;

}

t1 = x<0
x

v1 = -x
r = v1

v2 = r
r = x

1
1

t1
t1

1
!t1

0
0

0
t1

1
1

0
0

0
t1?v1:0

t1?v1:x
t1?v1:x

Context
r

defined
r

value
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Dealing with LoopsDealing with Loops

UnrollUnroll
Turn into bounded 
sequence of conditionals

Default limit = 33
Signal runtime error if don’t 
complete within limit

int ilog2(unsigned x)
{

int r = -1;
while (x) {

r++; x >>= 1;
}
return r;

}

int ilog2(unsigned x)
{

int r = -1;
if (x) {

r++; x >>= 1;
} else return r;
if (x) {

r++; x >>= 1;
} else return r;
. . .
if (x) {

r++; x >>= 1;
} else return r;
error();

}

Unrolled
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EvaluationEvaluation

StrengthsStrengths
Provides 100% guarantee of correctness
Performance very good for simple arithmetic functions

WeaknessesWeaknesses
Important integer functions have exponential blowup
Not practical for programs that build and operate on large 
data structures
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Some HistorySome History

OriginsOrigins
Lee 1959, Akers 1976

Idea of representing Boolean function as BDD
Hopcroft, Fortune, Schmidt 1978

Recognized that ordered BDDs were like finite state machines
Polynomial algorithm for equivalence

Bryant 1986
Proposed as useful data structure + efficient algorithms

McMillan 1987
Developed symbolic model checking
Method for verifying complex sequential systems

Bryant 1991
Proved that multiplication has exponential BDD
No matter how variables are ordered


