15-213
“The Class That Gives CMU lts Zip!”

Introduction to
Computer Systems

Randal E. Bryant
August 26, 2008

Topics:
m Theme
m Five great realities of computer systems
m How this fits within CS curriculum
m Logistical issues

class0l.ppt

15-213 F ‘08

Course Theme

m Abstraction is good, but don’t forget reality!

Most CS courses emphasize abstraction
m Abstract data types
m Asymptotic analysis

These abstractions have limits
m Especially in the presence of bugs
m Need to understand underlying implementations

Useful outcomes
m Become more effective programmers
® Able to find and eliminate bugs efficiently
® Able to tune program performance
m Prepare for later “systems” classes in CS & ECE

o Compilers, Operating Systems, Networks, Computer

Architecture, Embedded Systems
o 15-213, F ‘08

Great Reality #1

Int's are not Integers, Float’'s are not Reals

Examples
m s x2207?
® Float’s: Yes!
® Int’s:
» 40000 * 40000 --> 1600000000
» 50000 * 50000 --> ??
mils(x+y)+z = x+(y+2)?
® Unsigned & Signed Int’s: Yes!
o Float’s:
» (1e20 + -1e20) + 3.14 --> 3.14
» 1e20 + (-1e20 + 3.14) --> ??

15-213, F'08

Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}
= Similar to code found in FreeBSD’s implementation of
getpeername.
m There are legions of smart people trying to find
vulnerabilities in programs
e Think of it as a very stringent testing environment
—4— 15-213, F ‘08

Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}
#define MSIZE 528
void getstuff() {
char mybuf[MSI1ZE];
copy_from_kernel (mybuf, MSIZE);
printf(“%s\n””, mybuf);
5 15-213, F ‘08

Malicious Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

3
#define MSIZE 528
void getstuff() {
char mybuf[MSI1ZE];
copy_from_kernel (mybuf, -MSIZE);
3
—6— 15-213, F ‘08

Computer Arithmetic

Does not generate random values

m Arithmetic operations have important mathematical
properties

Cannot assume “usual” properties
m Due to finiteness of representations
m Integer operations satisfy “ring” properties
o Commutativity, associativity, distributivity

m Floating point operations satisfy “ordering” properties
® Monotonicity, values of signs

Observation
m Need to understand which abstractions apply in which
contexts

= Important issues for compiler writers and serious application

7 programmers

15-213, F'08

Great Reality #2

You've got to know assembly

Chances are, you’ll never write program in assembly
m Compilers are much better & more patient than you are

Understanding assembly key to machine-level
execution model

m Behavior of programs in presence of bugs
o High-level language model breaks down

m Tuning program performance
o Understanding sources of program inefficiency

= Implementing system software
o Compiler has machine code as target
e Operating systems must manage process state

m Creating / fighting malware
® x86 assembly is the language of choice!

15-213, F'08

Assembly Code Example

Time Stamp Counter
m Special 64-bit register in Intel-compatible machines
= Incremented every clock cycle
m Read with rdtsc instruction

Application

m Measure time required by procedure
@ In units of clock cycles

double t;
start_counter();
PO;

t = get_counter();
printf("'P required %f clock cycles\n", t);

—9— 15-213, F'08

Code to Read Counter

m Write small amount of assembly code using GCC’s asm
facility

m Inserts assembly code into machine code generated by
compiler

0;
0;

static unsigned cyc_hi
static unsigned cyc_lo

/* Set *hi and *lo to the high and low order bits
of the cycle counter.

*/

void access_counter(unsigned *hi, unsigned *l10)

{

asm(*'rdtsc; movl %%edx,%0; movl %%eax,%l"
u:ru (*hi), n:rn (*IO)

: "Yedx', "%eax');

_10- 15-213, F ‘08

Great Reality #3

Memory Matters: Random Access Memory is an
un-physical abstraction

Memory is not unbounded
m |t must be allocated and managed
m Many applications are memory dominated

Memory referencing bugs especially pernicious
m Effects are distant in both time and space

Memory performance is not uniform

m Cache and virtual memory effects can greatly affect program
performance

m Adapting program to characteristics of memory system can
lead to major speed improvements

_11- 15-213, F ‘08

Memory Referencing Bug Example

double fun(int i)
{
volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

¥

fun(0) — 3.14

fun(l) — 3.14

fun(2) — 3.1399998664856

fun(3d) — 2.00000061035156

fun(4) —> 3.14, then segmentation fault

_12- 15-213, F ‘08

Referencing Bug Explanation

Saved State 4\
d7 .. d4 3
Location accessed
ds . do 2 by fun(i)
a[1] 1
a[o] 0

m C does not implement bounds checking
m Out of range write can affect other parts of program state

—~ 13- 15-213, F'08

Memory Referencing Errors

C and C++ do not provide any memory protection
m Out of bounds array references
m Invalid pointer values
m Abuses of malloc/free

Can lead to nasty bugs

m Whether or not bug has any effect depends on system and
compiler
m Action at a distance

e Corrupted object logically unrelated to one being accessed
e Effect of bug may be first observed long after it is generated

How can | deal with this?
m Program in Java or ML
m Understand what possible interactions may occur

m Use or develop tools to detect referencing errors
— 14— 15-213, F ‘08

Memory System Performance
Example

void copyij(int src[2048][2048], void copyji(int src[2048][2048],
int dst[2048][2048]) int dst[2048][2048])
{ {
int i,j; int i,j;
for (i = 0; i < 2048; i++) —] I—for (J = 0; j < 2048; j++)
for (j = 0: j < 2048: j+y—T ——J— for (i = 0: i < 2048; i++)
dst[i1[i] = src[illi]: dst[i1Li]1 = src[i1li]:
}

59,393,288 clock cycles 1,277,877,876 clock cycles

_/ (Measured on 2GHz

21.5 times slower! Intel Pentium 4)

m Hierarchical memory organization

m Performance depends on access patterns
® Including how step through multi-dimensional array

— 15— 15-213, F ‘08

The Memory Mountain

Pentium 11l Xeon
550 MHz
16 KB on-chip L1 d-cache

g 16 KB on-chip L1 i-cache
s 512 KB off-chip unified
s L2 cache
Qo
<
=
3
2 ‘
= -
T ‘ copyji
3
4
Stride (words) g <))
» 2w € g Working set size (bytes)
=1 S
w £
0
~ 16— 15-213, F ‘08

Great Reality #4

There’'s more to performance than asymptotic
complexity

Constant factors matter too!

m Easily see 10:1 performance range depending on how code
written

m Must optimize at multiple levels: algorithm, data
representations, procedures, and loops

Must understand system to optimize performance
m How programs compiled and executed

= How to measure program performance and identify
bottlenecks

= How to improve performance without destroying code
modularity and generality

17— 15-213, F ‘08

Code Performance Example

/* Compute product of array elements */
double product(double d[], int n)
{

double result = 1;

int i;

for (i = 0; 1 < n; i++)

result = result * d[i];

return result;

H

m Multiply all elements of array

m Performance on class machines: ~7.0 clock cycles
per element
® Latency of floating-point multiplier

_18- 15-213, F ‘08

Loop Unrollings

/* Unroll by 2. Assume n is even */ /* Unroll by 2. Assume n is even */
double product_u2(double d[], int n) double product_u2r(double d[], int n)
double result = 1; double result = 1;
int i; int i;
for (i = 0; i <n; i+=2) for (i = 0; i < n; i+=2)
result = (result * d[i]) * d[i+1]; result = result * (d[i] * d[i+1]);
return result; return result;
} }

m Do two loop elements per iteration
® Reduces overhead
m Cycles per element:
eu2: 7.0
o u2r: 3.6
_19-— 15-213, F ‘08

u2: Serial Computation

Computation (length=12)
@ = drog)y =
d[i]y = d[z1) * d[sp =
d[41) * d[51) * d[6]) *
di71) * d[8l) * d[91]) *
d[10]) * d[11D

Performance
m N elements, D cycles/operation
u N*D cycles

_20- 15-213, F ‘08

u2r: Reassociated Computation

Performance
m N elements, D cycles/operation
m (N/2+1)*D cycles

_o1- 15-213, F ‘08

Great Reality #5

Computers do more than execute programs

They need to get data in and out
m |/O system critical to program reliability and performance

They communicate with each other over networks

m Many system-level issues arise in presence of network
® Concurrent operations by autonomous processes
® Coping with unreliable media
® Cross platform compatibility
o Complex performance issues

oo 15-213, F ‘08

Role within Curriculum

CS 412
OS Practicum
cs 415 CS 441 oS40 cs 411 CS 462 ECE 447
Databases Networks Sp 9 Compilers Graphics Architecture
ystems
X t 7 . -
Network Processes Machine Code Arithmetic
Protocols Mem. Mgmt ECE 349
Embedded
Data Reps. \ | Exec. Model S
Memory Model -—
cs 213 Memory System
Systems
Foundation of Computer
Systems
m Underlying principles for
cs 123 hardware, software, and
C Programming networking

o3 15-213, F ‘08

Course Perspective

Most Systems Courses are Builder-Centric

m Computer Architecture
@ Design pipelined processor in Verilog

m Operating Systems
o Implement large portions of operating system

m Compilers
o Write compiler for simple language

m Networking
o Implement and simulate network protocols

—24 - 15-213, F'08

Course Perspective (Cont.)

Our Course is Programmer-Centric
m Purpose is to show how by knowing more about the
underlying system, one can be more effective as a
programmer
m Enable you to
® Write programs that are more reliable and efficient
@ Incorporate features that require hooks into OS
» E.g., concurrency, signal handlers
m Not just a course for dedicated hackers
® We bring out the hidden hacker in everyone

m Cover material in this course that you won’t see elsewhere

- 25—

Teaching staff

Instructors

e Prof. Randal E. Bryant
e Prof. Greg Ganger

We’re glad to talk with
m TA’s you, but please send email

® Taiyang Chen or phone first.
® Tessa Eng

o Elie Krevat

® Bryant Lee

o Christopher Lu

o Swapnil Patil

® Vijay Prakash

® Jiri Simsa

m Course Admin
® Cindy Chemsak (NSH 4303)

Textbooks

Randal E. Bryant and David R. O’Hallaron,

m “Computer Systems: A Programmer’s Perspective”, Prentice

Hall 2003.
m http://csapp.cs.cmu.edu

m This book really matters for the course!
® How to solve labs
® Practice problems typical of exam problems

Brian Kernighan and Dennis Ritchie,

= “The C Programming Language, Second Edition”, Prentice

Hall, 1988

_27-—

Course Components
Lectures

m Higher level concepts

Recitations

m Applied concepts, important tools and skills for labs,
clarification of lectures, exam coverage

Labs

m The heart of the course

m 2 or 3 weeks

m Provide in-depth understanding of an aspect of systems
m Programming and measurement

Exams

m Test your understanding of concepts & mathematical
principles

e Critical component of grade 15-213. F ‘08

15-213, F'08

Getting Help

Class Web Page
m http://www.cs.cmu.edu/~213
m Copies of lectures, assignments, exams, solutions
m Clarifications to assignments

Message Board
m http://autolab.cs.cmu.edu
m Clarifications to assignments, general discussion

m The only board your instructors will be monitoring (No
blackboard or Andrew)

Getting Help

Staff mailing list

m 15-213-staff@cs.cmu.etc

m “The autolab server is down!”
= “Who should | talk to about ...”
|

“This code {...}, which | don't want to post to the bboard,
causes my computer to melt into slag.”

Teaching assistants
m | don't get “associativity”...

m Office hours, e-mail, by appointment
® Please send mail to 15-213-staff, not a randomly-selected TA

Professors
m Office hour or appt.
m “Should | drop the class?” “A TA said ... but ...”

-29- 15-213, F ‘08 -30- 15-213, F ‘08
Policies: Assignments Timeliness
Grace Days

Work groups

= You must work alone on all but final lab

Handins
m Assignments due at 11:59pm on Tues or Thurs evening
m Electronic handins using Autolab (no exceptions!).

Conflict exams, other irreducible conflicts
m OK, but must make PRIOR arrangements with Prof. Ganger.

Appealing grades

m Within 7 days of completion of grading.
® Following procedure described in syllabus

m Labs: Talk to the lead person on the assignment
m Exams: Talk to Prof. Ganger.

31— 15-213, F ‘08

= 4 for the course

m Covers scheduling crunch, out-of-town trips, illnesses,
minor setbacks

= Save them until late in the term!

Lateness Penalties
m Once grace days used up, get penalized 15%/day
m Typically shut off all handins 2—3 days after due date

Catastrophic Events
m Major illness, death in family, ...

m Work with your academic advisor to formulate plan for
getting back on track

Advice

m Once you start running late, it’s really hard to catch ueS J13 £ 08

Cheating

What is cheating?
m Sharing code: either by copying, retyping, looking at, or
supplying a copy of a file.
m Coaching: helping your friend to write a lab, line by line.
m Copying code from previous course or from elsewhere on
WWw
® Only allowed to use code we supply, or from CS:APP website
What is NOT cheating?
m Explaining how to use systems or tools.
m Helping others with high-level design issues.

Penalty for cheating:

Policies: Grading

Exam Score E (out of 100):
m Two in class exams (25% each)
= Final (50%)
m All exams are open book / open notes.

Labs Score L (out of 100):
6 labs (10-25% each)

Composite Score:
S =(L + E + min(L,E))/3

if L<E: (2L + E)/3
m Removal from course with failing grade. i E < L: (L + 2E)/3
Detection of cheating:
m We do check and our tools for doing this are much better
33 than you think! 15-213, F ‘08 —34- 15-213, F ‘08
Achieving Composite Score Levels Facilities

Composite Score C

- Strong labs can
o Partially offset weak
;5 exams, but not totally

20
25

30

35

40

45 [@90-100
50 Labs L W80-90
55 070-80
[060-70

60

W50-60
5
b 340-50
70

75
80
85
%0
95
100
3 8
= 15-213, F ‘08

20
25
30
70
75
80
85
90

0 o u
< b o

10
1!
35
40
60
6!

- 35—

Exams E

Labs will use the Intel Computer Systems
Cluster (aka “the fish machines”)
m 15 Pentium Xeon servers donated by Intel for CS 213
m Dual 3.2 Ghz 64-bit (EM64T) Nocona Xeon processors
= 2 GB, 400 MHz DDR2 SDRAM memory
m Rack mounted in the 3rd floor Wean Hall machine room.
m Your accounts are ready nearing readiness.

Getting help with the cluster machines:
m See course Web page for login directions
m Please direct questions to your TA’s first

_36- 15-213, F ‘08

Programs and Data (7)

Topics
m Bits operations, arithmetic, assembly language programs,
representation of C control and data structures

m Includes aspects of architecture and compilers

Assignments
m L1 (datalab): Manipulating bits
m L2 (bomblab): Defusing a binary bomb
= L3 (buflab): Hacking a buffer bomb

-37- 15-213, F'08

The Memory Hierarchy (3)

Topics
= Memory technology, memory hierarchy, caches, disks,
locality
m Includes aspects of architecture and OS.

Assignments

3g8 15-213, F ‘08

Exceptional Control Flow (3)

Topics
m Hardware exceptions, processes, process control, Unix
signals, nonlocal jumps

m Includes aspects of compilers, OS, and architecture

Assignments
m L4 (tshlab): Writing your own shell with job control

_39- 15-213, F ‘08

Virtual Memory (4)

Topics
m Virtual memory, address translation, dynamic storage
allocation
= Includes aspects of architecture and OS

Assignments

m L5 (malloclab): Writing your own malloc package
® Get a real feel for systems programming

—40 - 15-213, F'08

Networking, and Concurrency (6)

Topics
m High level and low-level I/0O, network programming, Internet
services, Web servers

m concurrency, concurrent server design, threads, 1/0
multiplexing with select.

m Includes aspects of networking, OS, and architecture.

Assignments
m L6 (proxylab): Writing your own Web proxy

—41 — 15-213, F'08

Performance (2)

Topics
m High level processor models, code optimization (control and
data), measuring time on a computer

m Includes aspects of architecture, compilers, and OS

Assignments

—42 - 15-213, F'08

Lab Rationale

Each lab should have a well-defined goal such as
solving a puzzle or winning a contest.

Doing a lab should result in new skills and concepts

We try to use competition in a fun and healthy way.
m Set a reasonable threshold for full credit.

m Post intermediate results (anonymized) on Web page for
glory!

—-43 - 15-213, F'08

Autolab Web Service

Labs are provided by the Autolab system

m Autograding handin system developed in 2003 by Dave
O’Hallaron

m Apache Web server + Perl CGI programs
m Beta tested Fall 2003, very stable by now

With Autolab you can use your Web browser to:
= Review lab notes, clarifications
m Download the lab materials
m Stream autoresults to a class status Web page as you work.
= Handin your code for autograding by the Autolab server.

m View the complete history of your code handins, autoresult
submissions, autograding reports, and instructor
evaluations.

m View the class status page

—44 — 15-213, F'08

— 45—

Good Luck!

15-213, F'08

