
Introduction to
Computer Systems

Introduction to
Computer Systems

Topics:Topics:
Theme
Five great realities of computer systems
How this fits within CS curriculum
Logistical issues

15-213 F ‘08class01.ppt

15-213
“The Class That Gives CMU Its Zip!”

Randal E. Bryant
August 26, 2008

– 2 – 15-213, F ‘08

Course ThemeCourse Theme
Abstraction is good, but don’t forget reality!

Most CS courses emphasize abstractionMost CS courses emphasize abstraction
Abstract data types
Asymptotic analysis

These abstractions have limitsThese abstractions have limits
Especially in the presence of bugs
Need to understand underlying implementations

Useful outcomesUseful outcomes
Become more effective programmers

Able to find and eliminate bugs efficiently
Able to tune program performance

Prepare for later “systems” classes in CS & ECE
Compilers, Operating Systems, Networks, Computer
Architecture, Embedded Systems

– 3 – 15-213, F ‘08

Great Reality #1Great Reality #1
IntInt’’ss are not Integers, Floatare not Integers, Float’’s are not s are not RealsReals

ExamplesExamples
Is x2 ≥ 0?

Float’s: Yes!
Int’s:

» 40000 * 40000 --> 1600000000
» 50000 * 50000 --> ??

Is (x + y) + z = x + (y + z)?
Unsigned & Signed Int’s: Yes!
Float’s:

» (1e20 + -1e20) + 3.14 --> 3.14
» 1e20 + (-1e20 + 3.14) --> ??

– 4 – 15-213, F ‘08

Code Security ExampleCode Security Example

Similar to code found in FreeBSD’s implementation of
getpeername.
There are legions of smart people trying to find
vulnerabilities in programs

Think of it as a very stringent testing environment

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}

– 5 – 15-213, F ‘08

Typical UsageTypical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, MSIZE);
printf(“%s\n”, mybuf);

}

– 6 – 15-213, F ‘08

Malicious UsageMalicious Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, -MSIZE);
. . .

}

– 7 – 15-213, F ‘08

Computer ArithmeticComputer Arithmetic
Does not generate random valuesDoes not generate random values

Arithmetic operations have important mathematical
properties

Cannot assume Cannot assume ““usualusual”” propertiesproperties
Due to finiteness of representations
Integer operations satisfy “ring” properties

Commutativity, associativity, distributivity
Floating point operations satisfy “ordering” properties

Monotonicity, values of signs

ObservationObservation
Need to understand which abstractions apply in which
contexts
Important issues for compiler writers and serious application
programmers

– 8 – 15-213, F ‘08

Great Reality #2Great Reality #2
YouYou’’ve got to know assemblyve got to know assembly

Chances are, youChances are, you’’ll never write program in assemblyll never write program in assembly
Compilers are much better & more patient than you are

Understanding assembly key to machineUnderstanding assembly key to machine--level level
execution modelexecution model

Behavior of programs in presence of bugs
High-level language model breaks down

Tuning program performance
Understanding sources of program inefficiency

Implementing system software
Compiler has machine code as target
Operating systems must manage process state

Creating / fighting malware
x86 assembly is the language of choice!

– 9 – 15-213, F ‘08

Assembly Code ExampleAssembly Code Example
Time Stamp CounterTime Stamp Counter

Special 64-bit register in Intel-compatible machines
Incremented every clock cycle
Read with rdtsc instruction

ApplicationApplication
Measure time required by procedure

In units of clock cycles

double t;
start_counter();
P();
t = get_counter();
printf("P required %f clock cycles\n", t);

– 10 – 15-213, F ‘08

Code to Read CounterCode to Read Counter
Write small amount of assembly code using GCC’s asm
facility
Inserts assembly code into machine code generated by
compiler
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

/* Set *hi and *lo to the high and low order bits
of the cycle counter.

*/
void access_counter(unsigned *hi, unsigned *lo)
{

asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
: "=r" (*hi), "=r" (*lo)
:
: "%edx", "%eax");

}

– 11 – 15-213, F ‘08

Great Reality #3Great Reality #3
Memory Matters: Memory Matters: Random Access Memory is anRandom Access Memory is an

unun--physical abstractionphysical abstraction

Memory is not unboundedMemory is not unbounded
It must be allocated and managed
Many applications are memory dominated

Memory referencing bugs especially perniciousMemory referencing bugs especially pernicious
Effects are distant in both time and space

Memory performance is not uniformMemory performance is not uniform
Cache and virtual memory effects can greatly affect program
performance
Adapting program to characteristics of memory system can
lead to major speed improvements

– 12 – 15-213, F ‘08

Memory Referencing Bug ExampleMemory Referencing Bug Example

double fun(int i)
{
volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

double fun(int i)
{
volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

fun(0) –> 3.14
fun(1) –> 3.14
fun(2) –> 3.1399998664856
fun(3) –> 2.00000061035156
fun(4) –> 3.14, then segmentation fault

fun(0) –> 3.14
fun(1) –> 3.14
fun(2) –> 3.1399998664856
fun(3) –> 2.00000061035156
fun(4) –> 3.14, then segmentation fault

– 13 – 15-213, F ‘08

Referencing Bug ExplanationReferencing Bug Explanation

C does not implement bounds checking
Out of range write can affect other parts of program state

Saved State

d7 … d4

d3 … d0

a[1]

a[0] 0

1

2

3

4

Location accessed
by fun(i)

– 14 – 15-213, F ‘08

Memory Referencing ErrorsMemory Referencing Errors
C and C++ do not provide any memory protectionC and C++ do not provide any memory protection

Out of bounds array references
Invalid pointer values
Abuses of malloc/free

Can lead to nasty bugsCan lead to nasty bugs
Whether or not bug has any effect depends on system and
compiler
Action at a distance

Corrupted object logically unrelated to one being accessed
Effect of bug may be first observed long after it is generated

How can I deal with this?How can I deal with this?
Program in Java or ML
Understand what possible interactions may occur
Use or develop tools to detect referencing errors

– 15 – 15-213, F ‘08

Memory System Performance
Example
Memory System Performance
Example

Hierarchical memory organization
Performance depends on access patterns

Including how step through multi-dimensional array

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)
for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)
for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

59,393,288 clock cycles 1,277,877,876 clock cycles

21.5 times slower!
(Measured on 2GHz

Intel Pentium 4)

– 16 – 15-213, F ‘08

The Memory MountainThe Memory Mountain

s1

s3

s5

s7

s9

s1
1

s1
3

s1
5

8m

2m 51
2k 12

8k 32
k 8k

2k

0

200

400

600

800

1000

1200

Stride (words) Working set size (bytes)

Pentium III Xeon
550 MHz
16 KB on-chip L1 d-cache
16 KB on-chip L1 i-cache
512 KB off-chip unified
L2 cache

R
ea

d
th

ro
ug

hp
ut

 (M
B

/s
)

L1

L2

Mem

xe

copyij

copyji

– 17 – 15-213, F ‘08

Great Reality #4Great Reality #4
ThereThere’’s more to performance than asymptotic s more to performance than asymptotic

complexitycomplexity

Constant factors matter too!Constant factors matter too!
Easily see 10:1 performance range depending on how code
written
Must optimize at multiple levels: algorithm, data
representations, procedures, and loops

Must understand system to optimize performanceMust understand system to optimize performance
How programs compiled and executed
How to measure program performance and identify
bottlenecks
How to improve performance without destroying code
modularity and generality

– 18 – 15-213, F ‘08

Code Performance ExampleCode Performance Example

Multiply all elements of array
Performance on class machines: ~7.0 clock cycles
per element

Latency of floating-point multiplier

/* Compute product of array elements */
double product(double d[], int n)
{

double result = 1;
int i;
for (i = 0; i < n; i++)

result = result * d[i];
return result;

}

– 19 – 15-213, F ‘08

Loop UnrollingsLoop Unrollings

Do two loop elements per iteration
Reduces overhead

Cycles per element:
u2: 7.0
u2r: 3.6

/* Unroll by 2. Assume n is even */
double product_u2(double d[], int n)
{

double result = 1;
int i;
for (i = 0; i < n; i+=2)
result = (result * d[i]) * d[i+1];

return result;
}

/* Unroll by 2. Assume n is even */
double product_u2r(double d[], int n)
{

double result = 1;
int i;
for (i = 0; i < n; i+=2)
result = result * (d[i] * d[i+1]);

return result;
}

– 20 – 15-213, F ‘08

u2: Serial Computationu2: Serial Computation
Computation (length=12)Computation (length=12)
((((((((((((1 * d[0]) *
d[1]) * d[2]) * d[3]) *
d[4]) * d[5]) * d[6]) *
d[7]) * d[8]) * d[9]) *
d[10]) * d[11])

PerformancePerformance
N elements, D cycles/operation
N*D cycles

*

*

11 dd00

dd11

*

dd22

*

dd33

*

dd44

*

dd55

*

dd66

*

dd77

*

dd88

*

dd99

*

dd1010

*

dd1111

result = (result * d[i]) * d[i+1];

– 21 – 15-213, F ‘08

u2r: Reassociated Computationu2r: Reassociated Computation
PerformancePerformance

N elements, D cycles/operation
(N/2+1)*D cycles

*

*

11

*

*

*

*

*

dd11dd00

*

dd33dd22

*

dd55dd44

*

dd77dd66

*

dd99dd88

*

dd1111dd1010

result = result * (d[i] * d[i+1]);

– 22 – 15-213, F ‘08

Great Reality #5Great Reality #5
Computers do more than execute programsComputers do more than execute programs

They need to get data in and outThey need to get data in and out
I/O system critical to program reliability and performance

They communicate with each other over networksThey communicate with each other over networks
Many system-level issues arise in presence of network

Concurrent operations by autonomous processes
Coping with unreliable media
Cross platform compatibility
Complex performance issues

– 23 – 15-213, F ‘08

Role within CurriculumRole within Curriculum

Foundation of Computer Foundation of Computer
SystemsSystems

Underlying principles for
hardware, software, and
networking

CS 213
Systems

CS 410
Operating
Systems

CS 411
Compilers

Processes
Mem. Mgmt

CS 441
Networks

Network
Protocols

ECE 447
Architecture

ECE 349
Embedded
Systems

Exec. Model
Memory System

CS 412
OS Practicum

CS 123
C Programming

CS 415
Databases

Data Reps.
Memory Model

CS 462
Graphics

Machine Code Arithmetic

– 24 – 15-213, F ‘08

Course PerspectiveCourse Perspective
Most Systems Courses are BuilderMost Systems Courses are Builder--CentricCentric

Computer Architecture
Design pipelined processor in Verilog

Operating Systems
Implement large portions of operating system

Compilers
Write compiler for simple language

Networking
Implement and simulate network protocols

– 25 – 15-213, F ‘08

Course Perspective (Cont.)Course Perspective (Cont.)
Our Course is ProgrammerOur Course is Programmer--CentricCentric

Purpose is to show how by knowing more about the
underlying system, one can be more effective as a
programmer
Enable you to

Write programs that are more reliable and efficient
Incorporate features that require hooks into OS

» E.g., concurrency, signal handlers
Not just a course for dedicated hackers

We bring out the hidden hacker in everyone
Cover material in this course that you won’t see elsewhere

– 26 – 15-213, F ‘08

Teaching staff
InstructorsInstructors

Prof. Randal E. Bryant
Prof. Greg Ganger

TA’s
Taiyang Chen
Tessa Eng
Elie Krevat
Bryant Lee
Christopher Lu
Swapnil Patil
Vijay Prakash
Jiri Simsa

Course Admin
Cindy Chemsak (NSH 4303)

We’re glad to talk with
you, but please send email

or phone first.

– 27 – 15-213, F ‘08

Textbooks
Randal E. Bryant and David R. ORandal E. Bryant and David R. O’’Hallaron, Hallaron,

“Computer Systems: A Programmer’s Perspective”, Prentice
Hall 2003.
http://csapp.cs.cmu.edu
This book really matters for the course!

How to solve labs
Practice problems typical of exam problems

Brian Kernighan and Dennis Ritchie, Brian Kernighan and Dennis Ritchie,
“The C Programming Language, Second Edition”, Prentice
Hall, 1988

– 28 – 15-213, F ‘08

Course Components
LecturesLectures

Higher level concepts

RecitationsRecitations
Applied concepts, important tools and skills for labs,
clarification of lectures, exam coverage

LabsLabs
The heart of the course
2 or 3 weeks
Provide in-depth understanding of an aspect of systems
Programming and measurement

ExamsExams
Test your understanding of concepts & mathematical
principles

Critical component of grade

– 29 – 15-213, F ‘08

Getting Help

Class Web PageClass Web Page
http://www.cs.cmu.edu/~213
Copies of lectures, assignments, exams, solutions
Clarifications to assignments

Message BoardMessage Board
http://autolab.cs.cmu.edu
Clarifications to assignments, general discussion
The only board your instructors will be monitoring (No
blackboard or Andrew)

http://www.cs.cmu.edu/~213

– 30 – 15-213, F ‘08

Getting Help
Staff mailing listStaff mailing list

15-213-staff@cs.cmu.etc
“The autolab server is down!”
“Who should I talk to about ...”
“This code {...}, which I don't want to post to the bboard,
causes my computer to melt into slag.”

Teaching assistantsTeaching assistants
I don't get “associativity”...
Office hours, e-mail, by appointment

Please send mail to 15-213-staff, not a randomly-selected TA

ProfessorsProfessors
Office hour or appt.
“Should I drop the class?” “A TA said ... but ...”

– 31 – 15-213, F ‘08

Policies: Assignments
Work groupsWork groups

You must work alone on all but final lab

HandinsHandins
Assignments due at 11:59pm on Tues or Thurs evening
Electronic handins using Autolab (no exceptions!).

Conflict exams, other irreducible conflictsConflict exams, other irreducible conflicts
OK, but must make PRIOR arrangements with Prof. Ganger.

Appealing gradesAppealing grades
Within 7 days of completion of grading.

Following procedure described in syllabus
Labs: Talk to the lead person on the assignment
Exams: Talk to Prof. Ganger.

– 32 – 15-213, F ‘08

TimelinessTimeliness
Grace DaysGrace Days

4 for the course
Covers scheduling crunch, out-of-town trips, illnesses,
minor setbacks
Save them until late in the term!

Lateness PenaltiesLateness Penalties
Once grace days used up, get penalized 15%/day
Typically shut off all handins 2—3 days after due date

Catastrophic EventsCatastrophic Events
Major illness, death in family, …
Work with your academic advisor to formulate plan for
getting back on track

AdviceAdvice
Once you start running late, it’s really hard to catch up

– 33 – 15-213, F ‘08

Cheating
What is cheating?What is cheating?

Sharing code: either by copying, retyping, looking at, or
supplying a copy of a file.
Coaching: helping your friend to write a lab, line by line.
Copying code from previous course or from elsewhere on
WWW

Only allowed to use code we supply, or from CS:APP website

What is NOT cheating?What is NOT cheating?
Explaining how to use systems or tools.
Helping others with high-level design issues.

Penalty for cheating:Penalty for cheating:
Removal from course with failing grade.

Detection of cheating:Detection of cheating:
We do check and our tools for doing this are much better
than you think!

– 34 – 15-213, F ‘08

Policies: Grading
Exam Score E (out of 100):Exam Score E (out of 100):

Two in class exams (25% each)
Final (50%)
All exams are open book / open notes.

Labs Score L (out of 100):Labs Score L (out of 100):
6 labs (10-25% each)

Composite Score:Composite Score:

S = (L + E + min(L,E))/3S = (L + E + min(L,E))/3

if L < E:if L < E: (2L + E)/3(2L + E)/3

if E < L: if E < L: (L + 2E)/3(L + 2E)/3

– 35 – 15-213, F ‘08

Achieving Composite Score LevelsAchieving Composite Score Levels
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

100

95

90

85

80

75

70

65

60

55

50

45

40

35

30

25

20

15

10

5

0

Exams E

Labs L

Composite Score C

90-100
80-90
70-80
60-70
50-60
40-50

Strong labs can
partially offset weak
exams, but not totally

– 36 – 15-213, F ‘08

Facilities
Labs will use the Intel Computer Systems Labs will use the Intel Computer Systems

Cluster (aka Cluster (aka ““the fish machinesthe fish machines””))
15 Pentium Xeon servers donated by Intel for CS 213
Dual 3.2 Ghz 64-bit (EM64T) Nocona Xeon processors
2 GB, 400 MHz DDR2 SDRAM memory
Rack mounted in the 3rd floor Wean Hall machine room.
Your accounts are ready nearing readiness.

Getting help with the cluster machines:Getting help with the cluster machines:
See course Web page for login directions
Please direct questions to your TA’s first

– 37 – 15-213, F ‘08

Programs and Data (7)

TopicsTopics
Bits operations, arithmetic, assembly language programs,
representation of C control and data structures
Includes aspects of architecture and compilers

AssignmentsAssignments
L1 (datalab): Manipulating bits
L2 (bomblab): Defusing a binary bomb
L3 (buflab): Hacking a buffer bomb

– 38 – 15-213, F ‘08

The Memory Hierarchy (3)

TopicsTopics
Memory technology, memory hierarchy, caches, disks,
locality
Includes aspects of architecture and OS.

AssignmentsAssignments

– 39 – 15-213, F ‘08

Exceptional Control Flow (3)
TopicsTopics

Hardware exceptions, processes, process control, Unix
signals, nonlocal jumps
Includes aspects of compilers, OS, and architecture

AssignmentsAssignments
L4 (tshlab): Writing your own shell with job control

– 40 – 15-213, F ‘08

Virtual Memory (4)

TopicsTopics
Virtual memory, address translation, dynamic storage
allocation
Includes aspects of architecture and OS

AssignmentsAssignments
L5 (malloclab): Writing your own malloc package

Get a real feel for systems programming

– 41 – 15-213, F ‘08

Networking, and Concurrency (6)

TopicsTopics
High level and low-level I/O, network programming, Internet
services, Web servers
concurrency, concurrent server design, threads, I/O
multiplexing with select.
Includes aspects of networking, OS, and architecture.

AssignmentsAssignments
L6 (proxylab): Writing your own Web proxy

– 42 – 15-213, F ‘08

Performance (2)

TopicsTopics
High level processor models, code optimization (control and
data), measuring time on a computer
Includes aspects of architecture, compilers, and OS

AssignmentsAssignments

– 43 – 15-213, F ‘08

Lab Rationale
Each lab should have a wellEach lab should have a well--defined goal such as defined goal such as

solving a puzzle or winning a contest. solving a puzzle or winning a contest.

Doing a lab should result in new skills and conceptsDoing a lab should result in new skills and concepts

We try to use competition in a fun and healthy way.We try to use competition in a fun and healthy way.
Set a reasonable threshold for full credit.
Post intermediate results (anonymized) on Web page for
glory!

– 44 – 15-213, F ‘08

Autolab Web Service
Labs are provided by the Autolab systemLabs are provided by the Autolab system

Autograding handin system developed in 2003 by Dave
O’Hallaron
Apache Web server + Perl CGI programs
Beta tested Fall 2003, very stable by now

With Autolab you can use your Web browser to:With Autolab you can use your Web browser to:
Review lab notes, clarifications
Download the lab materials
Stream autoresults to a class status Web page as you work.
Handin your code for autograding by the Autolab server.
View the complete history of your code handins, autoresult
submissions, autograding reports, and instructor
evaluations.
View the class status page

– 45 – 15-213, F ‘08

Good Luck!

	Introduction to Computer Systems
	Course Theme
	Great Reality #1
	Code Security Example
	Typical Usage
	Malicious Usage
	Computer Arithmetic
	Great Reality #2
	Assembly Code Example
	Code to Read Counter
	Great Reality #3
	Memory Referencing Bug Example
	Referencing Bug Explanation
	Memory Referencing Errors
	Memory System Performance Example
	The Memory Mountain
	Great Reality #4
	Code Performance Example
	Loop Unrollings
	u2: Serial Computation
	u2r: Reassociated Computation
	Great Reality #5
	Role within Curriculum
	Course Perspective
	Course Perspective (Cont.)
	Teaching staff
	Textbooks
	Course Components
	Getting Help	
	Getting Help	
	Policies: Assignments
	Timeliness
	Cheating
	Policies: Grading
	Achieving Composite Score Levels
	Facilities
	Programs and Data (7)
	The Memory Hierarchy (3)
	Exceptional Control Flow (3)
	 Virtual Memory (4)
	 Networking, and Concurrency (6)
	Performance (2)
	Lab Rationale
	Autolab Web Service	
	Good Luck!

