
Machine-Level Programming V:
Advanced Topics

Sept. 18, 2008

Machine-Level Programming V:
Advanced Topics

Sept. 18, 2008
TopicsTopics

Linux Memory Layout
Understanding Pointers
Buffer Overflow
Floating Point Code

class08.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, F’08

IA32 Linux Memory LayoutIA32 Linux Memory Layout
StackStack

Runtime stack (8MB limit)

HeapHeap
Dynamically allocated storage
When call malloc(), calloc(), new()

DataData
Statically allocated data
E.g., arrays & strings declared in code

TextText
Executable machine instructions
Read-only

Upper
2 hex
digits of
address

FF

00

Stack

Text
Data
Heap

08

– 3 – 15-213, F’08

Memory Allocation ExampleMemory Allocation Example
char big_array[1<<24]; /* 16 MB */
char huge_array[1<<28]; /* 256 MB */
int beyond;
char *p1, *p2, *p3, *p4;
int useless() { return 0; }
int main()
{
p1 = malloc(1 <<28); /* 256 MB */
p2 = malloc(1 << 8); /* 256 B */
p3 = malloc(1 <<28); /* 256 MB */
p4 = malloc(1 << 8); /* 256 B */
/* Some print statements ... */

}

– 4 – 15-213, F’08

IA32 Example AddressesIA32 Example Addresses
$esp 0xffffbcd0
p3 0x65586008
p1 0x55585008
p4 0x1904a110
p2 0x1904a008
beyond 0x08049744
big_array 0x18049780
huge_array 0x08049760
main() 0x080483c6
useless() 0x08049744
final malloc() 0x006be166

FF

80

00

Stack

Text
Data

Heap

08

&p2 0x18049760

address range ~232

– 5 – 15-213, F’08

x86-64 Example Addressesx86-64 Example Addresses
$rsp 0x7ffffff8d1f8
p3 0x2aaabaadd010
p1 0x2aaaaaadc010
p4 0x000011501120
p2 0x000011501010
beyond 0x000000500a44
big_array 0x000010500a80
huge_array 0x000000500a50
main() 0x000000400510
useless() 0x000000400500
final malloc() 0x00386ae6a170

7F

30

00

Stack

Text
Data
Heap

08

&p2 0x000010500a60

address range ~247

– 6 – 15-213, F’08

C operatorsC operators
Operators Associativity
() [] -> . left to right
! ~ ++ -- + - * & (type) sizeof right to left
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: right to left
= += -= *= /= %= &= ^= != <<= >>= right to left
, left to right

-> has very high precedence
() has very high precedence
monadic * just below

– 7 – 15-213, F’08

C pointer declarationsC pointer declarations
int *p p is a pointer to int

int *p[13] p is an array[13] of pointer to int

int *(p[13]) p is an array[13] of pointer to int

int **p p is a pointer to a pointer to an int

int (*p)[13] p is a pointer to an array[13] of int

int *f() f is a function returning a pointer to int

int (*f)() f is a pointer to a function returning int

int (*(*f())[13])() f is a function returning ptr to an array[13]
of pointers to functions returning int

int (*(*x[3])())[5] x is an array[3] of pointers to functions
returning pointers to array[5] of ints

– 8 – 15-213, F’08

Avoiding Complex DeclarationsAvoiding Complex Declarations
Use Use typedeftypedef to build up the declarationto build up the declaration

Instead of Instead of intint (*(*x[3])())[5](*(*x[3])())[5] ::

typedeftypedef intint fiveints[5];fiveints[5];
typedeftypedef fiveintsfiveints* p5i;* p5i;
typedeftypedef p5i (*f_of_p5is)();p5i (*f_of_p5is)();
f_of_p5is x[3];f_of_p5is x[3];

xx is an array of 3 elements, each of which is a pointer to is an array of 3 elements, each of which is a pointer to
a function returning an array of 5 a function returning an array of 5 intsints..

– 9 – 15-213, F’08

Internet Worm and IM WarInternet Worm and IM War
November, 1988November, 1988

Internet Worm attacks thousands of Internet hosts.
How did it happen?

July, 1999July, 1999
Microsoft launches MSN Messenger (instant messaging
system).
Messenger clients can access popular AOL Instant Messaging
Service (AIM) servers

AIM
server

AIM
client

AIM
client

MSN
client

MSN
server

– 10 – 15-213, F’08

Internet Worm and IM War (cont.)Internet Worm and IM War (cont.)
August 1999August 1999

Mysteriously, Messenger clients can no longer access AIM
servers.
Microsoft and AOL begin the IM war:

AOL changes server to disallow Messenger clients
Microsoft makes changes to clients to defeat AOL changes.
At least 13 such skirmishes.

How did it happen?

The Internet Worm and AOL/Microsoft War were both The Internet Worm and AOL/Microsoft War were both
based on based on stack buffer overflowstack buffer overflow exploits!exploits!

many Unix functions do not check argument sizes.
allows target buffers to overflow.

– 11 – 15-213, F’08

String Library CodeString Library Code
Implementation of Unix function gets()

No way to specify limit on number of characters to read

Similar problems with other Unix functions
strcpy: Copies string of arbitrary length
scanf, fscanf, sscanf, when given %s conversion specification

/* Get string from stdin */
char *gets(char *dest)
{

int c = getchar();
char *p = dest;
while (c != EOF && c != '\n') {

*p++ = c;
c = getchar();

}
*p = '\0';
return dest;

}

– 12 – 15-213, F’08

Vulnerable Buffer CodeVulnerable Buffer Code

int main()
{

printf("Type a string:");
echo();
return 0;

}

/* Echo Line */
void echo()
{

char buf[4]; /* Way too small! */
gets(buf);
puts(buf);

}

– 13 – 15-213, F’08

Buffer Overflow ExecutionsBuffer Overflow Executions

unix>./bufdemo
Type a string:1234567
1234567
unix>./bufdemo
Type a string:123455678
Segmentation Fault
unix>./bufdemo
Type a string:1234556789ABC
Segmentation Fault

– 14 – 15-213, F’08

Buffer Overflow DisassemblyBuffer Overflow Disassembly
080484f0 <echo>:
80484f0: 55 push %ebp
80484f1: 89 e5 mov %esp,%ebp
80484f3: 53 push %ebx
80484f4: 8d 5d f8 lea 0xfffffff8(%ebp),%ebx
80484f7: 83 ec 14 sub $0x14,%esp
80484fa: 89 1c 24 mov %ebx,(%esp)
80484fd: e8 ae ff ff ff call 80484b0 <gets>
8048502: 89 1c 24 mov %ebx,(%esp)
8048505: e8 8a fe ff ff call 8048394 <puts@plt>
804850a: 83 c4 14 add $0x14,%esp
804850d: 5b pop %ebx
804850e: c9 leave
804850f: c3 ret
80485f2: e8 f9 fe ff ff call 80484f0 <echo>
80485f7: 8b 5d fc mov 0xfffffffc(%ebp),%ebx
80485fa: c9 leave
80485fb: 31 c0 xor %eax,%eax
80485fd: c3 ret

– 15 – 15-213, F’08

Buffer Overflow StackBuffer Overflow Stack

echo:
pushl %ebp # Save %ebp on stack
movl %esp, %ebp
pushl %ebx # Save %ebx
leal -8(%ebp),%ebx # Compute buf as %ebp-8
subl $20, %esp # Allocate stack space
movl %ebx, (%esp) # Push buf on stack
call gets # Call gets
. . .

/* Echo Line */
void echo()
{

char buf[4]; /* Way too small! */
gets(buf);
puts(buf);

}
Return Address

Saved %ebp %ebp

Stack
Frame

for main

Stack Frame
for echo

[3][2][1][0] buf

– 16 – 15-213, F’08

Buffer
Overflow Stack
Example

Buffer
Overflow Stack
Example

Before call to gets

unix> gdb bufdemo
(gdb) break echo
Breakpoint 1 at 0x8048583
(gdb) run
Breakpoint 1, 0x8048583 in echo ()
(gdb) print /x $ebp
$1 = 0xffffc638
(gdb) print /x *(unsigned *)$ebp
$2 = 0xffffc658
(gdb) print /x *((unsigned *)$ebp + 1)
$3 = 0x80485f7

80485f2: call 80484f0 <echo>
80485f7: mov 0xfffffffc(%ebp),%ebx # Return Point

Return Address
Saved %ebp %ebp

Stack
Frame

for main

Stack Frame
for echo

[3][2][1][0] buf

0xbfffc638
Return Address

Saved %ebp

Stack
Frame

for main

Stack Frame
for echo

ff ff c6 58
08 04 85 f7

xx xx xx xx buf

0xbfffc658

– 17 – 15-213, F’08

Buffer Overflow Example #1Buffer Overflow Example #1

Before Call to gets Input = “1234567”

Overflow buf, but no problem

0xbfffc638
Return Address

Saved %ebp

Stack
Frame

for main

Stack Frame
for echo

ff ff c6 58
08 04 85 f7

xx xx xx xx buf

0xbfffc638
Return Address

Saved %ebp

Stack
Frame

for main

Stack Frame
for echo

ff ff c6 58
08 04 85 f7

34 33 32 31 buf
00 37 36 35

0xbfffc658 0xbfffc658

– 18 – 15-213, F’08

Buffer Overflow Stack Example #2Buffer Overflow Stack Example #2

Input =
“12345678”

. . .
804850a: 83 c4 14 add $0x14,%esp # deallocate space
804850d: 5b pop %ebx # restore %ebx
804850e: c9 leave # movl %ebp, %esp; popl %ebp
804850f: c3 ret # Return

end of echo code:

Saved value of %ebp set
to 0xbfffc600
echo code restores %ebp
with corrupted value

0xffffc638
Return Address

Saved %ebp

Stack
Frame

for main

Stack Frame
for echo

ff ff c6 00
08 04 85 83

34 33 32 31 buf
38 37 36 35

0xbfffc600

%ebp

– 19 – 15-213, F’08

Buffer Overflow Stack Example #3Buffer Overflow Stack Example #3
Before Call to gets Input = “123456789ABC”

0xbfffc638
Return Address

Saved %ebp

Stack
Frame

for main

Stack Frame
for echo

ff ff c6 58
08 04 85 83

xx xx xx xx buf

0xbfffc638
Return Address

Saved %ebp

Stack
Frame

for main

Stack Frame
for echo

43 42 41 39
08 04 85 00

34 33 32 31 buf
38 37 36 35

0xbfffc658 0xbfffc658

80485f2: call 80484f0 <echo>
80485f7: mov 0xfffffffc(%ebp),%ebx # Return Point

Invalid address
No longer pointing to

desired return point

– 20 – 15-213, F’08

Example #3 FailureExample #3 Failure Input = “123456789ABC”

0xbfffc638
Return Address

Saved %ebp

Stack
Frame

for main

Stack Frame
for echo

43 42 41 39
08 04 85 00

34 33 32 31 buf
38 37 36 35

0xbfffc658

xx xx xx xx

. . .
804850a: 83 c4 14 add $0x14,%esp # deallocate space
804850d: 5b pop %ebx # restore %ebx
804850e: c9 leave # movl %ebp, %esp; popl %ebp
804850f: c3 ret # Return (Invalid)

end of echo code:

0x43424139

– 21 – 15-213, F’08

Example #2 FailureExample #2 Failure

Input =
“12345678”

80485f2: e8 f9 fe ff ff call 80484f0 <echo>

80485f7: 8b 5d fc mov 0xfffffffc(%ebp),%ebx # bad ref?
80485fa: c9 leave # movl %ebp,%esp; popl %ebp
80485fb: 31 c0 xor %eax,%eax
80485fd: c3 ret # bad ref

Return from echo:

echo code restores %ebp
with corrupted value

Subsequent references
based on %ebp invalid

Stack
Frame

for main

0xbfffc600 xx xx xx xx %ebp

%esp

– 22 – 15-213, F’08

Malicious Use of Buffer OverflowMalicious Use of Buffer Overflow

Input string contains byte representation of executable code
Overwrite return address with address of buffer
When bar() executes ret, will jump to exploit code

int bar() {
char buf[64];
gets(buf);
...
return ...;

}

void foo(){
bar();
...

}

Stack
after call to gets()

B

return
address

A

foo stack frame

bar stack frame

B

exploit
code

pad

data
written

by
gets()

– 23 – 15-213, F’08

Exploits Based on Buffer OverflowsExploits Based on Buffer Overflows
Buffer overflow bugs allow remote machines to execute Buffer overflow bugs allow remote machines to execute
arbitrary code on victim machines.arbitrary code on victim machines.

Internet wormInternet worm
Early versions of the finger server (fingerd) used gets() to
read the argument sent by the client:

finger droh@cs.cmu.edu
Worm attacked fingerd server by sending phony argument:

finger “exploit-code padding new-return-address”
exploit code: executed a root shell on the victim machine with a
direct TCP connection to the attacker.

– 24 – 15-213, F’08

Exploits Based on Buffer OverflowsExploits Based on Buffer Overflows
Buffer overflow bugs allow remote machines to execute Buffer overflow bugs allow remote machines to execute
arbitrary code on victim machines.arbitrary code on victim machines.

IM WarIM War
AOL exploited existing buffer overflow bug in AIM clients
exploit code: returned 4-byte signature (the bytes at some
location in the AIM client) to server.
When Microsoft changed code to match signature, AOL
changed signature location.

– 25 – 15-213, F’08

Date: Wed, 11 Aug 1999 11:30:57 Date: Wed, 11 Aug 1999 11:30:57 --0700 (PDT) 0700 (PDT)
From: Phil Bucking <From: Phil Bucking <philbucking@yahoo.comphilbucking@yahoo.com> >
Subject: AOL exploiting buffer overrun bug in their own softwareSubject: AOL exploiting buffer overrun bug in their own software! !
To: To: rms@pharlap.comrms@pharlap.com

Mr. Smith,Mr. Smith,

I am writing you because I have discovered something that I thinI am writing you because I have discovered something that I think you k you
might find interesting because you are an Internet security expemight find interesting because you are an Internet security expert with rt with
experience in this area. I have also tried to contact AOL but reexperience in this area. I have also tried to contact AOL but received ceived
no response.no response.

I am a developer who has been working on a revolutionary new insI am a developer who has been working on a revolutionary new instant tant
messaging client that should be released later this year.messaging client that should be released later this year.
......
It appears that the AIM client has a buffer overrun bug. By itseIt appears that the AIM client has a buffer overrun bug. By itself lf
this might not be the end of the world, as MS surely has had itsthis might not be the end of the world, as MS surely has had its share. share.
But AOL is now *exploiting their own buffer overrun bug* to helpBut AOL is now *exploiting their own buffer overrun bug* to help in in
its efforts to block MS Instant Messenger.its efforts to block MS Instant Messenger.
........
Since you have significant credibility with the press I hope thaSince you have significant credibility with the press I hope that yout you
can use this information to help inform people that behind AOL'scan use this information to help inform people that behind AOL's
friendly exterior they are nefariously compromising peoples' secfriendly exterior they are nefariously compromising peoples' security.urity.

Sincerely,Sincerely,
Phil Bucking Phil Bucking
Founder, Bucking Consulting Founder, Bucking Consulting
philbucking@yahoo.comphilbucking@yahoo.com

It was later determined that this
email originated from within
Microsoft!

– 26 – 15-213, F’08

Code Red WormCode Red Worm
HistoryHistory

June 18, 2001. Microsoft announces buffer overflow
vulnerability in IIS Internet server
July 19, 2001. over 250,000 machines infected by new virus in 9
hours
White house must change its IP address. Pentagon shut down
public WWW servers for day

When We Set Up CS:APP Web SiteWhen We Set Up CS:APP Web Site
Received strings of form

GET
/default.ida?NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN....
NNN%u9090%u6858%uc
bd3%u7801%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u780
1%u9090%u9090%u8190%u00c3%u0003%u8b00%u531b%u53ff%u0078%
u0000%u00=a

HTTP/1.0" 400 325 "-" "-"

– 27 – 15-213, F’08

Code Red Exploit CodeCode Red Exploit Code
Starts 100 threads running
Spread self

Generate random IP addresses & send attack string
Between 1st & 19th of month

Attack www.whitehouse.gov
Send 98,304 packets; sleep for 4-1/2 hours; repeat

» Denial of service attack
Between 21st & 27th of month

Deface server’s home page
After waiting 2 hours

– 28 – 15-213, F’08

Code Red EffectsCode Red Effects
Later Version Even More MaliciousLater Version Even More Malicious

Code Red II
As of April, 2002, over 18,000 machines infected
Still spreading

Paved Way for NIMDAPaved Way for NIMDA
Variety of propagation methods
One was to exploit vulnerabilities left behind by Code Red II

ASIDE (security flaws start at home)ASIDE (security flaws start at home)
.rhosts used by Internet Worm
Attachments used by MyDoom (1 in 6 emails Monday
morning!)

– 29 – 15-213, F’08

Avoiding Overflow VulnerabilityAvoiding Overflow Vulnerability

Use Library Routines that Limit String LengthsUse Library Routines that Limit String Lengths
fgets instead of gets
strncpy instead of strcpy
Don’t use scanf with %s conversion specification

Use fgets to read the string
Or use %ns where n is a suitable integer

/* Echo Line */
void echo()
{

char buf[4]; /* Way too small! */
fgets(buf, 4, stdin);
puts(buf);

}

– 30 – 15-213, F’08

System-Level ProtectionsSystem-Level Protections
unix> gdb bufdemo
(gdb) break echo
(gdb) run
(gdb) print /x $ebp
$1 = 0xffffc638
(gdb) run
(gdb) print /x $ebp
$2 = 0xffffbb08
(gdb) run
(gdb) print /x $ebp
$3 = 0xffffc6a8

Randomized stack offsetsRandomized stack offsets
At start of program, allocate random
amount of space on stack
Makes it difficult for hacker to predict
beginning of inserted code

NonexecutableNonexecutable code segmentscode segments
In traditional x86, can mark region of
memory as either “read-only” or
“writeable”

Can execute anything readable
Add explicit “execute” permission

– 31 – 15-213, F’08

IA32 Floating Point
HistoryHistory

8086: first computer to implement IEEE FP
separate 8087 FPU (floating point unit)

486: merged FPU and Integer Unit onto one chip

SummarySummary
Hardware to add, multiply, and divide
Floating point data registers
Various control & status registers

Floating Point FormatsFloating Point Formats
single precision (C float): 32 bits
double precision (C double): 64 bits
extended precision (C long double): 80 bits

Instruction
decoder and
sequencer

FPUInteger
Unit

Memory

– 32 – 15-213, F’08

FPU Data Register StackFPU Data Register Stack

FPU register format (extended precision)FPU register format (extended precision)

s exp frac
063647879

FPU registersFPU registers
8 registers
Logically forms shallow
stack
Top called %st(0)
When push too many,
bottom values disappear

stack grows down

“Top” %st(0)
%st(1)
%st(2)
%st(3)

– 33 – 15-213, F’08

Instruction Effect Description
fldz push 0.0 Load zero
flds Addr push M[Addr] Load single precision real
fmuls Addr %st(0) ← %st(0)*M[Addr] Multiply
faddp %st(1) ← %st(0)+%st(1);pop Add and pop

FPU instructionsFPU instructions

Large number of Large number of fpfp instructions and formatsinstructions and formats
~50 basic instruction types
load, store, add, multiply
sin, cos, tan, arctan, and log!

Sample instructions:Sample instructions:

– 34 – 15-213, F’08

Programming with SSE3Programming with SSE3
XMM RegistersXMM Registers

16 total, each 16 bytes
16 single-byte integers

8 16-bit integers

4 32-bit integers

4 single-precision floats

2 double-precision floats

1 single-precision float

1 double-precision float

– 35 – 15-213, F’08

Scalar & SIMD OperationsScalar & SIMD Operations
Scalar Operations: Single Precision

SIMD Operations: Single Precision

SIMD Operations: Double Precision

+
%xmm1

%xmm0

addss %xmm0,%xmm1

+ + + +
%xmm0

%xmm1

addps %xmm0,%xmm1

+ +
%xmm0

%xmm1

addpd %xmm0,%xmm1

– 36 – 15-213, F’08

x86-64 FP Code
Example
Compute Inner Product Compute Inner Product
of Two Vectorsof Two Vectors

Single precision arithmetic
Common computation
Uses SSE3 instructions

float ipf (float x[],
float y[],
int n) {

int i;
float result = 0.0;
for (i = 0; i < n; i++)
result += x[i]*y[i];

return result;
}

ipf:
xorps %xmm1, %xmm1 # result = 0.0
xorl %ecx, %ecx # i = 0
jmp .L8 # goto middle

.L10: # loop:
movslq %ecx,%rax # icpy = i
incl %ecx # i++
movss (%rsi,%rax,4), %xmm0 # t = a[icpy]
mulss (%rdi,%rax,4), %xmm0 # t *= b[icpy]
addss %xmm0, %xmm1 # result += t

.L8: # middle:
cmpl %edx, %ecx # i:n
jl .L10 # if < goto loop
movaps %xmm1, %xmm0 # return result
ret

– 37 – 15-213, F’08

Final ObservationsFinal Observations
Memory LayoutMemory Layout

OS/machine dependent (including kernel version)
Basic partitioning: stack/data/text/heap/shared-libs found in
most machines

Type Declarations in CType Declarations in C
Notation obscure, but very systematic

Working with Strange CodeWorking with Strange Code
Important to analyze nonstandard cases

E.g., what happens when stack corrupted due to buffer overflow
Helps to step through with GDB

Floating PointFloating Point
IA32: Strange “shallow stack” architecture
x86-64: SSE3 permits more conventional, register-based
approach

– 38 – 15-213, F’08

Final Observations (Cont.)Final Observations (Cont.)
Assembly LanguageAssembly Language

Very different than programming in C
Architecture specific (IA-32, X86-64, Sparc, PPC, MIPS, ARM,
370, …)
No types, no data structures, no safety, just bits&bytes
Rarely used to program
Needed to access the full capabilities of a machine
Important to understand for debugging and optimization

