
Web Services
Nov. 11, 2008
Web Services
Nov. 11, 2008

TopicsTopics
HTTP
Serving static content
Serving dynamic content

15-213
“The course that gives CMU its Zip!”

class21.ppt – 2 – 15-213, F’08

Web HistoryWeb History

1945: 1945:
Vannevar Bush, “As we may think”, Atlantic Monthly, July,
1945.

Describes the idea of a distributed hypertext system.
A “memex” that mimics the “web of trails” in our minds.

“Consider a future device for
individual use, which is a sort of
mechanized private file and library. It
needs a name, and to coin one at
random, "memex" will do. A memex
is a device in which an individual
stores all his books, records, and
communications, and which is
mechanized so that it may be
consulted with exceeding speed and
flexibility. It is an enlarged intimate
supplement to his memory.”

– 3 – 15-213, F’08

Web HistoryWeb History
1989:1989:

Tim Berners-Lee (CERN) writes internal proposal to develop
a distributed hypertext system.

Connects “a web of notes with links.”
Intended to help CERN physicists in large projects share and
manage information

1990:1990:
Tim BL writes a graphical browser for Next machines.

– 4 – 15-213, F’08

Web History (cont)Web History (cont)
19921992

NCSA server released
26 WWW servers worldwide

19931993
Marc Andreessen releases first version of NCSA Mosaic
browser
Mosaic version released for (Windows, Mac, Unix).
Web (port 80) traffic at 1% of NSFNET backbone traffic.
Over 200 WWW servers worldwide.

19941994
Andreessen and colleagues leave NCSA to form “Mosaic
Communications Corp” (predecessor to Netscape).

– 5 – 15-213, F’08

Internet HostsInternet Hosts

How many of the 232 IP addresses have registered names?
– 6 – 15-213, F’08

Web ServersWeb Servers

Web
server

HTTP request

HTTP response
(content)

Clients and servers Clients and servers
communicate using the communicate using the
HyperTextHyperText Transfer Transfer
Protocol (HTTP)Protocol (HTTP)

Client and server
establish TCP connection
Client requests content
Server responds with
requested content
Client and server close
connection (usually)

Current version is HTTP/1.1Current version is HTTP/1.1
RFC 2616, June, 1999.

Web
client

(browser)

http://www.w3.org/Protocols/rfc2616/rfc2616.htmlhttp://www.w3.org/Protocols/rfc2616/rfc2616.html

– 7 – 15-213, F’08

Web ContentWeb Content
Web servers return Web servers return contentcontent to clientsto clients

content: a sequence of bytes with an associated MIME
(Multipurpose Internet Mail Extensions) type

Example MIME typesExample MIME types
text/html HTML document
text/plain Unformatted text
application/postscript Postcript document
image/gif Binary image encoded in GIF format
image/jpeg Binary image encoded in JPEG

format

– 8 – 15-213, F’08

Static and Dynamic ContentStatic and Dynamic Content
The content returned in HTTP responses can be either The content returned in HTTP responses can be either

staticstatic or or dynamicdynamic..
Static content: content stored in files and retrieved in
response to an HTTP request

Examples: HTML files, images, audio clips.
Request identifies content file

Dynamic content: content produced on-the-fly in response to
an HTTP request

Example: content produced by a program executed by the
server on behalf of the client.
Request identifies file containing executable code

Bottom line: Bottom line: All Web content is associated with a file All Web content is associated with a file
that is managed by the server.that is managed by the server.

– 9 – 15-213, F’08

URLsURLs
Each file managed by a server has a unique name called a Each file managed by a server has a unique name called a

URL (Universal Resource Locator)URL (Universal Resource Locator)

URLs for static content:URLs for static content:
http://www.cs.cmu.edu:80/index.html
http://www.cs.cmu.edu/index.html
http://www.cs.cmu.edu

Identifies a file called index.html, managed by a Web server at
www.cs.cmu.edu that is listening on port 80.

URLs for dynamic content:URLs for dynamic content:
http://www.cs.cmu.edu:8000/cgi-bin/adder?15000&213

Identifies an executable file called adder, managed by a Web
server at www.cs.cmu.edu that is listening on port 8000, that
should be called with two argument strings: 15000 and 213.

– 10 – 15-213, F’08

How Clients and Servers Use URLsHow Clients and Servers Use URLs
Example URL: Example URL: http://www.aol.com:80http://www.aol.com:80/index.html/index.html
Clients use Clients use prefixprefix ((http://www.aol.com:80http://www.aol.com:80) to infer:) to infer:

What kind of server to contact (Web server)
Where the server is (www.aol.com)
What port it is listening on (80)

Servers use Servers use suffixsuffix ((//index.htmlindex.html) to:) to:
Determine if request is for static or dynamic content.

No hard and fast rules for this.
Convention: executables reside in cgi-bin directory

Find file on file system.
Initial “/” in suffix denotes home directory for requested
content.
Minimal suffix is “/”, which all servers expand to some default
home page (e.g., index.html).

– 11 – 15-213, F’08

Anatomy of an HTTP TransactionAnatomy of an HTTP Transaction
unix> telnet www.aol.com 80 Client: open connection to server
Trying 205.188.146.23... Telnet prints 3 lines to the terminal
Connected to aol.com.
Escape character is '^]'.
GET / HTTP/1.1 Client: request line
host: www.aol.com Client: required HTTP/1.1 HOST header

Client: empty line terminates headers.
HTTP/1.0 200 OK Server: response line
MIME-Version: 1.0 Server: followed by five response headers
Date: Mon, 08 Jan 2001 04:59:42 GMT
Server: NaviServer/2.0 AOLserver/2.3.3
Content-Type: text/html Server: expect HTML in the response body
Content-Length: 42092 Server: expect 42,092 bytes in the resp body

Server: empty line (“\r\n”) terminates hdrs
<html> Server: first HTML line in response body
... Server: 766 lines of HTML not shown.
</html> Server: last HTML line in response body
Connection closed by foreign host. Server: closes connection
unix> Client: closes connection and terminates

– 12 – 15-213, F’08

HTTP RequestsHTTP Requests
HTTP request is a HTTP request is a request linerequest line, followed by zero or , followed by zero or

more more request headersrequest headers

Request line: Request line: <method> <<method> <uriuri> <version>> <version>
<version> is HTTP version of request (HTTP/1.0 or
HTTP/1.1)
<uri> is typically URL for proxies, URL suffix for servers.

A URL is a type of URI (Uniform Resource Identifier)
See http://www.ietf.org/rfc/rfc2396.txt

<method> is either GET, POST, OPTIONS, HEAD, PUT,
DELETE, or TRACE.

– 13 – 15-213, F’08

HTTP Requests (cont)HTTP Requests (cont)
HTTP methods:HTTP methods:

GET: Retrieve static or dynamic content
Arguments for dynamic content are in URI
Workhorse method (99% of requests)

POST: Retrieve dynamic content
Arguments for dynamic content are in the request body

OPTIONS: Get server or file attributes
HEAD: Like GET but no data in response body
PUT: Write a file to the server!
DELETE: Delete a file on the server!
TRACE: Echo request in response body

Useful for debugging.

– 14 – 15-213, F’08

HTTP Requests (cont)HTTP Requests (cont)
Request headers: Request headers: <header name>: <header data<header name>: <header data>>

Provide additional information to the server.

– 15 – 15-213, F’08

HTTP VersionsHTTP Versions
Major differences between HTTP/1.1 and HTTP/1.0Major differences between HTTP/1.1 and HTTP/1.0

HTTP/1.0 uses a new connection for each transaction.
HTTP/1.1 also supports persistent connections

multiple transactions over the same connection
Connection: Keep-Alive

HTTP/1.1 requires HOST header
Host: kittyhawk.cmcl.cs.cmu.edu

HTTP/1.1 supports chunked encoding (described later)
Transfer-Encoding: chunked

HTTP/1.1 adds additional support for caching

– 16 – 15-213, F’08

HTTP ResponsesHTTP Responses
HTTP response is a HTTP response is a response lineresponse line followed by zero or followed by zero or

more more response headersresponse headers..
Response line: Response line:

<version> <status code> <status <version> <status code> <status msgmsg>>
<version> is HTTP version of the response.
<status code> is numeric status.
<status msg> is corresponding English text.

200 OK Request was handled without error
403 Forbidden Server lacks permission to access file
404 Not found Server couldn’t find the file.

Response headers: Response headers: <header name>: <header data><header name>: <header data>
Provide additional information about response
Content-Type: MIME type of content in response body.
Content-Length: Length of content in response body.

– 17 – 15-213, F’08

GET Request to Apache Server
From IE Browser
GET Request to Apache Server
From IE Browser

GET /test.html HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)
Host: euro.ecom.cmu.edu
Connection: Keep-Alive
CRLF (\r\n)

URI is just the suffix, not the entire URL

– 18 – 15-213, F’08

GET Response From Apache ServerGET Response From Apache Server

HTTP/1.1 200 OK
Date: Thu, 22 Jul 1999 04:02:15 GMT
Server: Apache/1.3.3 Ben-SSL/1.28 (Unix)
Last-Modified: Thu, 22 Jul 1999 03:33:21 GMT
ETag: "48bb2-4f-37969101"
Accept-Ranges: bytes
Content-Length: 79
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html
CRLF
<html>
<head><title>Test page</title></head>
<body>
<h1>Test page</h1>
</html>

– 19 – 15-213, F’08

Serving Dynamic ContentServing Dynamic Content

Client Server

Client sends request to Client sends request to
server.server.

If request URI contains the If request URI contains the
string string ““//cgicgi--binbin””, then , then
the server assumes that the server assumes that
the request is for the request is for
dynamic content. dynamic content.

GET /cgi-bin/env.pl HTTP/1.1

– 20 – 15-213, F’08

Serving Dynamic Content (cont)Serving Dynamic Content (cont)

Client ServerThe server creates a child The server creates a child
process and runs the process and runs the
program identified by the program identified by the
URI in that processURI in that process

env.pl

fork/exec

– 21 – 15-213, F’08

Serving Dynamic Content (cont)Serving Dynamic Content (cont)

Client ServerThe child runs and The child runs and
generates the dynamic generates the dynamic
content.content.

The server captures the The server captures the
content of the child and content of the child and
forwards it without forwards it without
modification to the clientmodification to the client

env.pl

Content

Content

– 22 – 15-213, F’08

Issues in Serving Dynamic ContentIssues in Serving Dynamic Content

How does the client pass program How does the client pass program
arguments to the server?arguments to the server?

How does the server pass these How does the server pass these
arguments to the child?arguments to the child?

How does the server pass other How does the server pass other
info relevant to the request to info relevant to the request to
the child?the child?

How does the server capture the How does the server capture the
content produced by the child?content produced by the child?

These issues are addressed by the These issues are addressed by the
Common Gateway Interface Common Gateway Interface
(CGI) (CGI) specification.specification.

Client Server

Content

Content

Request

Create

env.pl

– 23 – 15-213, F’08

CGICGI

Because the children are written according to the CGI Because the children are written according to the CGI
spec, they are often called spec, they are often called CGI programsCGI programs..

Because many CGI programs are written in Perl, they Because many CGI programs are written in Perl, they
are often called are often called CGI scriptsCGI scripts..

However, CGI really defines a simple standard for However, CGI really defines a simple standard for
transferring information between the client transferring information between the client
(browser), the server, and the child process.(browser), the server, and the child process.

– 24 – 15-213, F’08

The add.com ExperienceThe add.com Experience
input URL

Output page

host port CGI program args

– 25 – 15-213, F’08

Serving Dynamic Content With GETServing Dynamic Content With GET

Question:Question: How does the client pass arguments to the How does the client pass arguments to the
server?server?

Answer:Answer: The arguments are appended to the URIThe arguments are appended to the URI

Can be encoded directly in a URL typed to a browser Can be encoded directly in a URL typed to a browser
or a URL in an HTML link or a URL in an HTML link

http://add.com/cgi-bin/adder?1&2
adder is the CGI program on the server that will do the
addition.
argument list starts with “?”
arguments separated by “&”
spaces represented by “+” or “%20”

Can also be generated by an HTML formCan also be generated by an HTML form
<form method=get action="http://add.com/cgi-bin/postadder">

– 26 – 15-213, F’08

Serving Dynamic Content With GETServing Dynamic Content With GET
URL: URL:

http://add.com/cgi-bin/adder?1&2

Result displayed on browser: Result displayed on browser:

Welcome to add.com: THE Internet addition portal.

The answer is: 1 + 2 = 3

Thanks for visiting!

– 27 – 15-213, F’08

Serving Dynamic Content With GETServing Dynamic Content With GET
QuestionQuestion: How does the server pass these : How does the server pass these

arguments to the child?arguments to the child?
Answer:Answer: In environment variable QUERY_STRINGIn environment variable QUERY_STRING

A single string containing everything after the “?”
For add.com: QUERY_STRING = “1&2”

/* child code that accesses the argument list */
if ((buf = getenv("QUERY_STRING")) == NULL) {

exit(1);
}
/* extract arg1 and arg2 from buf and convert */
...
n1 = atoi(arg1);
n2 = atoi(arg2);

– 28 – 15-213, F’08

Serving Dynamic Content With GETServing Dynamic Content With GET
Question:Question: How does the server pass other info relevant How does the server pass other info relevant

to the request to the child?to the request to the child?

Answer:Answer: In a collection of environment variables In a collection of environment variables
defined by the CGI spec.defined by the CGI spec.

– 29 – 15-213, F’08

Some CGI Environment VariablesSome CGI Environment Variables
GeneralGeneral

SERVER_SOFTWARE
SERVER_NAME
GATEWAY_INTERFACE (CGI version)

RequestRequest--specificspecific
SERVER_PORT
REQUEST_METHOD (GET, POST, etc)
QUERY_STRING (contains GET args)
REMOTE_HOST (domain name of client)
REMOTE_ADDR (IP address of client)
CONTENT_TYPE (for POST, type of data in message body, e.g.,
text/html)
CONTENT_LENGTH (length in bytes)

– 30 – 15-213, F’08

Some CGI Environment VariablesSome CGI Environment Variables
In addition, the value of each header of type In addition, the value of each header of type typetype

received from the client is placed in environment received from the client is placed in environment
variable variable HTTP_HTTP_typetype

Examples:
HTTP_ACCEPT
HTTP_HOST
HTTP_USER_AGENT (any “-” is changed to “_”)

– 31 – 15-213, F’08

Serving Dynamic Content With GETServing Dynamic Content With GET
Question:Question: How does the server capture the content produced by the How does the server capture the content produced by the

child?child?
Answer:Answer: The child generates its output on The child generates its output on stdoutstdout. Server uses . Server uses dup2 dup2

to redirect to redirect stdoutstdout to its connected socket. to its connected socket.
Notice that only the child knows the type and size of the content. Thus
the child (not the server) must generate the corresponding headers.

/* child generates the result string */
sprintf(content, "Welcome to add.com: THE Internet addition portal\

<p>The answer is: %d + %d = %d\
<p>Thanks for visiting!\r\n",
n1, n2, n1+n2);

/* child generates the headers and dynamic content */
printf("Content-length: %d\r\n", strlen(content));
printf("Content-type: text/html\r\n");
printf("\r\n");
printf("%s", content);

– 32 – 15-213, F’08

Serving Dynamic Content With GET Serving Dynamic Content With GET
bass> ./tiny 8000
GET /cgi-bin/adder?1&2 HTTP/1.1
Host: bass.cmcl.cs.cmu.edu:8000
<CRLF>
kittyhawk> telnet bass 8000
Trying 128.2.222.85...
Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is '^]'.
GET /cgi-bin/adder?1&2 HTTP/1.1
Host: bass.cmcl.cs.cmu.edu:8000
<CRLF>
HTTP/1.1 200 OK
Server: Tiny Web Server
Content-length: 102
Content-type: text/html
<CRLF>
Welcome to add.com: THE Internet addition portal.
<p>The answer is: 1 + 2 = 3
<p>Thanks for visiting!
Connection closed by foreign host.
kittyhawk>

HTTP request received by
Tiny Web server

HTTP request sent by client

HTTP response generated by
the server
HTTP response generated by
the CGI program

– 33 – 15-213, F’08

ProxiesProxies
A A proxy proxy is an intermediary between a client and an is an intermediary between a client and an

origin serverorigin server..
To the client, the proxy acts like a server.
To the server, the proxy acts like a client.

Client Proxy Origin
Server

1. Client request 2. Proxy request

3. Server response4. Proxy response

– 34 – 15-213, F’08

Why Proxies?Why Proxies?
Can perform useful functions as requests and Can perform useful functions as requests and

responses pass byresponses pass by
Examples: Caching, logging, anonymization, filtering,
transcoding

Client
A

Proxy
cache

Origin
Server

Request foo.html

Request foo.html
foo.html

foo.html

Client
B

Request foo.html

foo.html

Fast inexpensive local network

Slower more
expensive

global network

– 35 – 15-213, F’08

Putting it Together:
Web Proxy Demonstration
Putting it Together:
Web Proxy Demonstration

Client
Origin
ServerProxy

1). Client Request 2). Proxy Request

4). Proxy Response 3). Server Response

– 36 – 15-213, F’08

Servicing Web Page RequestServicing Web Page Request

– 37 – 15-213, F’08

Client ProxyClient Proxy

GET http://www-2.cs.cmu.edu/~bryant/test.html HTTP/1.1\r\n
Host: www-2.cs.cmu.edu\r\n
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.3)

Gecko/20040910\r\n
Accept:

text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,tex
t/plain;q=0.8,image/png,*/*;q=0.5\r\n

Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7\r\n
Keep-Alive: 300\r\n
Proxy-Connection: keep-alive\r\n
\r\n

The browser sends a URI
that is a complete URL

– 38 – 15-213, F’08

Proxy ServerProxy Server

GET /~bryant/test.html HTTP/1.1\r\n
Host: www-2.cs.cmu.edu\r\n
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.3)

Gecko/20040910\r\n
Accept:

text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,tex
t/plain;q=0.8,image/png,*/*;q=0.5\r\n

Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7\r\n
Keep-Alive: 300\r\n
Connection: keep-alive\r\n
\r\n

The proxy sends a URI
that is a path

– 39 – 15-213, F’08

Server Proxy ClientServer Proxy Client

Chunked Transfer EncodingChunked Transfer Encoding
Alternate way of specifying content length
Each “chunk” prefixed with chunk length
See http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html

HTTP/1.1 200 OK\r\n
Date: Mon, 29 Nov 2004 01:27:15 GMT\r\n
Server: Apache/1.3.27 (Unix) mod_ssl/2.8.12 OpenSSL/0.9.6
mod_pubcookie/a5/1.76-009\r\n

Transfer-Encoding: chunked\r\n
Content-Type: text/html\r\n
\r\n

– 40 – 15-213, F’08

Server Proxy Client (cont)Server Proxy Client (cont)
2ec\r\n
<head><title>Some Tests</title></head>\n
<h1>Some Tests</h1>\n
<dl>\n
<dt> Current Teaching: \n
\n
 Bryant's teaching\n
 \n
15-213 Introduction to Computer Systems (Fall '04).\n

 Nonexistent file\n
 Nonexistent host\n

\n
<dt>Fun Downloads\n
\n
 Google\n
 CMU\n
 Yahoo\n
 NFL\n

\n
</dl>\n
<hr>\n
Back to Randy Bryant's home page\n
\n
\r\n
0\r\n
\r\n

First Chunk: 0x2ec = 748 bytes

Second Chunk: 0 bytes (indicates last chunk)

– 41 – 15-213, F’08

For More InformationFor More Information
Study the Tiny Web server described in your textStudy the Tiny Web server described in your text

Tiny is a sequential Web server.
Serves static and dynamic content to real browsers.

text files, HTML files, GIF and JPEG images.
220 lines of commented C code.
Also comes with an implementation of the CGI script for the
add.com addition portal.

See the HTTP/1.1 standard:See the HTTP/1.1 standard:
http://www.w3.org/Protocols/rfc2616/rfc2616.html

